
National Technical UniveRsity of Athens
School of ElectRical and ComputeR

EngineeRing

Privacy-Oriented Cryptographic
Primitives and Protocols for Electronic

Voting

PhD Thesis

Panagiotis M. Grontas

Athens, Greece
December 2020

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ

ΥΠΟΛΟΓΙΣΤΩΝ

Ιδιωτικοστρεφή Κρυπτογραφικά
Σχήματα και Πρωτόκολλα για
Ηλεκτρονικές Ψηφοφορίες

Διδακτορική Διατριβή

Παναγιώτης Μ. Γροντάς

Αθήνα,
Δεκέμβριος 2020

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ

Ιδιωτικοστρεφή Κρυπτογραφικά Σχήματα και Πρωτόκολλα
για Ηλεκτρονικές Ψηφοφορίες

Παναγιώτης Μ. Γροντάς

Τριμελής Συμβουλευτική Επιτροπή:
Αριστείδης Παγουρτζής (επιβλέπων)
Ευστάθιος Ζάχος
Δημήτριος Φωτάκης

Εγκρίθηκε από την επταμελή εξεταστική επιτροπή την 9η Δεκεμβρίου 2020:

Αριστείδης Παγουρτζής
Καθηγητής, ΕΜΠ

Δημήτριος Φωτάκης
Αν. Καθηγητής, ΕΜΠ

Παναγιώτης Τσανάκας
Καθηγητής, ΕΜΠ

Αντώνιος Συμβώνης
Καθηγητής, ΕΜΠ

Δημήτριος Πουλάκης
Καθηγητής, ΑΠΘ

Άγγελος Κιαγιάς
Professor, University of Edinburgh

Βασίλειος Ζήκας
Associate Professor (Sr. Lecturer),
University of Edinburgh

Ημερομηνία Εξέτασης: 09/12/2020

iii

Abstract

Panagiotis M. Grontas

Privacy-Oriented Cryptographic Primitives and Protocols for Electronic Voting

We propose a new cryptographic primitive, Publicly Auditable Conditional Blind Signatures
(PACBS), which connects the verification of a digital signature to publicly available data.
During signing, a predicate on these data is embedded into the signature, so that the latter is
valid if and only if the former is true. Verification is performed by a designated verifier, in a
strong manner, with the use of a private verification key. The privacy of the user requesting
the signature is protected information-theoretically, because the message to be signed is
blinded. Additionally, to avoid attacks from amalicious signer or verifier that disregards the
predicate, all their operations are accompanied with evidence in the form of non-interactive
zero-knowledge proofs of knowledge that force them to follow the protocol. We define a
security model to capture the guarantees of our primitive and provide an instantiation.

We utilize PACBS in a remote electronic voting protocol. The conditional nature of PACBS
enables us to build credentials that allow our protocol to provide coercion resistance in the
re-voting with anonymous credentials paradigm of Juels, Catalano and Jakobsson. When
coerced, a voter uses a fake credential to accompany the vote, while when the coercer is
not watching, she can cast her real vote which is accompanied by the valid credential. Only
the latter will be counted. All interactions are indistinguishable to the coercer, who cannot
tell if his attack succeeded. The evidence generated by PACBS accompanied with standard
evidence used in e-voting schemes allows each voter to individually verify that their votes
were correctly cast and tallied. Vote counting is also universally verifiable by any interested
party. Our overall architecture also provides strong privacy guarantees, since, contrary
to the conventional e-voting paradigm, we do not assume that the talliers are trusted for
privacy. This allows us, to extend our reasoning about privacy against a computationally
unbounded attacker. We generalize our findings to express security models for everlasting
privacy that also consider the data available to the adversary.

Keywords: cryptography, electronic voting, privacy, coercion resistance, security models

v

Περίληψη

Παναγιώτης Μ. Γροντάς

Ιδιωτικοστρεφή Κρυπτογραφικά Σχήματα και Πρωτόκολλα για Ηλεκτρονικές Ψηφοφορίες

Προτείνουμε τις Δημόσια Ελέγξιμες Υπο-Συνθήκη Τυφλές Υπογραφές (ΔΕΥΤΥ), ένα νέο κρυ-
πτογραφικό σχήμα, που συνδέει την επαλήθευση μιας ψηφιακής υπογραφής με δημόσια
διαθέσιμα δεδομένα. Κατά τη διάρκεια της υπογραφής, ένα κατηγόρημα που σχετίζεται
με αυτά τα δεδομένα ενσωματώνεται στην υπογραφή, έτσι ώστε η τελευταία να ισχύει εάν
και μόνο εάν είναι το κατηγόρημα αποτιμάται ως αληθές. Η επαλήθευση πραγματοποιεί-
ται από έναν προκαθορισμένο επαληθευτή, με ισχυρό τρόπο, με τη χρήση ενός ιδιωτικού
κλειδιού επαλήθευσης. Το απόρρητο του χρήστη που ζητά την υπογραφή προστατεύεται
πληροφοριοθεωρητικά, τυφλώνοντας το προς-υπογραφή μήνυμα. Επιπλέον, για να απο-
φευχθούν επιθέσεις από κάποιον κακόβουλο υπογράφοντα ή επαληθευτή που αγνοούν το
κατηγόρημα, η δημιουργία και ο έλεγχος των υπογραφών μας συνοδεύονται από στοιχεία
με τη μορφή μη-διαδραστικών αποδείξων μηδενικής γνώσης που αναγκάζουν συμμόρφω-
ση προς το πρωτόκολλο. Ορίζουμε ένα μοντέλο ασφαλείας για να αποτυπώσουμε τις
εγγυήσεις των υπογραφών μας και παρέχουμε μια υλοποίηση.

Χρησιμοποιούμε τις ΔΕΥΤΥ σε ένα πρωτόκολλο απομακρυσμένης ηλεκτρονικής ψηφοφο-
ρίας. Η υπο-συνθήκη επαλήθευση μας βοηθά να δημιουργήσουμε ανώνυμα διαπιστευ-
τήρια που επιτρέπουν στο σύστημά μας να αντιμετωπίζει επιθέσεις εξαναγκασμού στο
υπόδειγμα πολλαπλών ψήφων ανά ψηφοφόρο σε συνδυασμό με ανώνυμα κανάλια και
μια στιγμή ιδιωτικότητας. Κατά τον εξαναγκασμό, μία ψηφοφόρος χρησιμοποιεί ψεύτι-
κο διαπιστευτήριο για να συνοδεύσει την επιλογή της, ενώ όταν ο εξαναγκαστής δεν πα-
ρακολουθεί, μπορεί να εισάγει την πραγματική ψήφο της που συνοδεύεται από έγκυρο
διαπιστευτήριο. Φυσικά, μόνο η ψήφος με το έγκυρο διαπιστευτήριο θα μετρηθεί. Όλες
οι αλληλεπιδράσεις είναι μη διακρίσιμες από τον εξαναγκαστή, ο οποίος δεν μπορεί να
πει ποια ψήφος μέτρησε. Τα αποδεικτικά στοιχεία που δημιουργούνται από τις ΔΕΥΤΥ,
μαζί με τα συνήθη αποδεικτικά στοιχεία που χρησιμοποιούνται σε συστήματα ηλεκτρονι-
κής ψηφοφορίας, επιτρέπουν σε κάθε ψηφοφόρο να επαληθεύσει μεμονωμένα ότι η ψήφος

vi

καταχωρήθηκε σωστά και μετρήθηκε. Η καταμέτρηση των ψήφων, επιπλέον, είναι καθο-
λικά επαληθεύσιμη, από οποιαδήποτε ενδιαφερόμενη οντότητα. Η συνολική αρχιτεκτο-
νική του συστήματος μας, παρέχει επίσης ισχυρότερες εγγυήσεις για την προστασία της
μυστικότητας της ψήφου, καθώς, σε αντίθεση με τη συνήθη πρακτική στις ηλεκτρονικές
ψηφοφορίες, δεν υποθέτουμε ότι οι καταμετρητές τηρούν το απόρρητο της ψήφου. Αυτό
μας επιτρέπει να επεκτείνουμε την μυστικότητα εναντίον ενός υπολογιστικά αδέσμευτου
αντιπάλου. Γενικεύουμε τα ευρήματά μας για να εκφράσουμε μοντέλα ασφαλείας για αέ-
ναη προστασία μυστικότητας, που λαμβάνουν επίσης υπόψιν τα διαθέσιμα δεδομένα που
διαρρέονται από την υλοποίηση του πρωτοκόλλου.

Λέξεις-κλειδιά: κρυπτογραφία, ηλεκτρονικές ψηφοφορίες, ιδιωτικότητα, αντίσταση στον
εξαναγκασμό, μοντέλα ασφάλειας

vii

Εκτεταμένη περίληψη

Εισαγωγή Οι ηλεκτρονικές ψηφοφορίες μπορούν να κάνουν καλύτερες τις εκλογές με
πολλούς τρόπους: Επιταχύνοντας την καταμέτρηση, βελτιώνοντας την εμπειρία του χρή-
στη - ειδικά όταν τα ψηφοδέλτια είναι πολύπλοκα ή όταν οι ψηφοφόροι αντιμετωπίζουν
φυσικούς περιορισμούς και χρειάζονται υποβοήθηση για να εκφράσουν τις προτιμήσεις
τους. Οι απομακρυσμένες ηλεκτρονικές ψηφοφορίες μπορούν επίσης να προσθέσουν α-
μεσότητα, με αποτέλεσμα μεγαλύτερη συχνότητα και συμμετοχή στη συλλογική λήψη α-
ποφάσεων κάτι που είναι πολύ σημαντικό στην παγκοσμιοποιημένη κοινωνία μας. Τέλος,
μπορεί να οδηγήσουν σε νέα υποδείγματα εκλογών αλλάζοντας την δημοκρατία σε μικρή
και μεγάλη κλίμακα.

Για να επιτευχθούν όλα αυτά, οι ηλεκτρονικές εκλογές πρέπει να είναι ασφαλείς, ακό-
μα περισσότερο από τις φυσικές, καθώς πρέπει να πείσουν ότι μόνο κέρδος προκύπτει από
την χρήση τους και δεν διακινδυνεύονται κεκτημένα. Απέχουμε πολύ από αυτό το στόχο,
παρά τις πολλές προσπάθειες και τα διάφορα συστήματα που έχουν αναπτυχθεί. Αυτό
οφείλεται κυρίως στο ότι οι εκλογές είναι ένα πολύ δύσκολο πρόβλημα και οι δικλείδες
ασφαλείας που εφαρμόζονται στον φυσικό κόσμο είναι αντικείμενο εξέλιξης και πειραμα-
τισμού εκατοντάδων ετών, στενά συνδεδεμένες με κοινωνικές δομές που απολαμβάνουν
εμπιστοσύνη. Όλη αυτή η εξέλιξη πρέπει να αντικατασταθεί από συστήματα υπολογι-
στών, τα οποία, εκτός από ότι αριθμούν μερικές μόνο δεκαετίες ύπαρξης, είναι γνωστά
για την ρευστότητά τους και το πόσο εύκολα εκτρέπονται ειδικά όταν υλοποιούνται σε
λογισμικό. Επιπλέον, οι εκλογές ηλεκτρονικές ή όχι, είναι εξ’ ορισμού ένα εχθρικό περι-
βάλλον, καθώς οι ενδιαφερόμενοι έχουν πολλά κίνητρα να επηρεάσουν το αποτέλεσμα
προς όφελός τους. Κατά συνέπεια, δεν αρκεί κάποιο ηλεκτρονικό σύστημα ψηφοφορίας
να είναι σωστό. Πρέπει επίσης να είναι επαληθεύσιμο, για να ωθήσει τους ψηφοφόρους
(ειδικά τους υποστηρικτές των ηττημένων) να αποδεχθούν ότι η συνεισφορά τους λήφθηκε
υπόψη, χωρίς τυχαία ή κακόβουλα λάθη.

Ιδιότητες Οι ιδιότητες που πρέπει να ικανοποιεί ένα σύστημα εκλογών φυσικό ή ηλε-
κτρονικό είναι οι παρακάτω:

• Ορθότητα (Correctness): Τα αποτελέσματα πρέπει να αντιστοιχούν στις προτιμή-
σεις των ψηφοφόρων.

viii

• Επαληθευσιμότητα (Verifiability): Οι εκλογείς αλλά και οποιοσδήποτε ενδιαφερό-
μενος πρέπει να μπορεί να επαληθεύσει την ορθότητα. Γίνεται συνήθως σε 3 στάδια
[Cha04; AN06]:

– Επαλήθευση καταγραφής πρόθεσης (Cast-as-intended): Το εκλογικό σύστημα
επιτρέπει στον ψηφοφόρο να ελέγξει ότι καταχωρήθηκε σωστά η πρόθεσή του.

– Επαλήθευση κατάθεσης (Recorded-as-cast): Μπορεί να ελεγχθεί αν η καταχω-
ρημένη ψήφος μεταφέρθηκε σωστά για καταμέτρηση.

– Επαλήθευση καταμέτρησης (Tallied-as-recorded): Η καταμέτρηση αντιστοιχεί
στις ψήφους που κατατέθηκαν - δεν υπάρχει δηλαδή κάποια αλλαγή στο εν-
διάμεσο.

Στα παραδοσιακά συστήματα ψηφοφορίας η επαληθευσιμότητα είναι κυρίως αρμο-
διότητα έμπιστων τρίτων οντοτήτων (μελών της δικαστικής εξουσίας και αντιπρο-
σώπων των υποψηφίων). Ο ψηφοφόρος δεν μπορεί άμεσα να επαληθεύσει την ψήφο
του εκτός από το στάδιο καταγραφής πρόθεσης. Σε ένα ηλεκτρονικό περιβάλλον
κανένα στάδιο δεν μπορεί να γίνει χωρίς τη βοήθεια υπολογιστικών συστημάτων.
Κατά συνέπεια προστίθεται και μία ακόμα μη διαφανής οντότητα.

Στη διατριβή αυτή δεν ασχολούμαστε με την επαλήθευση της πρόθεσης του ψηφο-
φόρου, καθώς για τον σκοπό αυτό μπορούν να χρησιμοποιηθούν πολλές από τις
γνωστές σχετικές τεχνικές. Χρησιμοποιούμε τον όρο εκλογική επαληθευσιμότητα
(election verifiability) [SFC15], η οποία μπορεί να αναλυθεί σε ατομική (individual)
και καθολική (universal) επαληθευσιμότητα [Cor+16]. Στην τελευταία πολλοί συμ-
περιλαμβάνουν την επαληθευσιμότητα δικαιώματος ψήφου (eligibility verifiability)
η οποία μπορούν να είναι δημόσια [SFC15] ή ιδιωτική [KTV15]. Επειδή η επαληθευ-
σιμότητα προσπαθεί να προστατεύσει τους ψηφοφόρους από διεφθαρμένες αρχές
και συσκευές που κάνουν λάθη - είτε επίτηδες, είτε κατά λάθος - κατά την τυπική
μοντελοποίησή της όλες οι αρχές θεωρούνται ως ελεγχόμενες από τον αντίπαλο.

• Μυστικότητα: Βοηθά και αναγκάζει τους ψηφοφόρους να εκφράζουν ελεύθερα τη
γνώμη τους. Ως απαίτηση ασφάλειας μάλιστα είναι κωδικοποιημένη στη νομοθεσία.
Στις φυσικές ψηφοφορίες εφαρμόζεται με τον έλεγχο του περιβάλλοντος ψηφοφορί-
ας με φυσικά μέσα (παραβάν, κάλπη) και έμπιστες τρίτες οντότητες που περιορίζουν
τον ψηφοφόρο με τέτοιο τρόπο ώστε να διατηρηθεί το απόρρητο της ψηφοφορίας.
Τα συγκεκριμένα αντίμετρα δεν ισχύουν σε απομακρυσμένο (ηλεκτρονικό) περιβάλ-
λον, γεγονός που καθιστά την πώληση ψήφων και την εξαναγκασμένη ψηφοφορία
πιθανά και επικίνδυνα ενδεχόμενα.

Η μυστικότητα ορίζεται και αυτή σε διάφορα επίπεδα:

ix

– μυστικότητα ψήφου (ballot secrecy / privacy) [Cor+14]: προστατεύει ενάντια
σε έναν παθητικό αντίπαλο ο οποίος θέλει να μάθει τα περιεχόμενα της ψή-
φου ενός ψηφοφόρου. Τέτοιοι για παράδειγμα είναι οι καταμετρητές ή άλλοι
ψηφοφόροι. Σε αυτό το επίπεδο, η μυστικότητα είναι εφήμερη με διάρκεια όση
και οι εκλογές.

– μη-αποδειξιμότητα ψήφου (receipt-freeness) [BT94]: προστατεύει ενάντια σε
έναν κακόβουλο ψηφοφόρο που θέλει να πουλήσει την ψήφο του.

– αντίσταση στον εξαναγκασμό (coercion-resistance) [JCJ05]: προστατεύει ενάν-
τια σε έναν εξωτερικό ισχυρό αντίπαλο που υποδεικνύει στον ψηφοφόρο την
επιλογή του ή τον προσομοιώνει ή τον αναγκάζει να απόσχει. Ο αντίπαλος
αυτός μπορεί να βρίσκεται ‘δίπλα’ στον ψηφοφόρο καθώς ο τελευταίος ψηφί-
ζει ή να παίζει το ρόλο του έχοντας υποκλέψει τα επίσημα διαπιστευτήρια. Οι
δύο παραπάνω ιδιότητες ικανοποιούνται διαισθητικά με την παρακάτω προ-
σέγγιση: ο αντίπαλος δεν έχει έχει κίνητρο να πραγματοποιήσει την επίθεσή
του αν δεν μπορεί να είναι σίγουρος ότι θα επιτύχει. Έτσι ο ψηφοφόρος α-
ποκτά διάφορα μέσα στη διάθεσή του ώστε να μπορεί να του δημιουργήσει
αμφιβολία.

– αέναη ιδιωτικότητα (everlasting privacy) [MN06]: προστατεύει απέναντι σε έ-
ναν υπολογιστικά ισχυρό αντίπαλο ο οποίος αντιπροσωπεύει επιθέσεις που
λαμβάνουν χώρα όταν οι διάφορες υπολογιστικές υποθέσεις που προστατεύ-
ουν τα διάφορα κρυπτοσυστήματα δεν θα ισχύουν πλέον.

Από την παραπάνω περιγραφή προκύπτει ότι οι θεμελιώδεις ιδιότητες ασφάλειας
των εκλογών είναι εν γένει αντικρουόμενες. Η επαληθευσιμότητα χωρίς μυστικό-
τητα είναι εύκολη και η πανάρχαια μέθοδος της ψηφοφορίας δι’ ανατάσεως χειρός
την υλοποιεί. Η μυστικότητα χωρίς επαληθευσιμότητα δεν έχει νόημα γιατί οι ψη-
φοφόροι δεν έχουν κίνητρο να εκφράσουν τη γνώμη τους αν ξέρουν ότι δεν θα κατα-
μετρηθεί σίγουρα. Η μη αποδειξιμότητα ψήφου και η αντίσταση στον εξαναγκασμό
έρχονται σε αντίθεση με την επαληθευσιμότητα. Στα διάφορα συστήματα που έχουν
προταθεί, όπως το Helios [Adi08], προτιμάται η ισχυρή επαληθευσιμότητα παρά η
ιδιωτικότητα. Κατά συνέπεια απαιτείται εμπιστοσύνη στις αρχές ότι θα εφαρμό-
σουν το πρωτόκολλο στην μυστικότητα. Αποτελεί όμως ανοικτό ερώτημα αν κάτι
τέτοιο είναι αποδεκτό από τους ψηφοφόρους.

Άλλες ιδιότητες που πρέπει να ικανοποιούν τα διάφορα συστήματα εκλογών είναι
η δικαιοσύνη (fairness), η ανθεκτικότητα (resiliency), η αποδοτικότητα (efficiency)
και η ενθάρρυνση (enfranchisement).

x

Κρυπτογραφικά σχήματα για εκλογές Η βασική έννοια που έρχεται να αντι-
μετωπίσει τα προβλήματα που εισάγει η τεχνολογία στις ηλεκτρονικές ψηφοφορίες
είναι η ανεξαρτησία από το λογισμικό (software independence) [Riv08], η οποία ο-
ρίζει ότι οποιαδήποτε μη ανιχνεύσιμη αλλαγή ή λάθος στο σύστημα εκλογών δεν
οδηγεί σε μη ανιχνεύσιμη αλλαγή ή λάθος στο αποτέλεσμα των εκλογών. Ένας
τρόπος επίτευξης της ιδιότητας της ανεξαρτησίας από λογισμικό είναι η ύπαρξη
ελέγξιμων στοιχείων σε κάποιο φυσικό μέσο όπως χαρτί.

Η διατριβή αυτή ασχολείται με την κρυπτογραφική προσέγγιση στην διασφάλι-
ση της ιδιότητας της ανεξαρτησίας από το λογισμικό καθώς και των υπόλοιπων
ιδιοτήτων δίνοντας ιδιαίτερη έμφαση στην προστασία από τον εξαναγκασμό και
την αέναη ιδιωτικότητα. Ειδικότερα η κρυπτογραφική προσέγγιση φτιάχνει τυπικά
μοντέλα ασφάλειας για τις ιδιότητες των εκλογικών συστημάτων. Στην συνέχεια
προτείνει πρωτόκολλα και τεχνικές που υλοποιούν τέτοια συστήματα και αποδει-
κνύει με αυστηρό τρόπο τις ιδιότητες ασφάλειας που ισχυρίζεται. Απώτερος στό-
χος της κρυπτογραφικής προσέγγισης είναι να μειωθεί ή να εξαλειφθεί εντελώς η
εμπιστοσύνη που πρέπει να εναποτίθεται σε εξωτερικές αρχές για τη διεξαγωγή των
εκλογών κάτι που είναι αδύνατο στα παραδοσιακά συστήματα ψηφοφορίας. Ταυτό-
χρονα όμως η μοντελοποίηση συμβάλλει στην καλύτερη κατανόηση των διαφόρων
ιδιοτήτων ασφαλείας και αποκαλύπτει πολλές φορές απρόσμενες σχέσεις μεταξύ
τους.

Στη διατριβή βασιζόμαστε στα παρακάτω κρυπτογραφικά σχήματα και πρωτόκολ-
λα:

– Ομομορφικά κρυπτοσυστήματα δημοσίου κλειδιού: Επιτρέπουν την προστα-
σία της μυστικότητας της ψήφου κρυπτογραφώντας την ψήφο με το δημόσιο
κλειδί της εκλογικής αρχής. Επιπλέον επιτρέπουν την διενέργεια πράξεων
μεταξύ κρυπτοκειμένων οι οποίες μεταφέρονται στα αρχικά μηνύματα. Στις
εκλογές χρησιμοποιούνται κρυπτοσυστήματα τα οποία πολλαπλασιάζοντας
δύο κρυπτοκείμενα αθροίζουν τα περιεχόμενα μηνύματα. Έτσι μπορεί να υ-
πολογιστεί το αποτέλεσμα των εκλογών. Ένα τέτοιο κρυπτοσύστημα είναι το
εκθετικό ElGamal [Gam85; CGS97].

– Τυφλές υπογραφές (blind signatures) [Cha83]: Είναι ψηφιακές υπογραφές, ό-
που η οντότητα που υπογράφει δεν έχει πρόσβαση στο μήνυμα και δεν μπορεί
να συσχετίσει μηνύματα και συνόδους υπογραφής με τις τελικές υπογραφές.
Σε ό,τι αφορά τη μη πλαστογράφηση, το μοντέλο ασφαλείας τους ορίζει ότι ό-
ποιος δεν έχει το ιδιωτικό κλειδί δεν μπορεί να παράγει μία επιπλέον υπογραφή
από όσες έχει αιτηθεί ο χρήστης (μία επιπλέον πλαστογράφηση) [PS00]. Στις ε-
κλογές ο υπογράφων είναι η εκλογική αρχή ενώ ο χρήστης είναι ο ψηφοφόρος.

xi

Χρησιμοποιούνται από την εκλογική αρχή ώστε να επιτρέψουν τον έλεγχο του
δικαιώματος ψήφου του ψηφοφόρου, χωρίς την αποκάλυψη της προτίμησής
του. Στη διατριβή χρησιμοποιούμε ιδιαίτερα τις τυφλές υπογραφές Okamoto
– Schnorr [Oka92].

– Αποδείξεις μηδενικής γνώσης (zero knowledge proofs) [GMR85]: Επιτρέπουν
την απόδειξη γνώσης ενός ‘μάρτυρα’, δηλαδή μιας τιμής που κάνει μια σχέση
να ισχύει, χωρίς την αποκάλυψη καμίας περαιτέρω πληροφορίας γι’ αυτήν.
Στην διατριβή αλλά και στα περισσότερα πρωτόκολλα ηλεκτρονικών ψηφο-
φοριών χρησιμοποιείται μια παραλλαγή τους: τα Σ-πρωτόκολλα - συστήματα
αποδείξεων 3-γύρων με τίμιο επαληθευτή, τα οποία μπορούν να γίνουν μη δια-
δραστικά χρησιμοποιώντας την τεχνική Fiat – Shamir [FS86]. Στις εκλογές
χρησιμοποιούνται ώστε να αποδειχθεί η ορθότητα της ψήφου χωρίς να θυσια-
στεί η μυστικότητα αλλά και για να αποδειχθεί ο ορθός υπολογισμός του απο-
τελέσματος. Βασιζόμαστε εκτεταμένα στα πρωτόκολλα των Schnorr [Sch91]
και Chaum – Pedersen [CP93].

– (Ισχυρές) υπογραφές καθορισμένου επαληθευτή ((strong) designated verifier
signatures) [JSI96]: Σε αυτές εκτός από τον υπογράφων, και ο επαληθευτής
διαθέτει ένα ζεύγος κλειδιών. Στην απλή έκδοσή τους, ο επαληθευτής χρη-
σιμοποιεί το ιδιωτικό κλειδί του μόνο για να τις προσομοιώσει. Στην ισχυρή
έκδοσή τους, δεν είναι δημόσια επαληθεύσιμες, όπως οι κανονικές ψηφιακές
υπογραφές αλλά ο επαληθευτής πρέπει να χρησιμοποιήσει ένα ιδιωτικό κλειδί
ελέγξει. Στα διάφορα κρυπτογραφικά συστήματα εκλογών έχουν στόχο κυρί-
ως να παρέχουν προστασία από εξαναγκασμό. Οι καθορισμένοι επαληθευτές
είναι οι ψηφοφόροι. Οι διάφορες αρχές (κυρίως εγγραφής) παρέχουν μια τέ-
τοια υπογραφή ως απόδειξη για τη σωστή δημιουργία ενός διαπιστευτηρίου.
Όταν τη ζητήσει ο εξαναγκαστής, τότε ο ψηφοφόρος δίνει μία προσομοίωσή
της που δεν μπορεί να διαχωριστεί από την πραγματική. Η δική μας προσέγ-
γιση είναι η αντίστροφη: Ο προκαθορισμένος επαληθευτής είναι ο καταμε-
τρητής. Ο ψηφοφόρος δημιουργεί μια τέτοια υπογραφή, εγκαθιστώντας έτσι
ένα ιδιωτικό κανάλι για να μεταφέρει την πληροφορία αν η ψήφος πρέπει να
καταμετρηθεί ή όχι, ή ισοδύναμα αν αποτελεί προϊόν ελεύθερης επιλογής ή
εξαναγκασμού. Η ιδιωτική επαλήθευση, έχει ως αποτέλεσμα, μόνο ο καταμε-
τρητής να γνωρίζει αν η ψήφος πρέπει να καταμετρηθεί ή όχι. Για να είναι
αυτό το γεγονός καθολικά επαληθεύσιμο όμως, πρέπει ο καθορισμένος επαλη-
θευτής να παρέχει στοιχεία σε μορφή αποδείξεων μηδενικής γνώσης τα οποία
θα αποδεικνύουν ότι ακολουθήθηκε το πρωτόκολλο.

– Έλεγχος ισοδυναμίας μηνυμάτων (Plaintext Equivalence Test) [JJ00; MPT20]:
Ένα πρωτόκολλο το οποίο επιτρέπει σε ένα σύνολο οντοτήτων να ελέγξουν αν

xii

δύο κρυπτοκείμενα περιέχουν το ίδιο μήνυμα. Οι οντότητες τυφλώνουν αρχικά
το ομομορφικό πηλίκο των κρυπτοκειμένων. Στη συνέχεια τα αποκρυπτογρα-
φούν μερικώς και συνδυάζουν τις κρυπτογραφήσεις τους. Τέλος, ελέγχουν αν
το αποτέλεσμα είναι 1 που σημαίνει ότι τα κρυπτοκείμενα περιέχουν το ίδιο αρ-
χικό μήνυμα. Σε διαφορετική περίπτωση το αποτέλεσμα θα είναι ένα τυχαίο
στοιχείο της ομάδας.

Στην διατριβή, προτείνουμε ένα κρυπτογραφικό εργαλείο το οποίο συνδυάζει
έναν έλεγχο ισοδυναμίας μηνυμάτων με τυφλές υπογραφές καθορισμένου επα-
ληθευτή.

– Δίκτυα μίξης (mixnets) [Cha82]: Επιτρέπουν την ανωνυμοποίηση ενός συνόλου
μηνυμάτων με τρόπο επαληθεύσιμο. Αποτελούνται από ένα σύνολο εξυπηρε-
τητών οι οποίοι αλλάζουν τη μορφή και εφαρμόζουν μια τυχαία μετάθεση στις
εισόδους τους, που συνήθως είναι κρυπτοκείμενα που έχουν παραχθεί με ένα
ομομορφικό κρυπτοσύστημα. Για να αποφευχθεί η εξαπάτηση κάθε εξυπηρετη-
τής παρέχει μία απόδειξη μηδενικής γνώσης ότι ακολούθησε το πρωτόκολλο.

Κρυπτογραφικά πρωτόκολλα ψηφοφορίας Σε ένα πρωτόκολλο ηλεκτρονικής
ψηφοφορίας συμμετέχουν οι παρακάτω οντότητες:

– Ψηφοφόροι. Συνήθως χρησιμοποιούν ειδικό λογισμικό / υλικό για να καταθέ-
σουν την ψήφο τους.

– Αρχές εγγραφής (registration authorities): Μοιράζουν απλά ή σύνθετα διαπι-
στευτήρια στους ψηφοφόρους και ελέγχουν αν έχουν δικαίωμα ψήφου.

– Αρχές καταμέτρησης (tallying authorities): Kαταμετρούν τις ψήφους και εξά-
γουν το τελικό αποτέλεσμα.

– Αποθετήριο ψήφων (bulletin board): Ένα κανάλι εκπομπής με μνήμη, που λει-
τουργεί ως αποθετήριο ψήφων.

Η βασική συνεισφορά της διατριβής, είναι ένα πρωτόκολλο ψηφοφορίας που αν-
τλεί έμπνευση από δύο γνωστά σχήματα της βιβλιογραφίας: το πρωτόκολλο των
Fujioka, Okamoto και Ohta (FOO) [FOO92; Ohk+99] που προσφέρει ισχυρές εγγυή-
σεις ιδιωτικότητας και το σχήμα των Juels, Catalano και Jakobsson (JCJ) [JCJ05] που
προσφέρει αντίσταση στον εξαναγκασμό. Για καλύτερη κατανόηση της συνεισφο-
ράς μας θα τα περιγράψουμε περιληπτικά στη συνέχεια.

Το σχήμα FOO, χρησιμοποιεί τυφλές υπογραφές για να εγκρίνει τα ψηφοδέλτια
και παρέχει προστασία της μυστικότητας, χωρίς να είναι αναγκαία η εμπιστοσύνη

xiii

στους καταμετρητές. Επιπλέον όταν η κατάθεση των ψήφων γίνεται χρησιμοποιών-
τας ανώνυμο κανάλι παρέχει και αέναη ιδιωτικότητα. Ωστόσο, έχει πρόβλημα με ει-
σαγωγή ψεύτικων ψήφων και δεν παρέχει καθολική επαληθευσιμότητα. Η ροή του
πρωτοκόλλου, όπως έχει διαμορφωθεί μετά από αρκετές παραλλαγές έχει ως εξής:

– Κάθε ψηφοφόρος επιλέγει την ψήφο του.

– Κρυπτογραφεί την ψήφο χρησιμοποιώντας το δημόσιο κλειδί της αρχής κατα-
μέτρησης. Έτσι σχηματίζεται το ψηφοδέλτιο.

– Το ψηφοδέλτιο τυφλώνεται και αποστέλλεται στην αρχή εγγραφής.

– Γίνεται έλεγχος αν ο ψηφοφόρος έχει δικαίωμα ψήφου ή όχι. Στην θετική πε-
ρίπτωση υπογράφεται το τυφλωμένο ψηφοδέλτιο και επιστρέφει στον ψηφο-
φόρο. Η φάση αυτή του πρωτοκόλλου ονομάζεται φάση εξουσιοδότησης.

– Ο ψηφοφόρος αποτυφλώνει την υπογραφή και έτσι διαθέτει πλέον ένα ψηφο-
δέλτιο και μια υπογραφή σε αυτό, την οποία καταθέτει στην αρχή καταμέτρη-
σης.

– Μόνο οι ψήφοι με έγκυρη υπογραφή καταμετρώνται στο αποτέλεσμα.

Στο σχήμα FOO, η χρήση των τυφλών υπογραφών παρέχει τέλεια μυστικότητα ως
προς την αρχή εγγραφής. Επιπλέον ο συνδυασμός του με ένα ανώνυμο κανάλι μπο-
ρεί να παρέχει μυστικότητα χωρίς να υπάρχει ανάγκη οι καταμετρητές να θεωρούν-
ται έμπιστες τρίτες οντότητες. Διαισθητικά αυτό οφείλεται στο ότι οι διάφορες αρ-
χές δεν μπορούν να συσχετίσουν ψήφους σε ψηφοφόρους, οπότε η αποκρυπτογρά-
φηση για την καταμέτρηση δεν τους παρέχει καμία επιπλέον πληροφορία.

Το σχήμα JCJ [JCJ05] παρέχει έναν ορισμό και τρόπους προστασίας για τις επι-
θέσεις εξαναγκασμού. Συγκεκριμένα, η αντιμετώπιση του εξαναγκασμού περιλαμ-
βάνει προστασία έναντι της πώλησης ψήφων και αντίμετρα έναντι των επιθέσεων
προσομοίωσης, τυχαίας ψήφου και αναγκαστικής αποχής. Ως μέσο αντιμετώπισης
χρησιμοποιούνται πολλαπλές αντί για μοναδική ψήφο που συνοδεύονται με ανώνυ-
μα διαπιστευτήρια. Η βασική ιδέα του σχήματος JCJ είναι η δημιουργία αμφιβολιών
στον εξαναγκαστή για το αν η επίθεσή του πέτυχε με στόχο να του αφαιρεθεί το
κίνητρο για την πραγματοποίησή της. Κάθε ψηφοφόρος έχει ένα έγκυρο διαπιστευ-
τήριο το οποίο δημιουργεί σε συνεργασία με την αρχή εγγραφής. Αποκτά δυνα-
τότητα να δημιουργεί νέα διαπιστευτήρια με χρήση ειδικού υλικού ή λογισμικού ή
και χωρίς [UH12]. Έτσι, όταν δέχεται επίθεση, ο ψηφοφόρος μπορεί να ακολουθή-
σει τις οδηγίες του εξαναγκαστή χρησιμοποιώντας ένα ψεύτικο διαπιστευτήριο, το
οποίο όμως δεν μπορεί να διαχωριστεί από το πραγματικό. Φαινομενικά, δηλαδή,
υποκύπτει στην επίθεση του εξαναγκαστή. Σε μια ιδιωτική στιγμή όμως, η οποία εί-
ναι απαραίτητη προϋπόθεση για την επίτευξη της προστασίας από εξαναγκασμό,

xiv

μπορεί να επιλέξει τον υποψήφιο που πραγματικά επιθυμεί και να καταθέσει την
πραγματική ψήφο με τα κανονικά της διαπιστευτήρια. Τα ψεύτικα και τα κανονικά
διαπιστευτήρια είναι μη διακρίσιμα. Η μόνη διαφορά τους είναι ότι τα τελευταία
έχουν δηλωθεί στην αρχή εγγραφής, ενώ τα πρώτα παράγονται από μια συσκευή
που φέρει κάθε ψηφοφόρος. Κατά συνέπεια, ο αντίπαλος δεν είναι σε θέση να ξε-
χωρίσει εάν η επίθεσή του πέτυχε και ως εκ τούτου δεν θα έχει κανένα κίνητρο να
την πραγματοποιήσει. Ακόμα με δεδομένα ότι ο ψηφοφόρος δεν έχει τρόπο να πεί-
σει εάν τα διαπιστευτήρια είναι αληθινά, τότε δεν έχει αξία να πουλήσει και την
ψήφο του. Κατά την καταμέτρηση η αρμόδια αρχή ελέγχει όλα τα διαπιστευτήρια
που συνοδεύουν τις ψήφους με τα αρχικά δηλωμένα χρησιμοποιώντας τον έλεγχο
ισοδυναμίας μηνυμάτων (PET) και καταμετρά μόνο αυτές στις οποίες ο έλεγχος εί-
ναι επιτυχής. Για να παρέχει προστασία από τον εξαναγκασμό το μοντέλο των JCJ
υιοθετεί τις παρακάτω υποθέσεις:

– Ο εξαναγκαστής δεν παρακολουθεί τον ψηφοφόρο σε όλη τη διάρκεια της δια-
δικασίας. Δηλαδή ο ψηφοφόρος έχει μια στιγμή ιδιωτικότητας, οπότε και μπο-
ρεί να καταθέσει την κανονική του ψήφο.

– Η εγγραφή των ψηφοφόρων στους καταλόγους και η δημιουργία των διαπι-
στευτηρίων γίνεται μέσα από ένα κανάλι το οποίο δεν μπορεί να παρακολου-
θεί ο αντίπαλος. Ένα τέτοιο κανάλι είναι με φυσική παρουσία. Αν και αυτό
φαίνεται ασύμβατο με τις ηλεκτρονικές ψηφοφορίες, δεν αποτελεί σημαντικό
πρόβλημα καθώς μπορεί να γίνει μία φορά και τα διαπιστευτήρια να χρησιμο-
ποιηθούν σε πολλές εκλογές.

– Επιπλέον για την αρχή εγγραφής ισχύουν οι εξής ειδικότερες υποθέσεις:

∗ Τα μηνύματα που ανταλλάσσονται από το πρωτόκολλο διαγράφονται εξ’
ολοκλήρου ή

∗ Η αρχή εγγραφής είναι έμπιστη ή

∗ ο ψηφοφόρος γνωρίζει ποια μέλη της αρχής συνεργάζονται με τον αντίπα-
λο και κατά συνέπεια μπορεί να χρησιμοποιήσει ένα από τα έντιμα ώστε
να μπορεί να ξεγελάσει τον αντίπαλο με τα δεδομένα που λαμβάνει από
αυτόν.

– Η κατάθεση της ψήφου γίνεται από ένα ανώνυμο κανάλι, στο οποίο δεν φαί-
νεται η ταυτότητα του ψηφοφόρου. Αυτό είναι αναγκαία συνθήκη για να αν-
τιμετωπιστεί η επίθεση όπου ο αντίπαλος αναγκάζει τον ψηφοφόρο να απέχει
από τις εκλογές.

xv

– Ηαρχή καταμέτρησης είναι κατά πλειοψηφία έντιμη. Όπως επισημαίνεται στο
[MPT20] αντίστοιχα αποτελέσματα μπορεί να εξαχθούν ακόμα και αν όλα τα
μέλη της αρχής καταμέτρησης είναι ελεγχόμενα από τον αντίπαλο.

– Ο αντίπαλος έχει μια αβεβαιότητα για το πώς ή για το εάν θα ψηφίσουν οι ψη-
φοφόροι που συνεργάζονται μαζί του. Σε διαφορετική περίπτωση θα μπορούσε
να μάθε αν πέτυχε η επίθεσή του αφαιρώντας τις γνωστές σε αυτόν ψήφους α-
πό το αποτέλεσμα των εκλογών.

Το κύριο πρόβλημα με το σχήμα JCJ είναι ότι καθιστά την καταμέτρηση μη απο-
δοτική, καθώς απαιτεί τετραγωνικό πλήθος συγκρίσεων διαπιστευτηρίων, ώστε να
ξεχωρίσει τα πραγματικά από τα ψεύτικα. Αυτό καθιστά το JCJ εφαρμόσιμο μόνο
σε ψηφοφορίες που συμμετέχουν λίγοι ψηφοφόροι. Έχουν υπάρξει αρκετές προσπά-
θειες επιτάχυνσης του JCJ [Smi05; AFT07; Ara+10; AT13; KHF11] και δύο αξιόλογες
υλοποιήσεις το σύστημα CIVITAS [CCM08] και το σύστημα Selections [UH12]. Στην
τελευταία μάλιστα δίνεται και ένας πολύ φιλικός μηχανισμός δημιουργίας διαπι-
στευτηρίων, που δεν απαιτεί από τον χρήστη να διαθέτει λογισμικό το οποίο εκτε-
λεί κρυπτογραφικές λειτουργίες για να τα δημιουργήσει και να τα χειριστεί, αλλά
μπορεί να λειτουργήσει χρησιμοποιώντας ένα ειδικό σύστημα συνθηματικών το ο-
ποίο να αντιστοιχίζεται σε κρυπτογραφικά διαπιστευτήρια. Συγκεκριμένα η αρχή
εγγραφής δηλώνει ένα σύνολο από πιθανά συνθηματικά (πχ. όλοι οι πιθανοί συν-
δυασμοί 5 λέξεων από ένα λεξικό [CH08]). Κατά την εγγραφή ο ψηφοφόρος δηλώνει
ποιο θα είναι το έγκυρο συνθηματικό του. Όλα τα υπόλοιπα, αν χρησιμοποιηθούν
υποδηλώνουν ότι είναι υπό εκβιασμό και δεν πρέπει να μετρήσει η ψήφος που τα συ-
νοδεύει. Η διεπαφή χρήστη δεν αντιδρά διαφορετικά στις δύο αυτές περιπτώσεις.
Αν δοθεί κάτι άλλο, θεωρείται ότι το λάθος προέκυψε κατά την πληκτρολόγηση και
το συνθηματικό ξαναζητείται.

CBS και PACBS Η κύρια ιδέα που αναπτύσσεται στη διατριβή προέρχεται από
την παρατήρηση ότι εάν ο έλεγχος για τον προσδιορισμό της εγκυρότητας ψήφου
του JCJ μπορούσε να μετακινηθεί στη φάση εξουσιοδότησης, όπως αυτή που εκτε-
λείται στο πρωτόκολλο FOO, τότε θα μπορούσαμε να χρησιμοποιήσουμε τις πλη-
ροφορίες ταυτότητας των ψηφοφόρων για να ομαδοποιήσουμε τα διαπιστευτήρια
ανά ταυτότητα και να μειώσουμε τον τετραγωνικό αριθμό συγκρίσεων σε γραμμικό
[GPZ17]. Επομένως, η εκλογική αρχή εγγραφής θα γνωρίζει εάν πρέπει να μετρηθεί
μια ψήφος. Αυτό το γεγονός πρέπει να κοινοποιηθεί στην αρχή καταμέτρησης χωρίς
να το καταλάβει ο εξαναγκαστής. Επιπλέον, επειδή καμία αρχή δεν πρέπει να είναι
έμπιστη, αυτό πρέπει να γίνεται με επαληθεύσιμο τρόπο. Με αυτή την αρχιτεκτο-
νική μπορούμε επιπλέον να εκμεταλλευτούμε τις ισχυρές εγγυήσεις ιδιωτικότητας

xvi

που παρέχει το FOO και να πετύχουμε μυστικότητα χωρίς να χρειάζεται να εμπι-
στευόμαστε τις διάφορες αρχές για την συγκεκριμένη ιδιότητα. Η πρότασή μας
είναι η μεταβίβαση της πληροφορίας για το αν θα πρέπει να μετρηθεί η ψήφος να
γίνει μέσω της υπογραφής της αρχής εγγραφής. Αυτή η υπογραφή πρέπει να είναι
υπό συνθήκη ώστε να είναι έγκυρη αν και μόνο αν έχει χρησιμοποιηθεί το σωστό
διαπιστευτήριο και κατά συνέπεια μόνο τότε να μετρηθεί. Επίσης πρέπει να είναι (ι-
σχυρή) υπογραφή καθορισμένου επαληθευτή, ώστε το αποτέλεσμα να γίνει γνωστό
μόνο στην αρχή καταμέτρησης.

Εφαρμόζουμε αυτή την ιδέα, σε μια πρώτη απλοποιημένη μορφή, ορίζοντας τις Υπό-
Συνθήκη Τυφλές Υπογραφές (ΥΤΥ) – Conditional Blind Signatures (CBS) [ZGP17]. Σε
αυτές τις υπογραφές εκτός από τον υπογράφοντα συμμετέχει και ένας προκαθορι-
σμένος επαληθευτής. Κάθε ένας διαθέτει ένα ιδιωτικό κλειδί και ένα δημόσιο κλειδί.
Ο υπογράφων έχει επιπλέον μια ιδιωτική είσοδο b. Αν b = 1 τότε ο υπογράφων πα-
ρέχει έγκυρη υπογραφή, ενώ αν b = 0 ο υπογράφων παράγει μια άκυρη υπογραφή -
ή ισοδύναμα στην περίπτωση της ψηφοφορίας αν b = 1 πρέπει να μετρήσει η ψήφος
που συνοδεύει η υπογραφή, ενώ αν b = 0 δεν πρέπει να μετρήσει.

Οι CBS πρέπει να ικανοποιούν τις εξής τρεις ιδιότητες, για τις οποίες ορίζονται α-
κριβή μοντέλα ασφάλειας μέσω κρυπτογραφικών παιγνίων μεταξύ του συστήματος
C και του αντιπάλου A στη διατριβή:

– Τυφλότητα: Ο υπογράφων δεν μπορεί να συσχετίσει μηνύματα με υπογραφές.
Στο αντίστοιχο παίγνιο, o A παίζει το ρόλο του υπογράφοντα και επιλέγει
αρχικά τις παραμέτρους του συστήματος συστήματος CBS καθώς και δύο μη-
νύματα m0, m1. Ο C παίζει το ρόλο του χρήστη και διαλέγει ένα τυχαίο bit b
που υποδηλώνει τη σειρά υπογραφής. Αρχικά υπογράφεται το mb και μετά το
m1−b. Ο αντίπαλος κερδίζει εάν μπορεί να μαντέψει τη σειρά υπογραφής με
μη-αμελητέα πιθανότητα.

– Μη-πλαστογραφησιμότητα: Όποιος δεν διαθέτει το ιδιωτικό κλειδί υπογρα-
φής δεν μπορεί να δημιουργήσει παραπάνω υπογραφές από όσες αιτήσεις δέ-
χτηκε. Συγκεκριμένα, ο αντίπαλος, που εδώ είναι ο πλαστογράφος, εκτελεί l
συνόδους υπογραφής με τον υπογράφοντα (το πολύ). Στόχος του είναι να προ-
σπαθήσει να δημιουργήσει l + 1 έγκυρες υπογραφές έχοντας στη διάθεσή του
όλα στοιχεία που προέκυψαν από τις παραπάνω αλληλεπιδράσεις. Αν οA δεν
μπορεί να νικήσει στο παραπάνω παίγνιο με l πολυλογαριθμικό ως προς την
παράμετρο ασφάλειας, τότε το σχήμα υπογραφών παρέχει προστασία από την
επίθεση μίας επιπλέον πλαστογράφησης (strong one more forgery) [PS00].

– Υπό-συνθήκη επαληθευσιμότητα: Όποιος δεν διαθέτει το ιδιωτικό κλειδί επα-
λήθευσης δεν μπορεί να διαπιστώσει αν η υπογραφή είναι έγκυρη ή όχι. Για

xvii

τον τυπικό ορισμό της ιδιότητας αυτής ορίζουμε ένα παίγνιο ασφάλειας παρό-
μοιο με την ιδιότητα ασφάλειας IND-CPA των συστημάτων κρυπτογραφίας
δημοσίου κλειδιού. O αντίπαλος A έχει στη διάθεσή του κάποιες υπογραφές
τις οποίες χρησιμοποιεί για να κρίνει αν μία υπογραφή σε κάποιο μήνυμα της
επιλογής του είναι έγκυρη. Αν ο αντίπαλος δεν καταφέρει να μαντέψει την
εγκυρότητα της υπογραφής (δηλαδή το bit b) με μη αμελητέα πιθανότητα.

Στη συνέχεια προτείνουμε μια κατασκευή για το CBS, η οποία βασίζεται στις τυφλές
υπογραφές Okamoto-Schnorr [Oka92]. Η κατασκευή λαμβάνει χώρα σε 5 φάσεις
και λειτουργεί σε μια ομάδα G τάξης q, όπου ισχύει η υπόθεση DDH με γεννήτορες
g1, g2. Συμμετέχουν τρεις οντότητες:

– O υπογράφων που έχει στη διάθεσή του το μυστικό κλειδί που αποτελείται από
τα (s1, s2) ∈Z2

q και ένα ιδιωτικό bit b. Το δημόσιο κλειδί είναι το v = g−s1
1 g−s2

2

– Ο χρήστης έχει ως ιδιωτική είσοδο το μήνυμα m το οποίο θέλει να υπογραφεί,
χωρίς όμως να το ‘δει’ ο υπογράφων.

– Ο επαληθευτής που διαθέτει το μυστικό κλειδί s και το αντίστοιχο δημόσιο
k = gs

1

Η δημιουργία και η επαλήθευση της υπογραφής λαμβάνουν χώρα ως εξής:

– Δέσμευση: Ο υπογράφων επιλέγει r1, r2←$ Zq και υπολογίζει το x ∶= gr1
1 gr2

2 το
οποίο και αποστέλλει στον χρήστη.

– Τύφλωση: Ο χρήστης επιλέγει u1, u2, d←$ Zq και υπολογίζει τα

∗ x∗ ∶= xgu1
1 gu2

2 vd

∗ e∗ ∶= H(m, x∗)

∗ e ∶= e∗ − d το οποίο και αποστέλλεται στον υπογράφοντα.

– Υπογραφή: Υπολογίζονται οι τιμές y1 ∶= r1+ es1, y2 ∶= r2+ es2. Αν b = 1 τότε δη-
μιουργούνται οι τιμές (β1, β2) ∶= (ky1 , y2) αλλιώς επιλέγονται (β1, β2)←$ G×
Zq. Η τυφλή υπογραφή είναι β ∶= (x, e, β1, β2).

– Αποτύφλωση: Ο χρήστης υπολογίζει σ1 ∶= β1 ⋅ ku1 , σ2 ∶= β2 + u2 και εξάγει την
υπογραφή σ ∶= (x∗, e∗, σ1, σ2)

– Επαλήθευση: Ελέγχεται αν ισχύει η σχέση: x∗s = σ1 ⋅ g2
σ2⋅s ⋅ ve∗⋅s

Με βάση αυτή την κατασκευή αποδεικνύουμε τα παρακάτω:

– Οι CBS παρέχουν τέλεια τυφλότητα. Συγκεκριμένα αποδεικνύεται ότι και για
τις δύο όψεις του πρωτοκόλλου που μπορεί να έχει οA μπορεί να βρει u1, u2, d

xviii

ώστε να μπορεί να δημιουργήσει οποιαδήποτε από τις δύο υπογραφές. Κατά
συνέπεια δεν μπορεί να συσχετίσει υπογραφή με σύνοδο.

– Οι CBS παρέχουν προστασία ενάντια στην επίθεση μίας επιπλέον πλαστογρά-
φησης με δεδομένο ότι ισχύει η υπόθεσηCDH. Συγκεκριμένα αποδεικνύουμε ότι
αν ο αντίπαλος καταφέρει να κερδίσει το παίγνιο μη πλαστογραφισιμότητας,
τότε μπορεί να υπολογίσει το gs

2 από τα g1, g2, k = gs
1. Η απόδειξή μας βασί-

ζεται στην τεχνική επίθεσης με επανάληψη του μαντείου (oracle replay attack)
των [PS00].

– Οι CBS παρέχουν υπό συνθήκη επαληθευσιμότητα με δεδομένο ότι ισχύει η
υπόθεση DDH. Αποδεικνύουμε, ότι αν ο αντίπαλος μπορεί να διακρίνει το αν
μια υπογραφή είναι έγκυρη ή όχι, τότε μπορεί να ελέγξει αν σε μια πλειάδα
g, ga, gs, gc ισχύει αν c = as.

Παρ’ όλα αυτά οι υπογραφές CBS έχουν ένα πολύ σημαντικό πρόβλημα: Επειδή το
bit που ελέγχει την εγκυρότητα της υπογραφής είναι ιδιωτικό input στον υπογρά-
φοντα, μπορεί κάλλιστα να παρακαμφθεί και να δοθεί μια άκυρη υπογραφή, ενώ
ισχύει b = 1, ή αντίστροφα να δοθεί μια έγκυρη υπογραφή ενώ ισχύει b = 0. Αντί-
στοιχα και ο επαληθευτής μπορεί να αγνοήσει την υπογραφή και να κρίνει αυθαί-
ρετα την εγκυρότητά της. Για να λυθεί αυτό πρέπει να υπάρξουν δύο αλλαγές στις
CBS: Η τιμή του b πρέπει να υπολογίζεται από εξωτερικά δεδομένα και οι διαδικα-
σίες υπογραφής και επαλήθευσης πρέπει να είναι ελέγξιμες.

Στη διατριβή επιλύουμε τα συγκεκριμένα προβλήματα εισάγοντας ένα νέο κρυπτο-
γραφικό εργαλείο, τις Δημόσια Ελέγξιμες Υπο-Συνθήκη Τυφλές Υπογραφές (ΔΕΥΤΥ)
– Publicly Auditable Conditional Blind Signatures (PACBS) [Gro+18; Gro+20]. Η ει-
σαγωγή των PACBS, όπως και των CBS γίνεται με αυτόνομο τρόπο έτσι ώστε να
μπορούν να χρησιμοποιηθούν και σε άλλα πρωτόκολλα εκτός από τις ηλεκτρονικές
ψηφοφορίες.

Οι PACBS είναι ψηφιακές υπογραφές με τα ακόλουθα χαρακτηριστικά:

– Η υπογραφή είναι έγκυρη, εάν και μόνο εάν ένα κατηγόρημα σε δημόσια δια-
θέσιμα αλλά κρυπτογραφημένα δεδομένα είναι αληθές. Το κατηγόρημα αν-
τικαθιστά το κρυφό bit b των CBS. Στην περίπτωση των εκλογών, αυτά τα
δεδομένα είναι το διαπιστευτήριο που έχει δηλωθεί από τον ψηφοφόρο στην
φάση εγγραφής και αυτό που πραγματικά χρησιμοποιείται κατά τη διάρκεια
της ψηφοφορίας. Η ιδιότητα που πρέπει να ικανοποιηθεί για να είναι έγκυρη
η υπογραφή είναι ότι πρέπει να κρυπτογραφούν το ίδιο μήνυμα, δηλαδή να
αντιστοιχούν στο ίδιο διαπιστευτήριο.

xix

– Η υπογραφή δεν μπορεί να επαληθευτεί δημόσια, όπως συμβαίνει με τις ψηφια-
κές υπογραφές. Στην περίπτωση των εκλογών, αυτό θα είχε ως αποτέλεσμα ο
εξαναγκαστής να μάθει εάν χρησιμοποιήθηκε το σωστό διαπιστευτήριο. Οι
PACBS είναι επαληθεύσιμες μόνο από έναν προκαθορισμένο επαληθευτή, ο ο-
ποίος στην περίπτωση ψηφοφορίας είναι η αρμόδια αρχή καταμέτρησης. Με
πιο απλά λόγια, οι PACBS ενσωματώνουν τη λειτουργικότητα ελέγχου ισοδυ-
ναμίας μηνυμάτων PET των Jakobsson και Juels σε περιβάλλον προκαθορισμέ-
νου επαληθευτή.

– Για προστασία από διεφθαρμένες αρχές που αγνοούν το κατηγόρημα κατά τη
διάρκεια της υπογραφής και της επαλήθευσης, οι PACBS παράγουν αποδει-
κτικά στοιχεία με τη μορφή μη-διαδραστικών αποδείξεων μηδενικής γνώσης
που τους αναγκάζουν να ακολουθήσουν το πρωτόκολλο. Αυτές οι αποδείξεις
παρέχουν δυνατότητα καθολικής επαληθευσιμότητας.

– Τέλος, οι PACBS επιτρέπουν στο χρήστη να τυφλώσει το μήνυμα, έτσι ώστε
ο υπογράφων να μην μπορεί να συνδέσει αιτήματα υπογραφής με υπογραφές.
Αυτό επιτρέπει πληροφοριοθεωρητική μυστικότητα.

Εκφράζουμε τυπικά αυτές τις επιθυμητές ιδιότητες χρησιμοποιώντας τις έννοιες της
τυφλότητας, της υπο-συνθήκη επαληθευσιμότητας και της δημόσιας ελεγξιμότητας
που ορίζονται με κρυπτογραφικά παίγνια. Δεδομένου ότι οι PACBS είναι ψηφιακές
υπογραφές, πρέπει επίσης να ικανοποιούν την μη-πλαστογραφησιμότητα. Οι κοι-
νές ιδιότητες με τις CBS ορίζονται με παρόμοιο τρόπο, ενώ η δημόσια ελεγξιμότητα
βασίζεται στο παρακάτω παίγνιο: Ο αντίπαλος προσπαθεί να δημιουργήσει μια υ-
πογραφή η οποία να επαληθεύεται ορθά αλλά να μη σέβεται το κατηγόρημα ή μια
υπογραφή η οποία το αποτέλεσμα της επαλήθευσης να είναι διαφορετικό από το
κατηγόρημα το οποίο είχε ληφθεί υπόψιν κατά τη δημιουργία της.

Στη διατριβή παρέχουμε δύο κατασκευές για τις PACBS, με βάση τις CBS. Στην πρώ-
τη υπογράφων και επαληθευτής χρησιμοποιούν κοινό ιδιωτικό κλειδί επαλήθευσης
και υπογραφής ενώ στη δεύτερη διαφορετικό. Και οι δύο ορίζονται σε μία ομάδα
G τάξης q, όπου ισχύει η υπόθεση DDH. Υποθέτουν ένα κρυπτοσύστημα δημοσίου
κλειδιού το οποίο διαθέτει την ιδιότητα IND-CPA και έχει χρησιμοποιηθεί για τη
δημιουργία των κρυπτοκειμένων C1, C2. Επίσης χρησιμοποιούν δύο συναρτήσεις
σύνοψεις H1 ∶ G4 ×G → G, H2 ∶ m ×G → Zq που μοντελοποιούνται ως τυχαία
μαντεία. Κατά την αρχικοποίηση του συστήματος επιλέγονται g1, g2, v, h1←$ G. Τα
ιδιωτικά κλειδιά υπογραφής και κρυπτογράφησης ορίζονται ως s, z←$ Zq ενώ τα
δημόσια υπολογίζονται ως k ∶= gs

1, h ∶= hz
1. Οι διαδικασίες υπογραφής και επαλή-

θευσης ορίζονται παρακάτω:

xx

– Τύφλωση (OSPACBS.Blind). Ο χρήστης υπολογίζει το x ∶= H1(C1, C2). Στη
συνέχεια διαλέγει u1, u2, d←$ Zq και υπολογίζει τα:

∗ x∗ ∶= xgu1
1 gu2

2 vd

∗ e∗ ∶= H2(m, x∗)

∗ e ∶= e∗ − d, το οποίο και αποστέλλει στον υπογράφοντα.

– Υπογραφή (OSPACBS.BlindSign). Ο υπογράφων υπολογίζει τα:

∗ x ∶= H1(C1, C2)

∗ n ∶= xg−y2
2 v−e με y2←$ Zq

∗ N ∶= Ench(n; t) με t←$ Zq

∗ W ∶= (C2/C1)α ⋅Ench(1, γ) με α, γ ∈Z∗q

∗ B ∶= (N ⋅W)s

∗ και τις παρακάτω αποδείξεις μηδενικής γνώσης, οι οποίες αναφέρονται
συνολικά ως πSign

π1 ← NIZK{(h1, h, n, N), (t) ∶ N = Ench(n; t)}

π2 ← NIZK{(C1, C2, W), (α, γ) ∶W = (C2/C1)α ⋅Ench(1; γ)}

π3 ← NIZK{(h, k, N, W , B), (s) ∶ B = (N ⋅W)s AND k = gs
1}

∗ Τελικά η τυφλή υπογραφή είναι: β ∶= (((n, N, W , B), y2), π1, π2, π3) η
οποία και στέλνεται στο χρήστη.

– Αποτύφλωση (OSPACBS.Unblind). Αρχικά επαληθεύονται οι αποδείξεις π1, π2, π3.
Στη συνέχεια υπολογίζονται τα σ1 ∶= B ⋅Ench(ku1) and σ2 ∶= y2 + u2. Η τελική
υπογραφή είναι σ ∶= (x∗, e∗, σ1, σ2).

– Επαλήθευση (OSPACBS.Verify). Αρχικά ελέγχεται αν H2(m, x∗) ≠ e∗ οπότε
και η διαδικασία τερματίζει. Σε διαφορετική περίπτωση υπολογίζεται τα:

∗ validity ∶= x∗ ⋅ g−σ2
2 ⋅ v−e∗

∗ M ∶= Ench(validity; r1) με r1 ∈Zq

∗ V ∶= Ms

∗ R ∶= (V
σ1
)

γ
με γ←$ Zq.

∗ και result ∶= Decz(R)

xxi

∗ Παράγονται και οι παρακάτω αποδείξεις μηδενικής γνώσης, οι οποίες α-
ναφέρονται συνολικά ως πVerify

π1 ← NIZK{(h1, h, M,validity), (r1) ∶ M = Ench(validity; r1)}

π2 ← NIZK{(V , M), (s) ∶ V = Ms}

π3 ← NIZK{(V , σ1, R), (γ) ∶ R = (V
σ1
)

γ
}

π4 ← NIZK{(h1, h, result, R), (z) ∶ result = Decz(R)}

Επίσης ορίζουμε και δύο λειτουργίες τις AuditSign και AuditVrfy για τον έλεγχο της
διαδικασίας υπογραφής και επαλήθευσης. ΗAuditSign ελέγχει αν n = H1(C1, C2)g

−y2
2 v−e

και την απόδειξη πSign. Η AuditVrfy ελέγχει αν H2(m, x∗) = e∗ORvalidity ≠ x∗ ⋅
g−σ2

2 ⋅ v−e∗ και την απόδειξη πVerify.

Αποδεικνύουμε την ασφάλεια αυτών των κατασκευών βασιζόμενοι σε γνωστές κρυ-
πτογραφικές υποθέσεις. Συγκεκριμένα:

– Η τυφλότητα αποδεικνύεται χωρίς υποθέσεις με αντίστοιχο τρόπο, όπως έγινε
στις CBS. Δηλαδή για κάθε 2 όψεις πρωτοκόλλων i που οδηγούν σε υπογραφές
σj, μπορούν να βρεθούν μοναδικά u1, u2, d που αντιστοιχίζουν οποιαδήποτε
όψη σε οποιαδήποτε υπογραφή.

– Η μη-πλαστογραφησιμότητα αποδεικνύεται με την υπόθεση ότι η κατασκευή
OSCBS είναι μη-πλαστογραφήσιμη. Συγκεκριμένα κατασκευάζουμε μία ανα-
γωγή στην οποία ο αντίπαλος χρησιμοποιεί μια πλαστογράφηση OSPACBS
για να κατασκευάσει μία πλαστογράφηση OSCBS με το ίδιο ακριβώς πλεονέ-
κτημα. Αυτό όμως σύμφωνα με την απόδειξη της μη-πλαστογραφησιμότητας
του CBS δεν είναι εφικτό.

– Η υπο συνθήκη επαληθευσιμότητα αποδεικνύεται με την υπόθεση ότι το χρη-
σιμοποιούμενο κρυπτοσύστημα διαθέτει την ιδιότητα IND-CPA.

– Η δημόσια ελεγξιμότητα αποδεικνύεται με βάση την ορθότητα των αποδείξεων
μηδενικής γνώσης.

Ψηφοφορίες με PACBS Ηκύρια συνεισφορά της εργασίας είναι ένα πρωτόκολλο
ηλεκτρονικών ψηφοφοριών που συνδυάζει τα σχήματα FOO και JCJ χρησιμοποιών-
τας τις PACBS. Η γενική αρχιτεκτονική του πρωτοκόλλου [GPZ17] έχει τους εξής
στόχους:

– Να μειώσει την πολυπλοκότητα βημάτων του JCJ, καθιστώντας την γραμμική
στο πλήθος των ψηφοφόρων.

xxii

– Να παρέχει πιο ισχυρές εγγυήσεις μυστικότητας ψήφου χωρίς να υπάρχει α-
νάγκη εμπιστοσύνης στους καταμετρητές για τη συγκεκριμένη ιδιότητα.

Οι παραπάνω στόχοι επιτυγχάνονται όπως προαναφέραμε με τις PACBS στο πρω-
τόκολλο ψηφοφοριών VSPACBS [Gro+18] που αποτελείται από τα εξής στάδια:

Σχήμα 1: Σχήμα ψηφοφορίας με PACBS από την πλευρά ενός ψηφοφόρου

– Αρχικοποίηση που υλοποιείται από τις λειτουργίες VSPACBS.Setup και
VSPACBS.SetupElection.

– Εγγραφή μέσω της VSPACBS.Register.

– Ψηφοφορία που χωρίζεται στις φάσεις της εξουσιοδότησης και κατάθεσης μέ-
σω των λειτουργιών VSPACBS.Vote, VSPACBS.Cast. Επίσης χρησιμοποιείται η
VSPACBS.Valid η οποία απομακρύνει ταυτόσημα ψηφοδέλτια από αποθετήριο
αμέσως μετά την κατάθεση. Εδώ χρησιμοποιούμε και τις βοηθητικές λειτουρ-
γίες VSPACBS.fakekey, VSPACBS.chaffvote, VSPACBS.dupauth για την δημιουργία
ψεύτικου διαπιστευτηρίου, την εισαγωγή άκυρων ψήφων και το ξεκαθάρισμα
διπλότυπων αιτήσεων εξουσιοδότησης αντίστοιχα.

– Καταμέτρηση, που υλοποιείται από την λειτουργία VSPACBS.Tally.

– Επαλήθευση που αποτελείται από τις VSPACBS.VerifyBallot, VSPACBS.Verify.

Το πρωτόκολλο εκτελείται από την αρχή εκλογών EA η οποία διαχωρίζεται στις
αρχές εγγραφής και καταμέτρησης (αντίστοιχα RA, TA). Με τη σειρά τους αυτές
απαρτίζονται από πολλά μέλη με αντικρουόμενα συμφέροντα, οι οποίες μοιράζονται
κρυπτογραφικά κλειδιά.

Πιο αναλυτικά οι φάσεις του πρωτοκόλλου εκτελούνται ως εξής:

xxiii

Αρχικοποίηση Οι RA, TA εκτελούν την λειτουργία VSPACBS.Setup η οποία παρά-
γει τις παραμέτρους του PACBS, μεταξύ των οποίων τα ιδιωτικά κλειδιά υπογραφής
s και κρυπτογράφησης z που μοιράζονται στα μέλη τους.

Εγγραφή ΗRA και κάθε ψηφοφόροςVi εκτελούν την λειτουργίαVSPACBS.Register
μέσω ενός απρόσβλητου καναλιού (πχ. με φυσική παρουσία). Έτσι δημιουργούνται
τα πραγματικά διαπιστευτήρια. Πιο συγκεκριμένα:

– ΟψηφοφόροςVi εγγράφεται στις εκλογές και λαμβάνει το κρυπτογραφικό δια-
πιστευτήριο που θα τον αντιπροσωπεύει. Υποστηρίζεται τόσο το πρωτόκολλο
με συνθηματικά του Selections [UH12] αλλά και το πρωτόκολλο με υπογρα-
φές προκαθορισμένου επαληθευτή του CIVITAS [CCM08]. Τα διαπιστευτήρια
αυτά μπορούν να χρησιμοποιηθούν σε πολλές εκλογές. Για τη φάση της εγ-
γραφής ισχύουν οι υποθέσεις του JCJ. Θα περιγράψουμε την φάση της εγγρα-
φής που βασίζεται στο πρωτόκολλο Selections και χρησιμοποιεί συνθηματικά
πανικού [CH08]:

∗ Η αρχή εγγραφής επιλέγει ένα κοινό σύνολο από λέξεις (λεξικό).

∗ Τα συνθηματικά θα αποτελούνται από τον συνδυασμό k λέξεων του λεξι-
κού.

∗ Κάθε ψηφοφόρος επιλέγει έναν συνδυασμό για το πραγματικό συνθημα-
τικό.

∗ Το συνθηματικό αυτό αντιστοιχίζεται σε διαπιστευτήριο θi ∈Zq χρησιμο-
ποιώντας μια συνάρτηση ϕ ∶ {0, 1}∗ →Zq.

∗ Η αρχή κρυπτογραφεί το gθi και παρέχει μια απόδειξη ορθής κρυπτογρά-
φησης.

∗ Η διαδικασία επαναλαμβάνεται α φορές για επαλήθευση της ορθότητας.

– Μετά την ολοκλήρωση της φάσης της εγγραφής η αρχή επανακρυπτογραφεί
όλα τα διαπιστευτήρια και τα εκχωρεί στο κεντρικό αποθετήριο των εκλογών
το οποίο πλέον είναι ένα σύνολο {(i, Ci1)}.

Μόλις ολοκληρωθεί η περίοδος εγγραφής η EA εκτελεί την VSPACBS.SetupElection
όπου δημοσιεύονται τα δημόσια κλειδιά των αρχών εγγραφής και καταμέτρησης
καθώς και η λίστα των υποψηφίων με την κατάλληλη κωδικοποίηση.

Ψηφοφορία

– Η διαδικασία ψηφοφορίας ξεκινά με την αίτηση εξουσιοδότησης μέσω της
VSPACBS.Vote.

xxiv

∗ ΟψηφοφόροςVi εισάγει το συνθηματικό. Αν καταχωρήσει τον συνδυασμό
που δήλωσε κατά την εγγραφή του, τότε μέσω της ϕ παράγεται το ίδιο
διαπιστευτήριο θi.

∗ Οποιοσδήποτε άλλος συνδυασμός θεωρείται συνθηματικό πανικού και δη-
λώνει ότι ο ψηφοφόρος παρακολουθείται από τον εξαναγκαστή. Αυτό ση-
μαίνει ότι δεν απορρίπτεται από το σύστημα. Εκτελείται μια παρόμοια
διαδικασία με αυτή που ακολουθήθηκε κατά την εγγραφή και η οποία ο-
δηγεί σε διαφορετικό διαπιστευτήριο θ′i ∈ Zq. Η διαδικασία αυτή υλο-
ποιείται μέσω της VSPACBS.fakekey.

∗ Αν δοθεί συνδυασμός λέξεων που δεν ανήκει στο λεξικό, τότε θεωρείται
ότι έχει γίνει λάθος πληκτρολόγηση και ζητείται επαναεισαγωγή.

Από την διαδικασία αυτή παράγεται ένα κρυπτογραφικό διαπιστευτήριο το
οποίο και κρυπτογραφείται ως Ci2. Οι ψηφοφόροι αφού επιλέξουν την προτί-
μησή τους vti, την κρυπτογραφούν δημιουργώντας έτσι το κρυπτοκείμενο vi.
To ψηφοδέλτιο bi περιέχει επιπλέον μια απόδειξη μηδενικής γνώσης πvi ότι η
vti είναι έγκυρη και γνωστή. Στη συνέχεια δημιουργούν την αίτηση εξουσιοδό-
τησης, μέσω του πρωτοκόλλου OSPACBS.Sign σε συνεργασία με την RA. Κατ’
αρχήν τυφλώνουν το ψηφοδέλτιο τους, με τον αλγόριθμο OSPACBS.Blind πα-
ράγοντας την τιμή ei. Μαζί με αυτή επισυνάπτουν στην αίτηση τους την ταυ-
τότητά του i, το Ci2. Το Ci1 μπορεί να ανακτηθεί από το κεντρικό αποθετήριο.

– Για να μην είναι δυνατή η επίθεση εξαναγκασμένης αποχής υποθέτουμε ότι
στο πρωτόκολλο συμμετέχουν και εξωτερικές οντότητες (π.χ. μη κυβερνητικές
οργανώσεις). Αυτές, αλλά και ενδιαφερόμενοι ψηφοφόροι, καταθέτουν ψηφο-
δέλτια με τυχαία διαπιστευτήρια για όλους τους ψηφοφόρους, εκτελώντας την
λειτουργικότητα VSPACBS.chaffvote. Αυτοί οι ψήφοι φυσικά δε θα μετρήσουν
καθώς η πιθανότητα να είναι έγκυρο το ψηφοδέλτιο είναι αμελητέα.

– Η αρχή εγγραφής, ελέγχει για διπλότυπες αιτήσεις που περιέχουν το ίδιο δια-
πιστευτήριο χρησιμοποιώντας τη λειτουργία VSPACBS.dupauth, αν ο ψηφο-
φόρος έχει δικαίωμα ψήφου και υπογράφει την αίτηση χρησιμοποιώντας τον
αλγόριθμο OSPACBS.BlindSign. Παράγεται η υπογραφή βi η οποία σύμφω-
να με το PACBS είναι έγκυρη αν και μόνο pred(Ci1, Ci2) = 1 ή ισοδύναμα
Dec(Ci1) = Dec(Ci2). Ταυτόχρονα παράγεται και η απόδειξη έγκυρης υπο-
γραφής πi,Sign.

– Οψηφοφόρος επαληθεύει την απόδειξη πi,Sign. Στη συνέχεια αποτυφλώνει την
υπογραφή με τον αλγόριθμο OSPACBS.Unblind και καταθέτει το ψηφοδέλτιο
του. Εδώ πάλι πρέπει να χρησιμοποιηθεί ένα ανώνυμο κανάλι. Άλλωστε σύμ-
φωνα με το JCJ το ανώνυμο κανάλι είναι αναγκαία συνθήκη για αντίσταση

xxv

στον εξαναγκασμό στο πλαίσιο JCJ. Κατά συνέπεια, το ψηφοδέλτιο περιέχει
μια υπογραφή σi που ορίζει εάν η ψήφος πρέπει να μετρηθεί ή όχι. Τελικά
δηλαδή bi = (vi, πvi , σi).

– Μόλις κατατεθεί η ψήφος, BB ελέγχει ότι δεν υπάρχει ακριβές αντίγραφό της
ήδη κατατεθειμένο χρησιμοποιώντας τη λειτουργία VSPACBS.Valid.

Καταμέτρηση Εκτελείται με τον αλγόριθμο VSPACBS.Tally ο οποίος εκτελείται α-
πό την TA. Στόχος είναι να επαληθευθούν οι υπογραφές ώστε να αποφασιστεί ποιες
ψήφους θα μετρηθούν. Εσωτερικά η VSPACBS.Tally εκτελεί την OSPACBS.Verify
ώστε να καταμετρηθούν μόνο εκείνες οι ψήφοι που συνοδεύονται από έγκυρες υ-
πογραφές. Για να μην γίνει αυτό αντιληπτό από τον εξαναγκαστή η συγκεκριμέ-
νη λειτουργία εκτελείται σε δύο φάσεις: Στην πρώτη, παράγεται το αποτέλεσμα
της επαλήθευσης κρυπτογραφημένο δηλαδή η τιμή Ri και οι αποδείξεις πi,Verify =
(πi1, πi2, πi3). Στη συνέχεια μεσολαβεί ένα δίκτυο μίξης με στόχο να μην μπορεί να
συσχετιστεί το αποτέλεσμα της υπογραφής με τον ψηφοφόρο που την κατέθεσε. Με-
τά από αυτό εκτελείται η λειτουργικότητα αποκρυπτογράφησης Dec(Ri) η οποία
επιπλέον παράγει την απόδειξη πi4. Η αντίστοιχη ψήφος θα καταμετρηθεί μόνο αν
το αποτέλεσμα της αποκρυπτογράφησης είναι 1. Η ιδιότητα της υπό όρους επαλή-
θευσης των PACBS, αλλά και τα υπόλοιπα συστατικά του πρωτοκόλλου, καθιστούν
τις περιπτώσεις έγκυρων και άκυρων υπογραφών αδιάκριτες για τον εξαναγκαστή.

Επαλήθευση Κάθε ψηφοφόρος μπορεί να επαληθεύσει την ψήφο του χρησιμο-
ποιώντας τον αλγόριθμο VSPACBS.VerifyBallot (ατομική επαληθευσιμότητα). Για τον
σκοπό αυτό χρησιμοποιείται η τυχαιότητα της κρυπτογράφησης του vi και του Ci2

ώστε να διαπιστωθεί αν το ψηφοδέλτιο και το διαπιστευτήριο κρυπτογραφήθηκαν
σωστά. Χρησιμοποιείται επίσης ο αλγόριθμος AuditSign για να επαληθευτεί η δια-
δικασία της υπογραφής. Οποιοσδήποτε ενδιαφερόμενος μπορεί να εκτελέσει τον
αλγόριθμο VSPACBS.Verify για να ελέγξει τη λειτουργία του πρωτοκόλλου (καθολι-
κή επαληθευσιμότητα). Ο συγκεκριμένος αλγόριθμος ελέγχει όλες τις αποδείξεις
που παράγονται κατά το πρωτόκολλο. Περιλαμβάνει επίσης και την λειτουργικό-
τητα του AuditVrfy τροποποιημένη βέβαια ώστε να λαμβάνει υπόψιν τη διάσπαση
των λειτουργιών του λόγω του δικτύου μίξης. Αν οι παραπάνω έλεγχοι εκτελεστούν
με επιτυχία, τότε όλοι μπορούν να είναι σίγουροι ότι το πρωτόκολλο εκτελέστηκε
σωστά. Ο ψηφοφόρος όμως ο οποίος γνωρίζει με βάση το συνθηματικό που έδω-
σε αν έχει έγκυρο διαπιστευτήριο ή όχι, οδηγείται επιπλέον στο συμπέρασμα ότι η
ψήφος του μετρήθηκε, χωρίς κάτι τέτοιο να αποκαλύπτεται στον εξαναγκαστή.

Ανάλυση ασφάλειας Για να αποδείξουμε την ασφάλεια του συστήματός μας, ε-
ξετάζουμε διάφορους τυπικούς ορισμούς για την επαληθευσιμότητα [Cor+16; KZZ15a;

xxvi

SFC15], τη μυστικότητα [Ber+15] και την αντίσταση στον εξαναγκασμό [JCJ05; Alw+15;
FQS19]. Προσαρμόζουμε αυτούς τους ορισμούς στο πρωτόκολλό μας, διατηρώντας
όμως τις κύριες ιδέες τους. Με την ευκαιρία διερευνούμε επίσης τις σχέσεις μεταξύ
των ιδιοτήτων ασφαλείας αυτών.

Τα αποτελέσματά μας σχετικά με την ασφάλεια του πρωτοκόλλου μας περιγράφον-
ται παρακάτω:

Επαληθευσιμότητα Παρέχεται ατομική και καθολική επαληθευσιμότητα.

Η ατομική επαληθευσιμότητα παρέχεται στο μοντέλο του [SFC15]. Ο αντίπαλος
προσπαθεί να επιτύχει στις δύο παρακάτω επιθέσεις: Πρώτον, προσπαθεί να δη-
μιουργήσει μία σύγκρουση (clash), όπου σε δύο ή περισσότερους διαφορετικούς ψη-
φοφόρους ανατίθεται το ίδιο ψηφοδέλτιο, με αποτέλεσμα ο αντίπαλος να έχει στη
διάθεσή του ένα τουλάχιστον ψηφοδέλτιο το οποίο μπορεί να χρησιμοποιήσει για
να καταθέσει την ψήφο της προτίμησής του. Η επίθεση αυτή δεν μπορεί να επιτύχει
στο σύστημά μας γιατί υποθέτουμε ότι ο η φάση εγγραφής έχει αμελητέο λάθος ορ-
θότητας (αφού επαναλαμβάνεται α φορές) και ότι ο ψηφοφόρος εισάγει τυχαιότητα
κατά την φάση της δημιουργίας του ψηφοδελτίου. Με αυτόν τον τρόπο η πιθανότη-
τα να ταυτιστούν δύο ψηφοδέλτια είναι αμελητέα. Σε ένα συνηθισμένο σύστημα, η
προστασία από αυτή την επίθεση θα αρκούσε, καθώς όλες οι ψήφοι που βρίσκονται
στο BB και έχουν έγκυρες αποδείξεις θα καταμετρηθούν. Στο σύστημα VS.PACBS
όμως αυτό δεν ισχύει - άλλωστε για τον λόγο αυτό οι αποδείξεις κρυπτογράφησης
ψήφου και διαπιστευτήριου δεν μπορούν να χρησιμοποιηθούν ως απόδειξη για πώ-
ληση ψήφο ή εξαναγκασμό. Ο αντίπαλος λοιπόν θα μπορούσε να προσπαθήσει να
αφήσει ένα ψηφοδέλτιο στο BB αλλά με τέτοιον τρόπο ώστε να είναι άκυρο, επηρε-
άζοντας πάλι το αποτέλεσμα. Αυτό θα μπορούσε να γίνει αν ο αντίπαλος μπορούσε
να ανακτήσει το διαπιστευτήριο από την κρυπτογραφημένη του μορφή στο BB. Αν
και ως κακόβουλη RA διαθέτει τα κλειδιά αποκρυπτογράφησης, για να το υπολο-
γίσει θα πρέπει να επιλύσει ένα διακριτό λογάριθμο. Εναλλακτικά θα μπορούσε να
χαρακτηρίσει την ψήφο ως διπλότυπη. Αν υποθέσουμε όμως ότι το BB διατηρεί τη
σειρά κατάθεσης των ψήφων, τότε αυτή η επίθεση εμποδίζεται από την ορθότητα
των αποδείξεων μηδενικής γνώσης που παρέχονται κατά τη διαδικασία εντοπισμού
των διπλότυπων ψήφων. Τέλος, ως διεφθαρμένη αρχή θα μπορούσε να δώσει μια
άκυρη υπογραφή σε μια έγκυρη ψήφο, κάτι που εμποδίζεται όμως από τη δημόσια
επαληθευσιμότητα των PACBS.

Σχετικά με την καθολική επαληθευσιμότητα βασιζόμαστε στην έννοια της ισχυρής
επαληθευσιμότητας του [Cor+14]. Όπως προαναφέραμε, η καθολική επαληθευσι-
μότητα επιτρέπει στους ψηφοφόρους να επαληθεύσουν τη φάση της καταμέτρησης.
Οι περισσότεροι ορισμοί όμως αφορούν συστήματα στα οποία δεν υπάρχει αρχή

xxvii

εγγραφής. Η τελευταία, αν υφίσταται, μπορεί να επηρεάσει την φάση της καταμέ-
τρησης αν και δε συμμετέχει ενεργά σε αυτήν, πχ. δίνοντας το ίδιο διαπιστευτήριο
σε πολλούς ψηφοφόρους ή δημιουργώντας ψεύτικα διαπιστευτήρια για να εισάγει
ψήφους που δεν αντιστοιχούν σε πραγματικούς ψηφοφόρους. Το μοντέλο της ισχυ-
ρής επαληθευσιμότητας μπορεί να εφαρμοστεί σε τέτοια πρωτόκολλα. Για να απο-
δείξουμε ότι το σύστημά μας διαθέτει αυτή την ιδιότητα, το τροποποιούμε ώστε τα
διαπιστευτήρια να μην παράγονται μόνο από την αρχή εγγραφής, αλλά σε συνερ-
γασία με κάθε ψηφοφόρο. Η βασική υπόθεση ασφάλειας είναι ότι η αρχή εγγραφής
και το δεν είναι ταυτόχρονα διεφθαρμένες. Στην περίπτωσή μας υποθέτουμε ότι ο
αντίπαλος ελέγχει την αρχή καταμέτρησης αλλά και εγγραφής, αλλά όχι το BB, το
οποίο αποτιμά σωστά τις αποδείξεις μηδενικής γνώσης και τον έλεγχο διπλοτύπων.
Επίσης υποθέτουμε ότι το BB, δεν εισάγει νέες ψήφους αλλά πιο σημαντικά δια-
τηρεί τη σειρά εισαγωγής των υπάρχοντων. Στόχος του, αντιπάλου, όπως και στο
[Cor+14], είναι να κατασκευάσει ένα αποτέλεσμα το οποίο να περνάει επιτυχώς την
επαλήθευση, αλλά να περιέχει είτε περισσότερες, είτε αλλαγμένες είτε διεγραμμένες
ψήφους. Κάτι τέτοιο δεν είναι δυνατόν, όμως για τους παρακάτω λόγους:

– Για να αλλαχθεί το περιεχόμενο μιας ψήφου, πρέπει να παραβιαστεί η ορθό-
τητα της απόδειξης πv.

– Ο μόνος τρόπος να διαγραφεί μια ψήφος, με δεδομένο ότι το BB, είναι έντιμο
είναι να ακυρωθεί. Αυτό δεν μπορεί να συμβεί ούτε στη φάση της εξουσιοδό-
τησης, ούτε στη φάση της καταμέτρησης, χωρίς να παραβιαστεί η δημόσια
επαληθευσιμότητα των υπογραφών PACBS. Επίσης δεν μπορεί να χαρακτηρι-
στεί διπλότυπη, χωρίς να παραβιαστεί η ορθότητα των αποδείξεων της αρχής
εγγραφής.

– Τέλος, δεν μπορούν να προστεθούν επιπλέον ψήφοι χωρίς να είναι γνωστά τα
αντίστοιχα διαπιστευτήρια καθώς κάτι τέτοιο προϋποθέτει την επίλυση ενός
προβλήματος διακριτού λογαρίθμου.

Επιπλέον, για να μην είναι δυνατές τέτοιες επιθέσεις στην καταμέτρηση πρέπει και
το δίκτυο μίξης που χρησιμοποιείται εκεί να είναι επαληθεύσιμο.

Τέλος, το σύστημά μας δεν παρέχει δημόσια επαληθευσιμότητα καταλληλότητας
αν μπορούσε να εξακριβωθεί δημόσια αν μία συγκεκριμένη ψήφος θα καταμετρηθεί,
οποιοσδήποτε θα μπορούσε να διαπιστώσει αν έχει χρησιμοποιηθεί το σωστό διαπι-
στευτήριο. Κατά συνέπεια δεν θα υπήρχε δυνατότητα για προστασία από εξαναγ-
κασμό. Η επαληθευσιμότητα καταλληλότητας έρχεται έμμεσα μέσω της καθολικής
επαληθευσιμότητας για όλους τους ψηφοφόρους και όχι για κάθε έναν ξεχωριστά.
Το σύστημά μας, ωστόσο, παρέχει ιδιωτική επαληθευσιμότητα καταλληλότητας, το

xxviii

οποίο μπορεί να αποδειχθεί με μία διαδικασία παρόμοια με την μεμονωμένη επαλη-
θευσιμότητα.

Προστασία από εξαναγκασμό Το πρωτόκολλο ηλεκτρονικής ψηφοφορίας που
προτείνουμε με βάση τις PACBS παρέχει προστασία από εξαναγκασμό στο μοντέλο
JCJ, υπό την υπόθεση ότι οι PACBS διαθέτουν υπό συνθήκη επαληθευσιμότητα και
τις υπόλοιπες υποθέσεις του JCJ περί ορθής φάσης εγγραφής, τίμιων αρχών, ανώνυ-
μης κατάθεσης ψήφου και αβεβαιότητα του εξαναγκαστή για την συνολική συμπε-
ριφορά των ψηφοφόρων. Για να αποδείξουμε αυτή την ιδιότητα χρησιμοποιούμε τη
μεθοδολογία του [JCJ05] και συγκρίνουμε την πιθανότητα επιτυχίας του αντιπάλου
σε δύο κρυπτογραφικά παίγνια, όπου λαμβάνεται ένα τυχαίο bit b. Όταν αυτό λά-
βει την τιμή 0 ο ψηφοφόρος παράγει ένα ψεύτικο διαπιστευτήριο χρησιμοποιώντας
την λειτουργία fakekey το οποίο και δίνει στον αντίπαλο. Σε κάποια άλλη ιδιωτική
στιγμή καταθέτει την πραγματική του ψήφο με το κανονικό διαπιστευτήριο. Όταν
λάβει την τιμή 1, ο ψηφοφόρος παραδίδει το πραγματικό διαπιστευτήριο στον αντί-
παλο, επιτρέποντας να προσομοιωθεί και δεν καταθέτει την δική του ψήφο. Και στις
δύο περιπτώσεις ο αντίπαλος επιλέγει την ψήφο, καθώς ο στόχος είναι να μαντέψει
ο αντίπαλος αν χρησιμοποιήθηκε το σωστό διαπιστευτήριο. Επιπλέον μπορεί να
χρησιμοποιήσει για τον σκοπό αυτό ψηφοφόρους που έχει υπό τον έλεγχό του. Το
γεγονός ότι όταν b = 0 υπάρχει μία παραπάνω ψήφος, καλύπτεται από την υπόθε-
ση ότι ο αντίπαλος δεν μπορεί να γνωρίζει με βεβαιότητα την συμπεριφορά των μη
ελεγχόμενων ψηφοφόρων. Χρησιμοποιούνται δύο παίγνια, ώστε να μην υπάρξει πε-
ρίπτωση να μπορεί να εξαχθεί η συμπεριφορά του ψηφοφόρου από το αποτέλεσμα
- αν π.χ. πρέπει να ψηφιστεί κάποιος υποψήφιος ο οποίος τελικά δεν λάβει καμία
ψήφο, Έτσι συγκρίνουμε την πιθανότητα επιτυχίας του εξαναγκαστή στο ‘πραγμα-
τικό’ παίγνιο που αναπαριστά το πρωτόκολλο με αυτήν που έχει σε ένα ‘ιδανικό’
παίγνιο στο οποίο η καταμέτρηση γίνεται από μια έμπιστη, ιδανική λειτουργικότη-
τα και ο αντίπαλος δεν έχει πρόσβαση σε κρυπτογραφικά δεδομένα. Βλέπει δηλαδή
μόνο το αποτέλεσμα. Το ιδανικό παίγνιο εκφράζει δηλαδή την μέγιστη προστασία
από εξαναγκασμό που μπορεί να παρέχει ένα πρωτόκολλο ψηφοφορίας. Η σύγκρι-
ση αυτή αποκαλύπτει το πλεονέκτημα επιτυχίας του αντιπάλου που οφείλεται στην
χρήση των συγκεκριμένων κρυπτογραφικών κατασκευών μας.

Στη διατριβή αποδεικνύουμε ότι το πλεονέκτημα του αντιπάλου στο πραγματικό
παίγνιο διαφέρει από το αντίστοιχο στο ιδανικό με αμελητέα τρόπο. Η απόδειξη
αποτελείται από τρία στάδια: Πρώτον, δείχνουμε ότι η ψήφος η οποία συνοδεύε-
ται από το πραγματικό διαπιστευτήριο δεν βοηθά τον εκβιαστή, καθώς δεν μπορεί
να την ξεχωρίσει και να δει ότι μέτρησε. Αυτό οφείλεται στην ανώνυμη κατάθε-
ση ψήφων αλλά κυρίως στην υπό-συνθήκη επαληθευσιμότητα των PACBS. Η μόνη

xxix

διαφορά της ψήφου αυτής από εκείνη που κατέθεσε ο εκβιαστής είναι ότι συνοδεύ-
εται από μια έγκυρη υπογραφή, κάτι που όμως μπορεί να διαπιστώσει ο αντίπαλος.
Δεύτερον, δείχνουμε ότι ο αντίπαλος δεν μπορεί να ξεχωρίσει αν λαμβάνει ψεύτικο ή
αληθινό διαπιστευτήριο. Η κρυπτογράφηση του αληθινού είναι διαθέσιμη σε όλους
στο αποθετήριο σε κρυπτογραφημένη μορφή. Αν ο αντίπαλος μπορούσε να το δια-
χωρίσει από την κρυπτογράφηση που λαμβάνει από την fakekey τότε θα μπορούσε
να σπάσει την ιδιότητα IND-CPA του χρησιμοποιούμενου κρυπτοσυστήματος. Επί-
σης, ούτε οι ψήφοι των μη ελεγχόμενων ψηφοφόρων δεν μπορούν να βοηθήσουν τον
αντίπαλο, καθώς αν στο πραγματικό παίγνιο τις αντικασταστήσουμε από τυχαίες
τιμές και το αποτέλεσμα βγει από τις αρχικές τους τιμές, ο αντίπαλος δεν μπορεί να
καταλάβει τη διαφορά λόγω των ιδιοτήτων της υπο συνθήκης επαληθευσιμότητας
και IND-CPA. Επιπλέον λόγω του ανώνυμου καναλιού, ο εξαναγκαστής δεν μπορεί
να αποφανθεί αν ο στόχος του ψήφισε ή όχι. Άρα σύμφωνα με το μοντέλο JCJ, το
πρωτόκολλό μας παρέχει προστασία από εξαναγκασμό.

Μυστικότητα Αναλύουμε την μυστικότητα ακολουθώντας το μοντέλοBPRIV [Ber+15].
Στόχος αυτού του μοντέλου είναι να εξετάσει αν τα κρυπτογραφικά δεδομένα που
υπάρχουν στο BB βοηθούν τον αντίπαλο να μαντέψει την προτίμηση κάποιου ψη-
φοφόρου, περισσότερο από ό,τι θα μπορούσε κρίνοντας μόνο από το αποτέλεσμα
της καταμέτρησης.

Αυτό εκφράζεται μέσω ενός παίγνιου στο οποίο ο αντίπαλος βλέπει δύο αποθετήρια
τα BB0, BB1. Οι κανονικοί ψηφοφόροι καταθέτουν διαφορετικές ψήφους (επιλεγμέ-
νες από τον αντίπαλο) στο κάθε ένα. Στο τέλος, γίνεται η καταμέτρηση πάντα στο
BB0. Με ομοιόμορφη πιθανότητα το αποτέλεσμα και ένα από τα δύο αποθετήρια
παρουσιάζεται στον αντίπαλο, ο οποίος πρέπει να μαντέψει ποιο είδε.

Στην περίπτωσή μας τροποποιούμε το συγκεκριμένο μοντέλο, ώστε να εκφράζει μη
έμπιστη ιδιωτική καταμέτρηση - να εκτελείται δηλαδή από τον αντίπαλο. Ονομά-
ζουμε το συγκεκριμένο μοντέλο U-BPRIV και με βάση αυτό αποδεικνύουμε ότι το
πρωτόκολλο ηλεκτρονικό ψηφοφοριών δίνει στον αντίπαλο αμελητέο πλεονέκτημα
ώστε να νικήσει στο συγκεκριμένο παίγνιο με την υπόθεση ότι οι PACBS παρέχουν
τυφλότητα και δημόσια επαληθευσιμότητα ώστε να μην μπορεί να ξεχωρίσει τα δύο
αποθετήρια χρησιμοποιώντας ένα ακυρωμένο ψηφοδέλτιο. Αξίζει να σημειωθεί ότι
το συγκεκριμένο αποτέλεσμα είναι ένα ακόμα βήμα το οποίο συσχετίζει την μυστι-
κότητα με την επαληθευσιμότητα μετά το [CGG19]. Άλλες υποθέσεις για να ισχύει
το συγκεκριμένο αποτέλεσμα είναι να μην απορρίπτεται καμία ψήφος και να μην
υπάρχει συσχέτιση της σειράς κατάθεσης τους. Αυτό μπορεί να γίνει μέσω ενός
ανώνυμου καναλιού.

xxx

Αέναη ιδιωτικότητα Το μοντέλο U-BPRIV μας οδηγεί στην εξής παρατήρηση:
Αν δεν είναι απαραίτητο να εμπιστευθούμε τους καταμετρητές για την μυστικότητα
της ψήφου, σημαίνει ότι το εκλογικό σύστημα παρέχει προστασία ακόμα και εναν-
τίον ενός υπολογιστικά ισχυρού αντιπάλου Â, καθώς είτε ο αντίπαλος αποκρυπτο-
γραφεί με τα κλειδιά είτε επειδή παρακάμπτει την κρυπτογραφική προστασία το
αποτέλεσμα είναι το ίδιο. Ένα τέτοιο πρωτόκολλο λοιπόν, αν συνδυαστεί με ανώ-
νυμα κανάλια επικοινωνίας,μπορεί να παρέχει αέναη ιδιωτικότητα.

Στη βιβλιογραφία, μέχρι τώρα η ανάλυση της αέναης ιδιωτικότητας ήταν μονοδιά-
στατη. Συγκεκριμένα, στο [Ara+13] ορίστηκε η έννοια της πρακτικής αέναης ιδιωτι-
κότητας, όπου ο Â έχει πρόσβαση μόνο στα δημόσια εκλογικά δεδομένα του BB και
όχι στα ιδιωτικά δεδομένα που ανταλλάσσονται μεταξύ των ψηφοφόρων και των
αρχών, ή μεταξύ των διάφορων παικτών που απαρτίζουν τις εκλογικές αρχές. Με
αυτή την έννοια αποδεικνύεται ότι διαθέτουν αέναη ιδιωτικότητα συστήματα όπως
το [MN06; MN10; DGA12]. Το συγκεκριμένο μοντέλο δεν είναι πλήρες, καθώς δεν
λαμβάνει υπ’ όψιν άλλα δεδομένα, ‘εσωτερικής πληροφόρησης’, που μπορεί να έχει
στη διάθεσή του ο μελλοντικός αντίπαλος. Για παράδειγμα, ένα μελλοντικό απο-
λυταρχικό καθεστώς μπορεί να εκμεταλλευτεί δεδομένα των παρόχων πρόσβασης
στο Internet, τα οποία έχουν συλλεχθεί στο παρόν, ή δεδομένα τα οποία είναι στη
διάθεση των εκλογικών αρχών. Οπλισμένος με τέτοια πληροφορία ο μελλοντικός
ισχυρός αντίπαλος μπορεί να καταργήσει την μυστικότητα σε όλα τα σχήματα που
έχουν αποδειχθεί ασφαλή στο [Ara+13].

Στη διατριβή, ορίζουμε τρεις παραλλαγές για την αέναη ιδιωτικότητα, ανάλογα με
τα είδη πρόσβασης που μπορεί να έχει ο αντίπαλος στα δεδομένα και την σχέση
του με τον υπολογιστικά περιορισμένο αντίπαλο A της μυστικότητας. Η μοντελο-
ποίησή τους γίνεται χρησιμοποιώντας κρυπτογραφικά παίγνια, κάτι που αποτελεί
μια ακόμη συνεισφορά της διατριβής καθώς μέχρι τώρα η αέναη ιδιωτικότητα είχε
τυποποιηθεί μόνο μέσω συμβολικών μοντέλων, όπως ο εφαρμοσμένος π-λογισμός
[Ara+13].

– Στο πρώτο το οποίο εκφράζει την ασθενέστερη μορφή της ο ισχυρός αντίπα-
λος έχει πρόσβαση μόνο στα δημόσια δεδομένα των εκλογών - όσα δηλαδή
βρίσκονται στο BB.

– Στην κανονική μορφή της ο ισχυρός αντίπαλος Â έχει πρόσβαση τόσο στα δη-
μόσια δεδομένα, αλλά μπορεί να χρησιμοποιήσει και ψηφοφόρους που είχε υπό
τον έλεγχό κατά τη διάρκεια των εκλογών o A. Αυτή η μορφή της αέναης ι-
διωτικότητας μπορεί να θεωρηθεί ως επέκταση της μυστικότητας των εκλογών
όταν ο αντίπαλος είναι υπολογιστικά απεριόριστος.

– Στην ισχυρή μορφή της, ο αντίπαλος μπορεί να έχει πρόσβαση επιπλέον και

xxxi

στα κανάλια επικοινωνίας που χρησιμοποιήθηκαν κατά τη διενέργεια των ε-
κλογών αλλά και σε δεδομένα που βρίσκονται υπό τον έλεγχο των αρχών.

Με βάση την παραπάνω μοντελοποίηση, αναλύουμε τα δύο είδη κρυπτογραφικών
πρωτοκόλλων που έχουν προταθεί σε σχέση με την αέναη ιδιωτικότητα: Αποδεικνύ-
ουμε ότι το πρωτόκολλο των [FOO92; Ohk+99] που χρησιμοποιεί τυφλές υπογραφές
ικανοποιεί τον ορισμό U-BPRIVκαι επίσης παρέχει ισχυρή αέναη ιδιωτικότητα αν
χρησιμοποιηθεί ανώνυμο κανάλι για την κατάθεση των ψήφων. Αντίθετα, η ανάλυ-
ση του πρωτοκόλλου των [DGA12] που προσθέτει ένα σχήμα δέσμευσης στο Helios,
παρέχει κανονική αέναη ιδιωτικότητα. Επεκτείνοντας το παραπάνω αποτέλεσμα, ό-
λα τα σχήματα που χρησιμοποιούν σχήματα δέσμευσης με πληροφοριοθεωρητικά
ισχυρή απόκρυψη, δεν μπορούν να πετύχουν ισχυρή αέναη ιδιωτικότητα καθώς τα
ανοίγματα των δεσμεύσεων θα είναι στη διάθεση των αρχών και κατά συνέπεια δια-
θέσιμα στον ισχυρό αντίπαλο. Αντίθετα, τα σχήματα με ανώνυμη κατάθεση ψήφων
φαίνεται να παρέχουν ισχυρότερες εγγυήσεις ιδιωτικότητας.

Από την άλλη πλευρά, μπορεί να τεθεί στην προσέγγιση μέσω της ανωνυμίας, η κρι-
τική ότι δεν επιλύει πραγματικά το πρόβλημα, αλλά ότι το αντικαθιστά με κάποιο
άλλο. Αντί δηλαδή να απαιτεί τέλεια μυστικότητα (μέσω σχημάτων δέσμευσης) α-
παιτεί τέλεια ανωνυμία. Η διαφορά, είναι ότι το δεύτερο είναι πιο εύκολο να επιτευ-
χθεί με την έννοια ότι είναι πιο δύσκολο να είναι στην πλήρη κατοχή του αντιπάλου.
Ένα ανώνυμο κανάλι, μπορεί να είναι κατανεμημένο και να λειτουργεί από μέρη τα
οποία είναι δύσκολο να ελεγχθούν ακόμα και από έναν ισχυρό αντίπαλο - για πα-
ράδειγμα μπορεί να βρίσκονται σε διαφορετικά κράτη. Μπορούν να εφαρμοστούν
και εναλλακτικές μέθοδοι ανωνυμίας στα άκρα, όπως για παράδειγμα υπογραφές
δακτυλίου (ring signatures) ώστε οι ψηφοφόροι σε ένα εκλογικό τμήμα να μπορούν
να σχηματίσουν ένα σύνολο ανωνυμίας. Κατά συνέπεια δεν χρειάζεται τέλεια ανω-
νυμία, αλλά τουλάχιστον ένα συστατικό της να διατηρηθεί εκτός του ελέγχου του
αντιπάλου.

Τέλος, το μοντέλο μυστικότηταςU-BPRIV που ορίσαμε στην εργασία μπορεί να χρη-
σιμοποιηθεί για την έρευνα και αποτίμηση πρωτοκόλλων τα οποία δεν χρειάζονται
εμπιστοσύνη στους καταμετρητές για την διατήρηση της μυστικότητας. Αυτό έρχε-
ται σε αντίθεση με την πλειοψηφία των εργασιών στην βιβλιογραφία των ηλεκτρο-
νικών ψηφοφοριών καθώς προτιμάται να υπάρχει εμπιστοσύνη στους καταμετρητές
για επαληθευσιμότητα και όχι για μυστικότητα. Υπάρχει όμως αμφιβολία για το αν
αυτή η υπόθεση είναι αποδεκτή από τους ψηφοφόρους. Το μοντέλο U-BPRIV μπορεί
λοιπόν να χρησιμοποιηθεί ώστε να εξερευνηθεί περισσότερο αυτή η κατεύθυνση.

Τα κρυπτογραφικά εργαλεία και πρωτόκολλα που αναπτύχθηκαν στην παρούσα
εργασία, δημιουργούν αρκετές ευκαιρίες για μελλοντική δουλειά. Ένας αρχικός

xxxii

στόχος είναι η προσαρμογή του πρωτοκόλλου ηλεκτρονικών ψηφοφοριών σε αν-
τίστοιχα περιβάλλοντα με τις ηλεκτρονικές ψηφοφορίες. Μάλιστα σε πολλά από
αυτά, όπως για παράδειγμα σε περιβάλλοντα ανώνυμης συμπλήρωσης ερωτηματο-
λογίων, οι απαιτήσεις ασφάλειας είναι πιο ελαστικές. Κατά συνέπεια, μπορεί να
χρησιμοποιηθούν και οι υπογραφές CBS με αρκετή βελτίωση στην απόδοση. Επί-
σης, θα αναζητηθούν και άλλες υλοποιήσεις των CBS, PACBS με καλύτερη απόδο-
ση, ιδιαίτερα σε ότι αφορά τον αριθμό των παράλληλων συνόδων λόγω της ανά-
λυσης των [PS00; Ben+20]. Μια άλλη κατεύθυνση, που έχει ήδη ξεκινήσει [PBS20]
είναι η μεταφορά των PACBS σε αποκεντρωμένο περιβάλλον, μέσω υπογραφών δα-
κτυλίου (ring signatures) διατηρώντας τη βασική συνεισφορά της διατριβής αυτής,
ότι δηλαδή μπορεί να υπάρξει προστασία από εξαναγκασμό μέσω ιδιωτικής κατα-
μέτρησης και αποδείξεων μηδενικής γνώσης. Η προστασία από εξαναγκασμό σε
τέτοιου είδους εκλογές, αποτελεί προς το παρόν ανοικτό ερώτημα. Ένα τέτοιο πρω-
τόκολλο θα μπορούσε να εφαρμοστεί χρησιμοποιώντας μια αλυσίδα ομάδων συναλ-
λαγών (blockchain) όπως αυτή εφαρμόζεται στα κρυπτονομίσματα όπως το bitcoin
[Nak08]. Κάτι τέτοιο δεν είναι καθόλου απλό, καθώς όπως αναλύουμε στο [GP19]
η ομοιότητα που υπάρχει μεταξύ της έννοιας της αλυσίδας συναλλαγών και του α-
ποθετηρίου BB δεν αρκεί από μόνη της για να ικανοποιήσει τις πολύ απαιτητικές
ιδιότητες ασφάλειας που χαρακτηρίζουν τις ψηφοφορίες. Με δεδομένο αυτό, όμως,
η έρευνα προς αυτή την κατεύθυνση θα έχει το πλεονέκτημα ότι μπορεί να οδηγήσει
σε νέα υποδείγματα ηλεκτρονικών ψηφοφοριών.

xxxiii

Αντιστοιχία όρων

Αγγλικός όρος Ελληνικός όρος

public-key cryptosystem κρυπτοσύστημα δημοσίου κλειδιού
multiplicative homomorphism πολλαπλασιαστικός ομομορφισμός
additive homomorphism αθροιστικός ομομορφισμός
digital signature ψηφιακή υπογραφή
blind signature τυφλή υπογραφή
designated verifier signature υπογραφή καθορισμένου επαληθευτή
hash function συνάρτηση σύνοψης
non-interactive zero knowledge
proof

μη-αλληλεπιδραστική απόδειξη μηδενικής
γνώσης

commitment scheme σχήμα δέσμευσης
perfectly hiding τέλεια απόκρυψη
perfectly binding τέλεια δέσμευση
plaintext equivalence test έλεγχος ισοδυναμίας μηνυμάτων
mixnet, shuffle δίκτυο μίξης
ring signature υπογραφή δακτυλίου
panic password συνθηματικό πανικού

formal model τυπικό μοντέλο
security game κρυπτογραφικό παίγνιο
unforgeability μη-πλαστογραφησιμότητα
strong one-more-forgery ισχυρή μία-ακόμα-πλαστογράφηση
conditional verifiability υπό-συνθήκη επαληθευσιμότητα

registration authority αρχή εγγραφής
vote authorization εξουσιοδότηση ψήφου
tallying authority αρχή καταμέτρησης
bulletin board αποθετήριο (ψήφων - μηνυμάτων)
blockchain αλυσίδα ομάδων συναλλαγών
credential διαπιστευτήριο

conditional blind signature υπό συνθήκη τυφλή υπογραφή
publicly auditable conditional blind
signature

δημόσια ελέγξιμη υπό-συνθήκη τυφλή υπο-
γραφή

verifiability επαληθευσιμότητα
cast-as-intended verifiability επαλήθευση σωστής κατάθεσης πρόθεσης
recorded-as-cast verifiability επαλήθευση σωστής καταγραφής κατάθεσης

xxxiv

tallied-as-recorded verifiability επαλήθευση σωστής καταγραφής καταμέτρη-
σης

software independence ανεξαρτησία από το λογισμικό
individual verifiability ατομική επαληθευσιμότητα
universal verifiability καθολική επαληθευσιμότητα
eligibility verifiability επαληθευσιμότητα δικαιώματος ψήφου
ballot secrecy μυστικότητα ψήφου
receipt - freeness μη αποδειξιμότητα ψήφου
coercion resistance αντίσταση στον εξαναγκασμό
forced abstention attack επίθεση αναγκαστικής αποχής
everlasting privacy αέναη ιδιωτικότητα

xxxv

Ευχαριστίες

Η παρούσα διατριβή ολοκληρώνει μια εννιάχρονη διαδρομή προσωπικής επιστρο-
φής στον ακαδημαϊκό χώρο, μετά από δεκαετή απουσία. Σε αυτήν είχαν σημαντικό
μερίδιο συμμετοχής μια σειρά ανθρώπων των οποίων η παρουσία τους ως συμβου-
λευτικά και εξεταστικά μέλη της διατριβής αυτής είναι ιδιαίτερη τιμή για μένα και
τους οποίους οφείλω να ευχαριστήσω.

Κατ’ αρχήν το μεγαλύτερο μερίδιο ευχαριστιών απευθύνεται στον επιβλέποντα κα-
θηγητή της εργασίας κ. Αριστείδη Παγουρτζή για την οκτάχρονη και πλέον συνερ-
γασία στα πλαίσια πρώτα του μεταπτυχιακού στο ΜΠΛΑ και στην συνέχεια κατά
τη διάρκεια της διδακτορικής διατριβής. Η βοήθειά του ήταν καθοριστική, τόσο
σε επιστημονικό επίπεδο, αφού ήταν αυτός που με ώθησε να ασχοληθώ με τις ηλε-
κτρονικές ψηφοφορίες δίνοντας έμφαση στην ιδιωτικότητα, όσο και σε προσωπικό
επίπεδο, αποτελώντας ένα σημείο ισορροπίας απέναντι σε αντίρροπες δυνάμεις. Ε-
πίσης τον ευχαριστώ και για τις υπόλοιπες ευκαιρίες που μου έδωσε καθώς και για
τη συμβολή του στην ολοκλήρωση της διατριβής.

Σημαντικές ευχαριστίες οφείλονται και στον κ. Στάθη Ζάχο, ο οποίος στην πρώ-
τη μας συνάντηση, στην συνέντευξη για το ΜΠΛΑ είχε μία πολύ θετική αντίδραση
στην υποψηφιότητά μου, και του οποίου ο τρόπος διδασκαλίας είναι παράδειγμα
για μένα καθώς επίσης και για το ακαδημαϊκό περιβάλλον το οποίο έχει δημιουρ-
γήσει στο εργαστήριο το οποίο διατηρείται μέχρι σήμερα. Επιπλέον, θα ήθελα να
ευχαριστήσω ιδιαίτερα τον κ. Δημήτρη Φωτάκη τόσο για την συμμετοχή του στην
τριμελή επιτροπή επίβλεψης της διατριβής όσο και για το ιδιαίτερο ενδιαφέρον του
και την άμεση βοήθεια που μου προσέφερε όποτε του την ζήτησα.

Ιδιαίτερες ευχαριστίες απευθύνονται στον κ. Παναγιώτη Τσανάκα, τον οποίο πρω-
τοσυνάντησα ως πρωτοετής φοιτητής στο Πανεπιστήμιο Πειραιά το 1996, και φυσι-
κά στον κ. Άγγελο Κιαγιά, του οποίου το μάθημα στο Πανεπιστήμιο Αθηνών ήταν
η πρώτη επαφή μου με την Θεωρητική Κρυπτογραφία και την επιστημονική της θε-
μελίωση. Με τιμά ιδιαίτερα επίσης η συμμετοχή των κ.κ. Συμβώνη, Πουλάκη, Ζήκα
στην επταμελή επιτροπή εξέτασης της διατριβής μου, τους οποίους και ευχαριστώ.

Η διατριβή αυτή περιλαμβάνει αποτελέσματα τα οποία προέκυψαν στα πλαίσια συ-
νεργασίας με τον κ. Αλέξανδρο Ζαχαράκη, τώρα υποψήφιο διδάκτορα στοUniversitat

xxxvi

Pompeu Fabra. Τον ευχαριστώ ιδιαίτερα για την εποικοδομητική συνεργασία και τις
πολλές συζητήσεις, που είχαν καθοριστική συμβολή στο αποτέλεσμα. Ιδιαίτερες ευ-
χαριστίες και στον συν-συγγραφέα μας Bingsheng Zhang, για τη σημαντική βοήθεια
που προσέφερε, καθώς επίσης και στους συναδέλφους από το CoReLab με τους ο-
ποίους συνεργάστηκαμε σε προτάσεις, διδασκαλίες και άλλα θέματα και ιδιαίτερα
στους/στις κ.κ. Γιάννη Παπαϊωάννου, Πέτρο Ποτίκα, Pourandokht Behrouz, Μα-
ριάννα Σπυράκου και Θωμά Σουλιώτη.

Τέλος, θα ήθελα να ευχαριστήσω την Αργυρώ και τη Λένα για την στήριξη και την
τεράστια κατανόηση που έδειξαν για τις ατέλειωτες ώρες που αφιέρωσα σε αυτή τη
διατριβή.

©2020, Παναγιώτης Μ. Γροντάς (Panagiotis M. Grontas)
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ
ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, α-
ποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής
φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται
το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκο-
πικό σκοπό πρέπει να απευθύνονται στον συγγραφέα (pgrontas@corelab.ntua.gr).

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν
τον συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέ-
σεις του Εθνικού Μετσόβιου Πολυτεχνείου.

xxxvii

Contents

Abstract iii

Περίληψη v

Εκτεταμένη περίληψη vii

Αντιστοιχία όρων xxxiii

Ευχαριστίες xxxv

Contents xxxvii

List of Figures xli

List of Symbols xliii

1 Introduction 1
1.1 Election technologies . 2
1.2 Security properties of voting systems . 7

1.2.1 Verifiability . 7
1.2.2 Confidentiality . 9
1.2.3 Other properties . 13

1.3 Contribution . 14
1.3.1 Publicly Auditable Conditional Blind Signatures 15
1.3.2 Everlasting privacy . 16
1.3.3 PACBS Voting . 17

1.4 Thesis structure . 17

2 Cryptographic Preliminaries 19
2.1 Basic notions . 19

2.1.1 Security Assumptions . 19
2.1.2 Communication channels . 21

2.2 Public Key Encryption . 23
2.3 Commitment schemes . 27

xxxviii

2.4 Zero-Knowledge Proofs of Knowledge . 30
2.4.1 Σ-protocols . 31

2.5 Digital Signatures . 38
2.5.1 Blind Signatures . 41
2.5.2 Designated Verifier Signatures . 44

2.6 Threshold Secret Sharing . 47
2.6.1 Threshold cryptosystems . 48
2.6.2 Plaintext Equivalence Tests . 49

2.7 Verifiable Shuffles . 51
2.8 The road to PACBS . 54

3 Publicly Auditable Conditional Blind Signatures 57
3.1 Conditional Blind Signatures . 58

3.1.1 Definitions . 58
3.1.2 Security Properties . 58

3.2 Okamoto-Schnorr CBS construction . 61
3.3 CBS Security Analysis . 64
3.4 CBS Variations . 70
3.5 Publicly Auditable Conditional Blind Signatures 71

3.5.1 Definition . 72
3.5.2 Security Properties . 73

3.6 Okamoto-Schnorr PACBS construction 78
3.6.1 OSPACBS parameter generation 79
3.6.2 OSPACBS signing . 79
3.6.3 OSPACBS verification . 82

3.7 PACBS Security analysis . 85
3.7.1 Correctness . 85
3.7.2 Blindness . 87
3.7.3 Unforgeability . 88
3.7.4 Conditional Verifiability . 92
3.7.5 Public Auditability for signing and verifying 93
3.7.6 Performance . 93

3.8 Alternative OSPACBS instantiation . 94
3.9 A note on the ROS attack . 96

4 Electronic Voting Systems and Models 101
4.1 Voting System Syntax . 101
4.2 Helios Case Study . 105
4.3 Election Verifiability . 111

4.3.1 Individual verifiability . 113

xxxix

4.3.2 Universal verifiability . 115
4.3.3 Eligibility Verifiability . 118

4.4 Coercion resistance . 122
4.4.1 Receipt-Freeness . 123
4.4.2 The JCJ coercion resistance framework 127

4.5 Ballot secrecy . 138
4.5.1 Trust assumptions . 138
4.5.2 Security games for ballot secrecy 139
4.5.3 Privacy based on blind signatures 146

4.6 Everlasting Privacy . 152
4.6.1 Game based definitions for everlasting privacy 155
4.6.2 Application of the new everlasting privacy definitions 157
4.6.3 Discussion . 159

4.7 Relations between properties and models 160

5 Voting with Publicly Auditable Conditional Blind Signatures 163
5.1 Overview . 163
5.2 PACBS Voting Scheme Specification . 167

5.2.1 Setup phase . 167
5.2.2 Registration phase . 169
5.2.3 Voting phase . 170
5.2.4 Tally phase . 176
5.2.5 Verification phase . 178
5.2.6 Performance . 183

5.3 Security analysis . 185
5.3.1 Verifiability . 185
5.3.2 Ballot secrecy . 191
5.3.3 Everlasting privacy . 195
5.3.4 Coercion Resistance . 196

6 Conclusion 207
6.1 Summary . 207
6.2 Future work . 208

6.2.1 Coercion resistance in decentralized and blockchain voting . . 210
6.3 Epilogue . 214

Bibliography 217

Index 237

xli

List of Figures

2.1 Proof of knowledge of discrete logarithm (Schnorr protocol) 32
2.2 Proof of knowledge of discrete logarithm equality (Chaum - Pedersen

protocol) . 33
2.3 Proof of knowledge of Pedersen commitment openings 34
2.4 Disjunction of Schnorr Proofs . 35
2.5 Proof of knowledge of plaintext in lifted ElGamal ciphertext 37
2.6 Schnorr Signatures . 40
2.7 Okamoto-Schnorr Signatures . 40
2.8 Okamoto-Schnorr Blind Signatures . 43
2.9 Designated verifier proof of correct reencryption from [HS00] 46

3.1 The protocol OSCBS.Sign⟨S((s1, s2), b),U(m), prms,pk⟩ 63
3.2 Breaking the CDH Assumption by forging OSCBS 66
3.3 Breaking the DDH Assumption by utilizing a break in Conditional

Verifiability . 68
3.4 OSPACBS.Sign Protocol . 80
3.5 The proof π2 in OSPACBS.Sign . 81
3.6 AND(π1, π2, π3) in OSPACBS.Sign . 84
3.7 AND(π1, π2, π3, π4) in OSPACBS.Verify 85
3.8 Forging OSPACBS by using OSCBS . 89
3.9 Breaking the IND-CPA by utilizing a break in Conditional Verifiability 92
3.10 The protocol OSPACBS.Sign2⟨S(s1, s2),U(m), prms, (C1, C2),pk⟩ . . . 95

4.1 Voting with blind signatures [FOO92] . 147
4.2 The functionalities Setup, Register of the AugFOO scheme 150
4.3 The protocol Vote of the AugFOO scheme 150
4.4 The functionalities Valid, Tally of the AugFOO scheme 150
4.5 The DGA scheme of [DGA12] . 158
4.6 Relations between security properties of voting schemes 162

5.1 PACBS voting for an individual voter . 164
5.2 TheVSPACBS.Register protocol executed through an untappable chan-

nel (Selections version) . 170

xlii

5.3 TheVSPACBS.Register protocol executed through an untappable chan-
nel (CIVITAS version) between Vi and EAj 171

5.4 VSPACBS.Vote Vote authorization protocol using OSPACBS.Sign 173

xliii

List of Symbols

λ security parameter
negl A negligible function
n number of voters
m number of candidates
t number of members of authorities
[n] the set of integers {1,⋯, n}
∶= Assignment or Definition
← Output of an algorithm
←$ Selection of an element from a set uniformly at random
⇐ Append operation
A, B Adversaries
Π⟨A(α),B(β), γ⟩ A protocol Π that requires interaction between two algorithms A,B

with secret input α, β respectively and public input γ
NIZK Non-interactive Zero-Knowledge Proof of Knowledge
σ Signature
β Blind Signature
V = {Vi}n

i=1 The set of voters
vt Plaintext vote for a voter
VCorr The set of corrupted voters
VCoer The set of coerced voters
VHon The set of honest voters
VChck The set of voters who verify their votes
VEl = {i}n

i=1 set of identities of all eligible voters
i Index & identity of voter
BB Bulletin Board
EA Election Authority
RA Registration Authority
TA Tallying Authority

Due to the extent of this thesis, we were forced to reuse various symbols. Each such
symbol has a local scope. Encrypted values are denoted in bold. Tuples are denoted
with ⋅.

1

1 Introduction

The medium is the message

Marshall McLuhan

Voting is a distributed decision-making process, where a set of agents select an op-
tion and reach consensus on the most preferred input. The result is binding for the
group, as everyone is expected to adhere to it until the process is repeated. The algo-
rithm to implement the basic process is remarkably simple; it involves two elementary
operations - comparisons and counting. Each input is compared to the available op-
tions and the respective counter is incremented. To deal with scaling issues many
technologies have been employed for assisting the realization of the process: from
pebbles and paper to lever machines and electronic computers. It is usually the case
that technologies affect deeply, to the point of total transformation, the process they
are assisting.

The simplicity of voting has cast it as a ubiquitous method to reconcile differing opin-
ions. Its use ranges from informally deciding where to hold simple gatherings to se-
lecting a national government. In all settings, the fact that the vote result is binding,
can motivate participants to influence the process to their benefit. Human ‘ingenuity’
has come up with many methods to achieve this. They can try to convince the voters
for their favored opinion before the ‘election’ begins by using (logically sound) argu-
ments or by spreading misinformation. If this fails, they can step up their game by
coercing the agents using threats or countermeasures. They can even try to affect the
process that computes the results itself, by changing the inputs in an unauthorized
manner or by tampering with the internals of the computations. In some cases, there
is no need to carry out an attack; the fact that there is a perceptible danger of inter-
ference casts doubt to the legitimacy of the results. As a result, the voting process
must be augmented with another goal: to compute the results in a manner that con-
vinces every participant and especially the ‘losers’, that the elections were conducted
according to the rules and their results indeed expresses the majority of the agents.

It is evident that since technology is used to realize the voting process, technology
can also be used to carry out the attacks. But technology can also be used as a means

2 Chapter 1. Introduction

of defense in a twofold manner: by providing specific countermeasures and more im-
portantly by analyzing and modeling the process thereby contributing to its better
understanding. In electronic voting, the goal of any assisting technology must be to
eliminate (or greatly reduce) trust in particular agents or system components. This
results in making attacks more difficult as the possible targets have diminishing im-
portance. Even more importantly, reducing the trust required to accept the results
will reduce the perception of threat, which impacts the legitimacy of the results.

This thesis proposes cryptographic primitives and protocols that can be used to secure
the voting process. As one of the goals of modern cryptography is to reduce trust, it
provides a great match for electronic voting.

1.1 Election technologies

We begin by reviewing the most important technologies that have been employed to
implement elections. We use the term technology in broad terms; it does not refer
only to modern computer systems. A piece of paper, a wooden ballot box, a voting
booth separated by a curtain are all examples of technologies.

The simplest and probably one of the earliest methods of voting works by requiring
a show of hands from those who agree with the proposition put forth. Tallying takes
place by simply counting raised hands in the presence of all voters. This method,
while technologically primitive, has an important advantage; it requires no trust in
the tallying algorithm, as all is needed is the snapshot of raised hands. As a result,
everybody can verify that the result is correct, by self-tallying. This makes the show
of hands the definitive template for trustless voting systems, as they provide a central,
immutable and publicly available repository of cast votes that everybody can use to
compute the result on their own. On the other hand, such systems are not easy to
use because of scaling issues. They cannot be used in large numbers, as it becomes
more difficult to capture the snapshot of votes. Of course, they are also prone to
errors. However, the most important problem with this voting method is the same
as its advantage: The fact the everyone can check how everyone voted; this can help
coercers to actively force voters to select a particular option, by threatening them
with retributions if they don’t. The reason behind this, is simply that the coercers
can more easily monitor the process and check if their targets complied with their
directions and if not, carry out their threats.

The secret ballot The most important technological innovation in voting is the
introduction of the Australian or ‘secret ballot’ in the 1850s [Ben13], that aims to
counter the implication of revealing one’s vote. In such systems the voters mark

1.1. Election technologies 3

their preferences on an anonymous token; nowadays a piece of paper is used where
the choices (candidate names) are preprinted. Ballot casting takes place inside an
isolated voting booth, where the voter is free to cast their vote from the prying eyes
of coercers. Additionally, the voting booth is a technology that protects elections
from malicious voters, as it prevents the latter from selling their votes and producing
relevant receipts to receive their rewards. After casting, the voters of a secret ballot
system create a ballot by enclosing their vote in an unmarked envelope and posting it
on a sealed box named ballot box. The envelope-ballot box combination makes votes
both anonymous, unlinkable to a real-world identity, as well as secret. After the voting
period ends the talliers unseal the ballot box, open the envelopes and count the votes.

Supervised voting In order to scale the secret ballot, to millions of users, an in-
frastructure is required. First of all the voters must go through a registration phase
that serves two purposes: to check if the voters are eligible to participate in the elec-
tions and, if this is the case, to receive an authentication token. These tokens can be
used for single or multiple elections and in some cases even as all-purpose identities.
During the actual elections these tokens are used to authenticate the voters, check
eligibility and prevent double voting. However, the credentials are not included in
the ballot. Authentication and tallying is performed by a group of individuals with
conflicting interests, typically representatives of different voting options, supervised
by a trusted third party. The voters are also supervised to adhere to the rules of pro-
cedure, e.g to enter the voting booth on their own, not to leave special marks on their
ballot. The voting infrastructure is distributed in a hierarchical scheme to reach mil-
lions of voters; the votes are collected and counted at the edges (tree leaves), where
each voting precinct computes and announces its tallies. The partial results are then
merged to create the final tally. Despite this distribution of labor, vote counting is a
time consuming and error-prone process especially in voting systems with complex
selection rules. In order to improve tallying times, the paper ballot has been replaced
with mechanical lever machines in large jurisdictions. This supervised infrastructure
must be set up and dismantled after every election, which incurs a large monetary
cost.

The threat model against supervised voting rests on two assumptions. To begin with,
an adversary needs to corrupt many partial tallies to affect the results. The same
applies to an adversary aiming to disrupt the elections. The distributed hierarchical
organization makes the scheme resilient. Furthermore, within a voting center, the
separation of roles to agents with conflicting interests creates self-enforcing motives
for each player to monitor the others. Additionally, such a voting system cannot op-
erate on its own but requires trusted third parties to monitor the process and enforce

4 Chapter 1. Introduction

the rules. Many [Ben13; Wil17; KWV19] have noted, that the threat model of su-
pervised voting is safe against an adversary with limited technological capabilities.
But this might not be the case anymore. The proliferation of cheap ‘smart devices’,
everyday devices (like glasses and watches) equipped with microprocessors and I/O
sensors with network connectivity modules fundamentally changes the capabilities
of the attackers.

Remote (physical) voting In order to increase participation, many jurisdictions
have enabled remote voting, usually by employing the postal system (vote by mail).
The voters receive special ballots by mail, mark their choices and re-post their ballots
or deliver them directly to a voting center. During counting the ballots are stripped
of identifying information and tallied, sometimes using software components. Again,
counting is performed by agents with conflicting interests supervised by trusted third
parties, i.e. the back end remains the same. However, the voter experience is funda-
mentally different, as there is no supervision or privacy enforcing voting booths. As
a result, vote-selling and coercion becomes easier. Note that the attacker in these
threats is not an abstract formal adversary; these threats can easily be performed by
family members, employers, and associates. Vote by mail has been initially deployed
to serve a minority of voters whose employment required frequent mandatory ab-
sence from elections (e.g. armed forces, diplomatic personnel). This meant that the
percentage of votes cast remotely was a negligible percentage of the electorate, un-
able to affect the result. However, as the mobility of the modern workforce increases,
the application of vote by mail increases as well, exacerbating the problems of vote
by mail.

Electronic voting With the proliferation of computers, the Internet and the digi-
tization of all processes, it was expected that voting would follow suit. However, this
transition did not proceed with the speed and scale that was typical of other activi-
ties e.g. banking. Many researchers [Sch] claim that voting has some unique security
properties that cannot be satisfied by computer systems, because of their inherent
characteristics and must, therefore, remain (partly at least) paper-based.

The first way to integrate computers into electronic voting, replaces the paper ballot
and the talliers with computers while maintaining the rest of the infrastructure in
supervised procedures. This means that both the ballot and the ballot box are elec-
tronic. The voting booth remains physical and votes are cast using touch screens or
other input devices on DRE (Direct Recording Electronic) machines. Receipts can be
optionally printed and cast independently in ballot boxes, thus creating a paper trail.
Another alternative allows voters to mark their votes on paper ballots and digitize
them using optical scan machines. In both cases the votes are electronically stored

1.1. Election technologies 5

and transferred to a computer functioning as a tabulator to produce the result. How-
ever, reusing the existing infrastructure with computers instead of human talliers is
not the only options. Information technology can transform the voting process by
enabling different or novel voting methods to be applied, that would be prohibitive
otherwise, because of scaling issues and other physical limitations.

The discussion around electronic voting usually revolves around the casting and tal-
lying phases. However, a nationwide supervised system has many more components
that can be digitized. For instance, in order to obtain registration information and
create the voter rolls, public databases of voter information can be used which are
often in electronic format. A simple way to affect the result of an election is to al-
ter the contents of these databases and exclude legitimate voters are add fake ones.
Furthermore, computers are also used after computing the local results at the voting
precincts, to transmit the partial tallies to the central authority for aggregation. The
vulnerabilities of using software also apply to these subsystems of electronic voting
as well.

In order to understand the problems with electronic voting, one must note that vot-
ing with computers is essentially, voting by proxy. As a result, voters delegate their
choices to third parties and trust them to record, transmit and count them correctly.
However, this trust is misguided as a computer might change votes simply because an
error occurred or even due to malice. The lack of trust is exacerbated by the universal
nature of computers and software. For instance, the computer could run variations
of the recording and tallying programs that correlate the order of the votes with the
order of authentication, thus linking voter identity with vote contents or randomly
alter votes. Proposed solutions such as open-source software and certification are
necessary but not sufficient conditions, as one cannot be sure whether the recording
or tallying machine runs the code that was examined.

[Riv08] observes that the result of an election should not depend on the computer
systems that is used to run it, so that software problems do not propagate to the
election results and defines the notion of software independence to characterize a
major desideratum of electronic elections:

Definition 1.1: Software independence

A voting system is (weakly) software-independent if an undetected change or
error in its software cannot cause an undetectable change or error in the elec-
tion outcome.
A voting system is strongly software-independent if it is software-independent
and a change or error in its software can be detected and recovered so that
rerunning the election is not required.

6 Chapter 1. Introduction

A simple way to achieve software independence is by utilizing the paper trail that
some DRE machines leave and allowing the voter to verify it. The resulting system
is software-independent, because the software can be replaced by a hand count, in
the case the official results show discrepancies, or after a manual audit of a small
part of the ballots using statistical audit techniques, like Risk Limiting Audits [LS12].
In fact, experts argue [Ber+17], that currently this is the best way to vote, assuming
that certain rules are followed for the handling of paper ballots. While we agree that
this is currently the best way, it is tied to voting using the traditional supervised in-
frastructure. Another way to achieve software independence is to use cryptographic
methods. This thesis is built around the belief that cryptographic voting can (ulti-
mately) be as secure as traditional supervised voting.

Remote electronic voting The electronic analogue of vote-by-mail is Internet vot-
ing. The voters cast the ballot through their Internet-connected personal computers
or smartphones and the vote is relayed to the tallying computer through the com-
puter network. Unlike supervised voting, the voters can cast the ballot in the comfort
of their homes or their offices without any official being present. The software used
must be platform-independent, so it usually takes place through a web browser.

Internet voting has many advantages: Firstly, it allows people to make their choices
without having to physically visit the polling station, which usually mean waiting in
long queues. It can also be accessible from any part of the world, allowing greater
turnout and replacing the need for vote by mail. It can also be more usable, as the
voting software can provide guidance over the process. This is especially true for
voters with disabilities. As it is implemented in computer software it has significant
cost savings in the long run. The administrative costs of setting up an election are
also quite low, leading to frequent impromptu elections. The proponents of Internet
voting have even gone as far as claiming that it will bring back the direct democracy
witnessed in classic Athens 2500 years ago.

On the other hand, Internet voting has many disadvantages. The most important
one is that it sacrifices the mandatory imposition of privacy offered in voting booths.
Since voting is donewithout official supervision, it is open to coercion and vote selling
as the attacker can be present and oversee the voting process. Moreover, Internet
voting enables a weaker kind of coercion to take place: pressure from family or close
friends, as the voter is never alone. These are dangers present in all types of remote
voting. Another important problem is that its security depends on the security of
the voters’ computer. The security research literature is full of vulnerabilities and
attacks leading the safe conclusion that computer client software cannot be trusted for
security. Malicious software might alter votes, fail to submit them (without reporting

1.2. Security properties of voting systems 7

it) and many other things can go terribly wrong. Things are not as bright on the
server side as well. As the voting server resides on an open network it is a target of
attacks as well, that are not restricted inside a country, but can come from external
opponents as well. Furthermore, the software used for voting might be inaccessible
to certain groups of people such as the elderly as they are not comfortable with using
a computer. We can see why many computer security and voting researchers think
that Internet voting is a bad idea [Sch].

There are indeed many hurdles that one must overcome and applying internet voting
to nationwide governmental elections seems terrifying. However, electronic voting in
a network setting can transform collective decision making and create scenarios that
would be impossible to implement at scale, otherwise. For instance, in [KY02], a new
type of voting system is proposed: self-tallying elections where everybody (including
outsiders) can count everybody’s vote. Such a scenario would only be feasible on
a small time and space scale. To sum up, despite the fact the electronic voting is
not secure yet to implement nationwide governmental elections it can be applied for
issues of less importance and enable of new types of decision making. This is the
motivation behind this thesis.

1.2 Security properties of voting systems

The characteristics of computers that make electronic voting a hard problem to solve,
require a rigorous security analysis of any proposed e-voting scheme, beyond what is
standard in any software engineering problem. This process checks that the scheme
conforms to a set of security properties that any voting scheme must possess, either
electronic or physical. This makes electronic voting not merely a digital analogue for
traditional elections, but a somewhat improved version brought about by formally
defining, analyzing and seeking to satisfy difficult and conflicting security properties.
In this section, we provide a high-level overview of the security characteristics of any
voting system. In chapter 4 we will provide a formal analysis of these properties.

1.2.1 Verifiability

Themain properties grouped under this section deal with the correctness of the result
of the election and the conviction of voters around it.

Correctness/Integrity The voting system must correctly compute the tally, by in-
corporating the choices of the voters into the results. Thismust take place irrespective
of the result function. However, this is not enough; elections shareholders must be
convinced that the announced result is correct.

8 Chapter 1. Introduction

Verifiability This property aims to assure candidates and voters that all votes have
been considered. As a result, verifiability requires evidence that allow the voters
to verify that the output of the tally function corresponds to their collective desires.
Voters must check this evidence in order to make sure that their votes [Ben+15] were:

– Cast as intended: The user interface of the voting system should aid the voter
to express his choice without interfering to change it and help the voter verify
that it was correctly captured. As a result, there should be no doubt about what
the voter input to the voting system was and how it is being stored. One way
to achieve this is the cast-or-audit mechanism proposed in [Ben06]; the voter
creates an arbitrary number ballots, but eventually casts only one and audits the
rest. The election system does not know which ones will be eventually audited
so it is motivated to follow the protocol on all.

– Recorded as cast: The voting system should convince its users that their recorded
votes have been correctly transferred to the counting stage, by enabling voters
to pinpoint their own ballot in a list of ready-to-be-tallied ballots. This is usu-
ally done by providing voters with receipts to be compared with the list of cast
ballots.

– Tallied as recorded: Voters and all interested parties (e.g. external observers
and auditors, pro-democracy organizations) should be convinced that all valid
votes have been included in the final tally.

These checks together constitute the security requirement of End-To-End (E2E) Veri-
fiability . Cast as intended and recorded as cast verifiability are usually collectively
referred as individual verifiability, since the voter herself initiates the checks. Tallied
as recorded checks are performed by everybody so they are collectively referred to
as universal verifiability.

Another type of verifiability check is eligibility verifiability , where everybody must
be able to verify that all the votes coming from legitimate voters (i.e. that have the
right to vote) have been included in the tally. This is part of a tallied as recorded
check and aims to prevent ballot stuffing and double voting. Eligibility verifiability
requires a way to provide publicly auditable credentials to voters that allow for the
eligible voters to stand out. To receive them the voters must authenticate themselves
to a voting system. However, authentication requires some form of identification and
this might contrast the ballot secrecy requirement. To go around this limitation, the
voter cannot be individually identified, but instead associated with a set of specific
characteristics, which must be the largest possible for each participant (anonymity
set). The next step is authorization which makes sure that the participant behaves as

1.2. Security properties of voting systems 9

expected so as not cheat the system. For instance, a voter should vote as many times
(usually one) as the election law mandates and no more.

In traditional supervised systems, all the checks that are required to satisfy the verifi-
ability requirements are delegated to trusted third parties observed by representatives
of all shareholders that have conflicting interests. The individual voter cannot verify
the process and the result herself but delegates these tasks. This type of verifiability
is called administrative verifiability . Typical electronic voting systems try to do away
with this type of verifiability. However, this is not always possible, because voters
must actively participate in the auditing both for their own votes as well as for votes
cast by others. In both cases this is not something that can be expected from them,
as research shows [KZZ15b; Ber+17].

Its close relationship with the integrity of the election process, its perception, and the
acceptance of its output, makes verifiability a very important property, extensively
studied [Cor+16] and implemented in many protocols under computational assump-
tions or unconditionally.

Accountability This property is a stronger form of verifiability [KTV10]. Instead
of simply producing evidence that something went wrong with an election (phase),
accountability seems to pinpoint the perpetrator of this malicious behavior. This can
be used as a counter-motive and force all players to execute the protocols honestly.
Accountability is a property that is extremely hard to get right and As a result, only
a few voting systems have been designed to possess it [Küs+16]. Accountability is
sometimes described as collection accountability and dispute resolution [Ber+17].

1.2.2 Confidentiality

Privacy Since the invention of the secret ballot, the protection of its contents has
been encoded into law for all democracies, as a means to guarantee that the voter
indeed expresses her free will. Vote privacy aims to hide the choice of a voter from
the talliers, other voters, or external agents in order to free her from external pressure
and enable her to cast a ballot that represents her true choice.

It is particularly important to note that privacy is not absolute, as the election result
leaks information. For instance, one can infer that the probability of one voter having
cast a particular ballot is close to the percentage of total votes this particular choice
has received. If there is a partial (local) tally this estimation is more accurate. In
extreme cases, one’s preferences might be completely revealed. For instanced in a
unanimous result, everybody knows how everybody voted. If an election result is

10 Chapter 1. Introduction

unanimous except for one vote, then this particular voter knows how everybody else
voted.

Furthermore, it is easy to observe that the secret ballot, hinders verifiability. Themost
verifiable voting scheme is the ‘show of hands’ we described in section 1.1 where all
aspects of elections are publicly auditable. By hiding the contents of the ballots, we
also hinder the transparency of casting and tallying [Ber+17]. However, focusing
solely on verifiability without privacy makes no sense. If one assumes that the con-
tents of all votes are publicly known and linked to individuals, as in the case of a show
of hands, then they can in effect be dictated by external agents applying emotional,
personal, social and economic pressures. As a result, one cannot be sure that a vote
represents the true will of a voter, as the voter could have yielded to these external
forces. Thus, the vote cast would not be the one that was intended. In that sense, it
would not differ that much from a vote altered by a malicious entity, as is the case
with the verifiability threat model. The converse can also be shown at least for in-
dividual verifiability [CL18]: By auditing ballots one can prevent malicious players
from changing ballots, by avoiding the attack where every vote is changed except for
one targeted vote. Then applying the tallying function can reveal its contents.

Vote privacy has been studied in many variations, concerning the capabilities of an
adversary, its relation to the voters and its intended duration.

Ballot secrecy Afirst layer of privacy protections aims to guard against passive ad-
versaries that want to learn the behavior of a particular voter (subset). This has been
implemented in two ways: by hiding the contents of the vote or by disassociating the
voter identity from the ballot. The former is usually achieved using a threshold cryp-
tosystem with homomorphic properties, while for the latter an anonymity primitive
such as mixnets [Cha81] or blind signatures [Cha83] is applied (cf. subsection 2.5.1
and section 2.7). The actual level of privacy offered depends on the implementation,
which usually rests on computational and trust assumptions, as it is generally as-
sumed that there will be an honest subset of participants that will follow the protocol
and not try to break the secrecy. This means that they will refrain from opening in-
dividual votes but will decrypt only the result of the final stage. Blind signatures, on
the other hand, can offer information-theoretic protection. Themaximal protection of
the choices of the voters is the concept of Perfect ballot secrecy [KY02] proposed in the
context of self-tallying boardroom voting schemes, which guarantees that knowledge
about the partial tally of a subset of the voters can be computed only by a coalition
of all the remaining voters. This notion provides vote secrecy regardless of trust as-
sumptions on the talliers’ honest behavior.

1.2. Security properties of voting systems 11

Receipt-Freeness This stronger form of privacy has been proposed by [BT94] pro-
tects the voters against ‘themselves’, providing privacy even if the voter does not wish
for it. To be receipt-free a voting system should not provide the voter with a receipt
that indicates how she voted, because such a receipt could be utilized as a proof if
the (malicious) voter wants to sell her vote. Its absence means that the potential
vote buyer will not be able to be convinced that his money was well spent. As a
result, receipt-freeness discourages vote selling. However, the conflict with verifia-
bility reappears; a generated receipt can function as evidence that allows the voter
to verify the election system and vice versa such evidence can be used as a receipt.
Receipt-freeness (and privacy) does not apply solely to electronic voting schemes.
Technological advances such as camera-equipped glasses [Ben13] or audio side chan-
nels [Wil17], allow a voter to effectively sell her vote and record the ‘transaction’ to
be traded as a receipt. In general in [Che+10] it is proved that a voting system cannot
achieve simultaneously universal verifiability and receipt-freeness, unless there are
private channels between the voters and the election authorities. Such private chan-
nels allow the voter to validate the receipt privately and deniably, in a manner that
casts doubt to the probable vote buyer, while allowing her to verify the vote.

Coercion resistance Another serious threat to voting schemes is an active adver-
sary that constantlymonitors a voter. His aim is to fully to dictate the voter’s behavior
to his wishes with the goal to make the voter abstain or to vote randomly or to fully
impersonate her. To defend against such attacks, voting systems should possess a
property called (over the shoulder) coercion resistance. The general method to achieve
this property is to cast doubt on the coercer about the success of his attack, enabled
by the voter applying a deception strategy. For instance, in many voting systems
the voter is allowed to re-vote [MM06; Adi08; Tso+13; LQAT20], so the voter can
obey when the coercer is present, but with a later vote can undo her previous choice.
The re-voting technique has been augmented and generalized in the Juels Catalano
Jakobsson coercion resistance framework [JCJ05], where the voter can vote multiple
times using anonymous credentials each time. One credential is registered as authen-
tic in a manner invisible to the coercer (e.g. during in-person registration), while the
rest of the credentials are considered fake and therefore the votes that accompany
them do not count. As a result, the coercer cannot be sure if his attack succeeded or
not, because he cannot tell if which credential is used, even if he monitors the voter
for the entire voting period. Fake credential-based schemes make assumptions about
the voter having a moment of privacy and that the registration is untappable (more
details in section 4.4). Furthermore, in order to apply the credentials the voter must
have a token that can perform cryptographic operations with Selections[UH12] being
the most notable exception. On the other hand, re-voting - based schemes, require a

12 Chapter 1. Introduction

moment of privacy too, but make no assumptions about the presence of the adversary
during registration [LQAT20]. However, they make the strong and rather inflexible
assumption that the coercer can monitor the voter until the end of the voting period.
This can be achieved if the coercer is human, but it is more problematic in the case of
the coercer being a software program.

In any case, schemes that are based on multiple votes-per-voter (either through re-
voting or through fake captured), are yet not allowed in many jurisdictions and there
have been reports that userswill have trouble understanding this functionality [Wil17].
Note that coercion resistance, largely depends on the voting method used. A voting
system that supports write-ins cannot be coercion-resistant as the coercer can force
the voter to include a vote for a random string and check that this random string is
included in the results. Furthermore, in schemes that voter selects or ranks a subset
of k out of m candidates the Italian attack can be mounted; the coercer can dictate that
a particular permutation of candidates appears in the results, in effect watermarking
each ballot with a specific pattern per voter. If such a permutation is not found, then
it is evident that his directions were not followed,and repercussions can follow. To
counter the Italian attack a short ballot assumption is sometimes used [KTV12a].

Everlasting privacy 1 The variation of privacy, where the adversary is computa-
tionally unbounded is called everlasting privacy. Its study, formally initiated byMoran
and Naor in [MN06], focuses on preventing secrecy attacks by powerful future ad-
versaries. It is motivated by the observation that in most cases, vote privacy is only
protected by a cryptosystem the security of which is based on computational assump-
tions such as the intractability of the Diffie-Hellman problem (cf. subsection 2.1.1).
These assumptions, however, may be broken or rendered obsolete in the (not too)
distant future, as both the theory and the practice of cryptographic attacks always
get better. This means that votes encrypted with small keys are in danger of being
revealed, even without the computational assumption being broken. As famously
conjectured by Shamir, at the 2006 RSA Conference cryptographers’ panel, all cryp-
tographic keys used at that time would remain secure for less than thirty years (cf.
[MN06]).

The situation is made worse because verifiability requires utilizing public evidence
generated by the election system. These pieces of data are meant to be widely avail-
able and thus it is easy for an adversary to obtain them, even in part. However, one
must bear in mind that the adversaries against voting systems are potentially power-
ful state agencies with enormous budgets and without time constraints. As a result,
they have the capability to collect and store large amounts of election-related data.

1Based on [GPZ19]

1.2. Security properties of voting systems 13

Furthermore, as large-scale elections are organized by the government, these agen-
cies can be considered ‘insiders’, having access to even private parts of the election
transcript. Finally, these agencies can obtain information exchanged through com-
puter and communication networks, both through mass surveillance as well as with
the cooperation of telecommunication companies.

The problem of privacy is exacerbated, as the information concealed in voting does
not lose its value, contrary to protected messages in other common cryptographic
scenarios. Indeed, one can easily imagine a future authoritarian regime that tries to
gather evidence about its subjects based on past democratic elections in cooperation
with the state intelligence agency. This evidence might prompt actions ranging from
surveillance to questioning and even more severe repercussions. As noted in [MN06],
such dangers constitute an indirect coercion attempt. In fact, since there are many
potential coercers the only rational reaction from a voter fearing all possible adverse
scenarios is to abstain. Everlasting privacy seeks to protect the secrecy of individual
votes in such scenarios.

Finally, a recent property the is in the crossroads of verifiability and privacy is partici-
pation privacy [Cor+14; KTV15]. In many jurisdictions, it is illegal to reveal if a voter
abstained or really voted. This is incompatible with eligibility verifiability, where
voter pseudonyms, that are linked to real-world identities accompany the votes. It
can also be considered a form of privacy, should we consider that abstention is a
special candidate to be chosen. The combination of eligibility verifiability with par-
ticipation privacy is called private eligibility verifiability.

1.2.3 Other properties

Except for variations of integrity and secrecy a voting system must satisfy other im-
portant security properties. We list some of them in this section. Note that the fact
that less space is devoted to them, has nothing to do with their importance; it is re-
lated to the focus of this thesis.

Fairness A voting system must not produce early or partial results, as such could
affect voters who have not yet cast a vote. The tally must be announced simultane-
ously to all voters. Fairness also implies that elections should not be repeated, as the
previous election sets a precedent, even if no result is announced. This means that the
voting system must be robust and that from the moment the election starts it must be
concluded. This is especially important for self-tallying schemes where - in a simple
implementation - the last voter might be able to know the partial result before casting
her vote.

14 Chapter 1. Introduction

Enfranchisement All entities that have a stake in the result of an election should
participate. This is easier said than done. For example, in order to be authenticated,
voters should issue some form of credentials. These excludes the people that cannot
issue these credentials for some reason. In addition, voters should not be intimidated
by the voting system and be discouraged to participate. This is particularly true for
electronic voting, since technologically illiterate people might find it hard to use the
system. Cryptographic voting exacerbates the problem, since instead of general ICT
skills voters should now possess (general) knowledge of cryptography.

Enabling enfranchisement should not contradict properties such integrity or privacy.
Assistance in voting for example might help some voters, but ballot secrecy must be
maintained. Enfranchisement implies that voters trust the system to compute their
intent. Complex voting systems might succeed in implementing some or most of the
requirements but might fail in convincing the voters. We do not address, the question
if the solutions described in this thesis, actually convince voters.

Resiliency and Efficiency The voting system should always be available to re-
ceive input from the participants and it must output the result of the computation
in a reasonable time. Availability is crucial since the repetition of the vote casting
phase sheds doubts on fairness. Availability in the presence of an active and persis-
tent adversary is often called robustness. The adversary might pose as a voter or as
the authority or both. In addition, lack of availability hinders enfranchisement, since
a voting system that has ’ups and downs’ in its operation, is perceived as untrustwor-
thy. It is important to point out that a voting system must be robust in its complete
lifecycle and not only on the vote casting stage. For example, a verifiable voting sys-
tem must have a detailed process to deal with ’alleged’ verification problems, or else
verifiability can be used against the system.

Efficiency is one of the reasons put forth by electronic voting proponents, especially
when the voting population is extremely large. It refers to the resources used by the
voting system in all its workflow. Such resources are referred to as cost and might be
time, money, requirements on infrastructure and people participation etc.

1.3 Contribution

This thesis builds on the basis that remote electronic voting using cryptographic
methods for software independence is a goal worthy to pursue. Despite, that we are
far from realizing this goal yet for national elections, voting is a ubiquitous process
that can benefit from such innovations, starting from smaller-scale elections. To this
end, we make three novel contributions:

1.3. Contribution 15

– A cryptographic primitive called Publicly Auditable Conditional Blind Signatures
(PACBS).

– The first-ever game-based definition of the property of everlasting privacy.

– A voting scheme that provides coercion resistance and everlasting privacy with-
out sacrificing verifiability.

Other minor contributions are a comprehensive review of all the formal models pro-
vided in the literature for the security properties of electronic voting systems. We
express these models against a generic voting system that encompasses all function-
alities defined so far. The relations between these properties, as made evident from
their formal definitions, are also explored.

We now analyze the major contributions in more detail.

1.3.1 Publicly Auditable Conditional Blind Signatures

We define Publicly Auditable Conditional Blind Signatures, a standalone signature
scheme that connects the validity of a signature with a predicate applied on publicly
available data. More specifically, instead of creating a digital signature by solely ap-
plying a function parameterized with a secret key to a message, publicly available
data is embedded in a way that the signature is valid if and only if a predicate on
them is satisfied (and the proper keys have been used, of course). In this sense, the
validity of the signature is conditional, which means that the signature can be thought
of as carrying an extra bit of information that determines if it verifies correctly or not.
Furthermore, the signature verification is done by a designated verifier, recognized
by the possession of a secret verification key. These specifications are also captured
in Conditional Blind Signatures (CBS), a precursor of PACBS which is also presented.
The disadvantage of CBS is that a malicious signer or a malicious verifier could dis-
regard the predicate and the related public data and provide arbitrary signatures and
verification results. To defend against this weakness of CBS, PACBS include signa-
ture creation and verification audit functions. They produce evidence that can be
checked by anyone to verify that the predicate was correctly computed, embedded
and checked. PACBS supports blindness to increase the privacy of the user. A se-
curity model of PACBS is also defined that reflects its desired properties. To this
end, blindness and unforgeability - the standard properties of blind signatures - are
complemented with a new property, conditional verifiability, that incorporates the
predicate to the validation procedure. Moreover, a construction is provided based on
the Okamoto-Schnorr blind signatures [Oka92]. Finally, security proofs are presented
that reduce the security of PACBS to well-known cryptographic assumptions.

16 Chapter 1. Introduction

1.3.2 Everlasting privacy

We also propose the first game-based definitions for everlasting privacy. Our defini-
tions are generic, whichmeans that they do not consider the cryptographic primitives
that will be used in order to achieve this property. This has not been the case so far,
where everlasting privacy was defined only in the symbolic model of security.

More specifically, we consider the adversarial capabilities in terms of both data col-
lection and computational power. To model this, we assume two adversaries: The
first is contemporary to the election, where he can participate actively (using cor-
rupted voters) and passively (by monitoring communications between the voters and
the authorities). He is computationally bounded, though. The second adversary is
computationally unbounded but operates (long) after the election is over. The two
adversaries can communicate and As a result, the future adversary can obtain elec-
tion transcripts and auxiliary information collected in the present from corrupted
entities such as voters or even insiders to the election systems.

Themotivation for this capability stems from the reasonable assumption that there ex-
ist powerful entities (e.g. governmental agencies) that might passively hoard election-
related data such as protocol and communication transcripts (among other things as
demonstrated by mass surveillance revelations such as Snowden’s). It is realistic to
assume that a future totalitarian regime will also take control of these agencies as
well and have access to their collected data.

By elaborating on the communication options between the present and the future
adversary we define three variations of everlasting privacy:

– weak everlasting privacy: There is no communication between the present and
the future. As a result, the authoritarian regime can only access generally avail-
able data, such as public bulletin boards. In effect, this scenario is the same as the
one contemplated in the definition of practical everlasting privacy of [Ara+13].

– everlasting privacy: The future adversary can only take advantage of corrupted
external agents to the election system. In reality, these agents are the present
cooperators of the oppressor that passively collect or take advantage of current
attacks to extract information in the future. This model can be viewed as a direct
extension of normal privacy against a more powerful adversary

– strong everlasting privacy: There is full communication between the present
and the future. This means that the totalitarian regime has insider access to
private election data gathered by agencies ‘internal’ to the election. These in-
clude election authorities, telecommunication providers, political parties etc.

1.4. Thesis structure 17

This model is motivated by the observation that usually power changes, bring
control changes for such agencies.

We express these adversarialmodels against a generic voting scheme to provide game-
based definitions of everlasting privacy. Our definitions are the first-ever in the com-
putational model, as the work of [Ara+13] is based on the symbolic setting. We dis-
cuss the implications of our definitions and observe that perfectly hiding commitment
schemes do not offer the same levels of protection as anonymous channels, since they
cannot hide auxiliary communication information, that can be utilized by a powerful
future adversary with insider information. Our approach has the added side effect
that it associates everlasting privacy with contemporary privacy, which is a relation
that, to the best of our knowledge, has not been explored in the literature.

1.3.3 PACBS Voting

We propose a a voting protocol based on the architecture of FOO [FOO92], one of the
most privacy-aware voting schemes in the literature, augmented with an efficient im-
plementation of the coercion resistance properties of JCJ [JCJ05]. In particular, we
take advantage of the fact that in [FOO92], voting occurs in two phases, namely au-
thorization and counting, and use it to overcome the performance bottleneck of JCJ.
We achieve this by using the idea of [GPZ17], i.e. marking the fake credentials during
the authorization phase where voter identification is available. By using the voter ID
the correct credential can be efficiently retrieved and compared to the supplied one
with no need to check all credentials. Of course, during this phase the ballot contents
must be blinded, as they can be correlated with the voter ID. The fact that the cre-
dential is invalid is conveyed to the counting phase by applying PACBS. The counter
receives the ballot and authorization in the form of a blind signature, that contains
a bit that specifies if the vote is valid or under coercion. The perfect blindness prop-
erty of the CBS scheme combined with an anonymous channel enable us to achieve
the everlasting privacy property, without residing to dedicated channels between the
authorities. Our protocol achieves verifiability, coercion resistance and everlasting
privacy with minimal assumptions.

1.4 Thesis structure

This thesis’ topic is how techniques from cryptography can be used to build electronic
voting systems that implement all the features described in this chapter, in a non-
conflicting manner. We introduce approaches to electronic voting by continuously
adding layers one on top of the other. A road map follows:

18 Chapter 1. Introduction

– In chapter 2 we introduce the cryptographic building blocks that are utilized
in the building of PACBS and subsequently in the proposed voting scheme.
We cover basic notions such as computational security assumptions, public-
key encryption schemes, digital signatures, and their variations as well as zero-
knowledge proofs and verifiable shuffles. We examine such primitives under the
lens of voting systems focusing on how they can affect the security of elections.
We review security models and instantiations that we employ in our further
constructions.

– In chapter 3we introduce Publicly Auditable Conditional Blind Signatures (PACBS)
which is the novel cryptographic scheme proposed in this thesis. Our exposi-
tion is based on its evolution from a first version, Conditional Blind Signatures
(CBS), that clearly shows the basic problem this primitive intends to solve but
has certain weaknesses. We define a security model and provide an instantia-
tion and variations. Then we refine the security models and constructions in
order to resolve the problems of CBS. Thus we arrive to PACBS.

– In chapter 4 we focus on formal security models for the most important prop-
erties of voting systems, namely verifiability, privacy, coercion resistance and
everlasting privacy. Each model is accompanied with example voting systems
that aim to justify it. In this chapter we also introduce our game-based defini-
tions for everlasting privacy.

– In chapter 5 we describe the voting system that is built around PACBS by pro-
viding detailed specifications of all voting phases. We also analyze its security
properties by adapting the security models introduced in chapter 4.

– In chapter 6 we conclude this thesis and describe important avenues for future
work.

19

2 Cryptographic Preliminaries

Do not roll your own crypto

Anonymous

In this chapter we present the cryptographic building blocks of the work in this thesis.
We review basic cryptographic primitives such as public-key encryption schemes,
digital signatures, and their variations as well as (non-interactive) zero-knowledge
proofs of knowledge. Our emphasis is both on constructions and security models.
Our exposition follows [KL14; BS20; Sti19; Sch20; Gro14; GPZ15].

2.1 Basic notions

Cryptographic protocols protect the secrecy and integrity of data. All possible at-
tempts to circumvent these properties are carried out by an adversary A, who can be
either passive but curious or active. In the first case A follows the protocol, but tries
to extract extra information from its transcript. In the second case, theA can deviate
from the protocol. The adversary can be computationally restricted, typically only
being able to perform probabilistic polynomial-time computations or he can be com-
putationally unlimited. Cryptographic schemes that defend against the first type of
adversaries offer computational security while the ones that defend against the second
offer information theoretic security. In this thesis we deal with both types of adver-
saries. In the case of schemes offering computational security, the guarantees rest on
computational hardness assumptions which we now detail.

2.1.1 Security Assumptions

Discrete Logarithm (DL) Assumption The discrete logarithm assumption intu-
itively states that it is difficult to retrieve x from y = gx in a q order group G generated
by g. More formally, it is expressed using the game in Algorithm 2.1.

The discrete logarithm assumption states that it should be hard to win the game in
Algorithm 2.1.

20 Chapter 2. Cryptographic Preliminaries

Algorithm 2.1: DLA,Gen

Input : security parameter λ
Output: {0, 1}
(G, g, q)← Gen(1λ)
y←$ G

x ← A(guess, G, g, q, h)
if y = gx then

return 1
else

return 0
end

Definition 2.1: DL Assumption

For all probabilistic polynomial time adversaries A:

Pr[DLA,Gen(λ) = 1] ≤ negl(λ)

Computational Diffie Hellman (CDH) Assumption Informally, the CDH as-
sumption states that given a q-order group G, a generator g and two group elements
ga, gb, the value gab cannot be efficiently computed. More formally:

Algorithm 2.2: CDHA,Gen

Input : security parameter λ
Output: {0, 1}
(G, g, q)← Gen(1λ)
a, b←$ Zq
y ← A(guess, G, g, q, ga, gb)
if y = gab then

return 1
else

return 0
end

Definition 2.2: CDH Assumption

For all probabilistic polynomial time adversaries A:

Pr[CDHA,Gen(λ) = 1] ≤ negl(λ)

DecisionalDiffieHellman (DDH)Assumption TheDDHassumption intuitively
states that triples of group elements (ga, gb, gab) and (ga, gb, gc) of q-order group G

generated by g cannot be efficiently distinguished.

2.1. Basic notions 21

Algorithm 2.3: DDHA,Gen

Input : security parameter λ
Output: {0, 1}
(G, g, q)← Gen(1λ)
b←${0, 1}
a, b, c←$ Zq
if b = 0 then

y ∶= gab

else
y ∶= gc

end
b′ ← A(guess, G, g, q, ga, gb, y)
if b = b′ then

return 1
else

return 0
end

Definition 2.3: DDH Assumption

For all probabilistic polynomial time adversaries A:

Pr[DDHA,Gen(λ) = 1] ≤ 1
2
+ negl(λ)

There are many groups where the Decisional Diffie Hellman Assumption is be-
lieved to hold [Bon98]. One such group is the q-order subgroup of quadratic residues
in Z∗p where q, p = 2q + 1 are primes.

2.1.2 Communication channels

In every voting scheme there must be a way for the voters to communicate with
the various election authorities (EA, RA, TA) and other system components. In the
literature, the following types of channels have been used:

– Broadcast channel with memory: The message is relayed to all agents of the
system and is appended to their state. In the voting literature such a channel
is known as a bulletin board (BB). While the existence of such a channel is
‘folklore’ in the electronic voting literature its security properties were recently
defined [CS14]. Except for the integrity of the contents, they include that this
channel should be append-only, meaning that if an item is posted then it can-
not be deleted or altered. Furthermore, only authorized participants should be
able to post items and everybody should reach consensus about the accepted

22 Chapter 2. Cryptographic Preliminaries

contents. Many real-world systems [Adi08] utilize a shared database and a cor-
responding website; however, this requires trust in the database owner. In order
to distribute the trust into peers,one must solve a consensus problem between
these agents so that everybody agrees that a particular vote, for instance, is ac-
cepted and must be appended to the election log. This problem is difficult to
achieve in the presence of Byzantine (malicious players) and a definitive solu-
tion eludes computer scientists since its introduction in [LSP82] despite many
attempts. A distributed BB was proposed in [Kia+18]. Finally, the invention of
the blockchain [Nak08] and the proliferation of distributed ledgers has caused
many to propose blockchain voting schemes where the BB is implemented us-
ing a blockchain. Despite the technical similarities, such proposals do little to
capture the guarantees that would satisfy the conflicting security properties we
mentioned in section 1.2 [GP19].

– Authenticated channel: The communication infrastructure provides message
integrity and authentication, thus the message contents cannot be changed en
route and the sender is known. It can be implemented using cryptographic prim-
itives such as digital signatures (cf. section 2.5). In this setting, known sender
actually means pseudonymous sender, as he can be associated to a pseudonym,
such as the public key of a digital signature scheme. However, all communica-
tions will be linkable to this pseudonym. A simpler, but not entirely secure, way
to implement an authenticated channel is through a username and a password.

– Secret (Private) channel: The channel hides the contents of the message typ-
ically through the use of a cryptographic scheme.

– Anonymous channel: The channel provides untraceability, so that a message
cannot be monitored through it and linked to a sender. This type of anonymity
is usually called sender anonymity. Other variations can also be defined, regard-
ing the receiver, the contents and the metadata of the communication (e.g. fre-
quency, direction and duration). In the case of electronic voting we are mainly
interested in sender and content anonymity since the receiver is well know (the
EA) and the communication occurs once or in general only a few times. As a
result, the anonymous channel is meant to hide the sender identity and the con-
tents of the message. We are also interested in schemes that protect the real-
world identity of a user or relevant information that can leak it (e.g. network
addresses). As the identity information cannot disappear, the main approach
of realizing such a channel is mixing the identity of a voter with other similar
identities so that it cannot be distinguished. Anonymous channels can be im-
plement physically (i.e. using publicly available computers in libraries, schools,

2.2. Public Key Encryption 23

internet cafes) or using general anonymity primitives such as mixnets (cf. sec-
tion 2.7) and anonymous credentials (cf. subsection 2.5.1) or existing services
such as Tor [DMS04]. Formally, an anonymous channel can be considered an
external factor of uncertainty, so that an A is not sure about the behavior of
voters (e.g. if they abstained). Consequently, its existence is a minimal require-
ment for coercion resistance [JCJ05] and everlasting privacy [GPZ19] and As a
result, it plays an important part in this thesis.

– Untappable channel: The channel is information-theoretically secure against
eavesdropping. This communication mode has the strongest security require-
ments and is usually implemented without any use of technology i.e. in-person,
or using some physical medium (the postal system). As a result, protocols that
require such a channel suffer from scalability problems which in turn means
that it should be used infrequently (i.e. once for many elections). Alternatively,
an untappable channel can be the interaction of the voter using local tamper-
resistant hardware. [Oka97] considers an untappable channel, a channel that is
only used for the exchange of a single message - if an interaction is required,
the respective channel is named a voting booth.

2.2 Public Key Encryption

The protection of the privacy property of electronic voting systems usually involves a
public key encryption scheme. The voters use the public key of the election authority
to encrypt their votes. The EA then decrypts the result.

Definition 2.4: Encryption Scheme

A public key encryption scheme ES is a triple of algorithms (KGen,Enc,Dec)
and three sets K, M, C such that:

– (pk, sk)← ES .KGen(1λ), generates the public and secret key pk, sk ∈K

– c ∶= ES .Encpk(m), encrypts the message m ∈M using pk

– m ∶= ES .Decsk(c), decrypts the ciphertext c ∈ C using sk

Usually the encryption algorithm is randomized, which means that a message can
have many ciphertexts. We will denote such algorithms as Encpk(r, m)where r is the
randomness used. The decryption algorithm is deterministic.

The basic security notion for any encryption scheme is IND-CPA proposed in [GM84],
which intuitively states that the cryptosystem must not leak anything about the ci-
phertext. Formally, it is defined using the experiment in Algorithm 2.4, where m0, m1

are of the same length. Since the encryption key is public, the adversary is free to

24 Chapter 2. Cryptographic Preliminaries

create encryptions of plaintexts of his choosing. We denote this by allowing the ad-
versary access to an encryption oracle.

Algorithm 2.4: IND-CPAA,ES
Input : security parameter λ
Output: {0, 1}
b←${0, 1}
(pk, sk)← ES .KGen(1λ)
(m0, m1)← AES.Encpk(⋅)(issue,pk)
c ← ES .Encpk(mb)
b′ ← AES.Encpk(⋅)(guess,pk, c)
if b = b′ then

return 1
else

return 0
end

Definition 2.5: IND-CPA

A public key encryption scheme ES = (KGen,Enc,Dec) is IND-CPA secure if
for all probabilistic polynomial time adversaries A:

Pr[IND-CPAA,ES(λ) = 1] ≤ 1
2
+ negl(λ)

ElGamal A scheme that has the IND-CPA property and is used throughout this
thesis is the ElGamal cryptosystem proposed in [Gam85]. The key generation al-
gorithm selects a group G of order q generated by g where the DDH assumption
holds, and computes pk = gsk where sk←$ Zq. A message m ∈ G is encrypted as
Encpk(m) = (gr, m ⋅ pkr)where r←$ Zq. To decrypt a ciphertext c = (c1, c2) ∈ G2, the
decryption function computes Decsk(c) = c2 ⋅ c

−sk
1 .

ElGamal encryption requires 2 exponentiations, while decryption requires 1 expo-
nentiation.

Malleability An interesting property of the ElGamal cryptosystem is that it is mul-
tiplicatively homomorphic. This means that if one multiplies (element-wise) two ci-
phertexts (encrypted with the same public key), one gets the encryption of the prod-
uct of the corresponding plaintexts:

Encpk(m1) ⋅Encpk(m2) = (gr1 , m1pk
r1) ⋅ (gr2 , m2pk

r2)

= (gr1+r2 , m1m2 ⋅ pkr1+r2) = Encpk(m1m2)

2.2. Public Key Encryption 25

This implies that a ciphertext can change form (be reencrypted) without using the
secret key.

ReEnc(m1) = Encpk(m1) ⋅Encpk(1) = (gr1+r2 , m1pk
r1+r2) = Encpk(m1)′

In this thesis, we abuse notation when it comes to computations between cipher-
texts. So for instance, we write c1c2 to mean the element-wise multiplication of
two ciphertexts: c1c2 = (c1, c2) ⋅ (c3, c4) = (c1c3, c2c4). By using the same rationale
cs = (c1, c2)s = (cs

1, cs
2) and

c1
c2
= c1c2−1.

The notion of malleability was first examined in [DDN91]. It implies that the ad-
versary can manipulate a target-message by transforming its ciphertext into another
ciphertext that somehow relates to the original. Formally, the property NM-CPA for
relation R can be defined using the game in Algorithm 2.5 from [Bel+98], where c, m
denotes a vector of poly(λ) ciphertexts and plaintexts respectively and Decsk(c) is
the decryption of each item in the vector.

Algorithm 2.5: NM-CPAA,ES
Input : security parameter λ
Output: {0, 1}
b←${0, 1}
(pk, sk)← ES .KGen(1λ)
(m0, m1)← A(issue,pk)
c ← ES .Encpk(mb)
c ← AES.Encpk(⋅)(issue,pk, c, m0, m1, m)
if c ∈ c then

return �
end
m ← Decsk(c)
b′ ← R(mb, m)
if b = b′ then

return 1
else

return 0
end

Definition 2.6: NM-CPA

A public key encryption scheme ES = (KGen,Enc,Dec) is NM-CPA secure if
for all probabilistic polynomial time adversaries A:

Pr[NM-CPAA,ES(λ) = 1] ≤ 1
2
+ negl(λ)

26 Chapter 2. Cryptographic Preliminaries

If ElGamal was additively homomorphic we could employ the homomorphic prop-
erty, to aggregate the votes to compute the tally (sum) of the votes. While this can-
not be done in the original version, a variation has been proposed in [CGS97], where
instead of encrypting a group element, m is selected from Zq and gm is instead en-
crypted, i.e. Encpk(m) = (gr, gm ⋅ pkr). In turn, decryption yields gm which means
that in order to retrieve the plaintext one must computed the discrete logarithm of
gm. While this is assumed to be difficult in the general case, it is feasible for small val-
ues of m. Henceforth we will refer to this variation as exponential or lifted or additive
ElGamal.

This malleability of ElGamal, can also create problems in electronic voting, as reen-
cryption allows one to replay a vote ciphertext, without knowing its contents. The
notion of IND-CPA is not enough to protect against this attack. As a result, a stronger
security notion, IND-CCA, is required.

There are many types of IND-CCA security that can be defined. In this thesis, we
consider adaptive IND-CCA or IND-CCA2 formally defined in Algorithm 2.6 from
[Bel+98]. The difference with Algorithm 2.4 is that the adversary has access to a
decryption oracle that can decrypt all messages of his choice except for the challenge
c. This oracle captures the intuition that A can learn (a function of) the plaintext.

Algorithm 2.6: IND-CCAA,ES
Input : security parameter λ
Output: {0, 1}
b←${0, 1}
(pk, sk)← ES .KGen(1λ)
(m0, m1)← AES.Decsk,ES.Encpk(⋅)(issue,pk)
c ← ES .Encpk(mb)
b′ ← AES.Decsk,ES.Encpk(⋅)(guess,pk, c)
if b = b′ then

return 1
else

return 0
end

Definition 2.7: IND-CCA

A public key encryption scheme ES = (KGen,Enc,Dec) is IND-CCA secure if
for all probabilistic polynomial time adversaries A:

Pr[IND-CCAA,ES(λ) = 1] ≤ 1
2
+ negl(λ)

2.3. Commitment schemes 27

A similar game for NM-CCA can be defined based onAlgorithm 2.5 andAlgorithm 2.6.
Non-malleability implies indistinguishability both for CPA and CCA attacks [DDN91;
Bel+98]. The inverse does not hold, in general. For CPA, one can construct an
NM-CPA secure cryptosystem, by using the Enc+PoK transformation, that is equip-
ping a cryptosystem that is IND-CPA secure with a simulation-sound extractable
NIZK-PoK[BPW12] (cf. section 2.4.1).

Distributed Decryption Homomorphic voting systems have an especially impor-
tant problem. Since the EA can decrypt the result, it can also decrypt each individual
vote, but it must be trusted not to do so. In order to reduce the amount of trust
required, the secret decryption key should not be controlled by a single entity, since
then this entity would have to be completely trusted. For this reason election schemes
with distributed decryption are used.

ElGamal can be made distributed by changing the KGen and Dec functionalities. As-
sume that there are t decryptors that must cooperate in order to decrypt a ciphertext.
In the KGen algorithm each decryptor selects ski ←$ Zq and computes pki ∶= gski .
The encryption public keys is pk = ∏t

i=1 pki - which in turns makes the secret key
sk = ∑t

i=1 gski . In order to decrypt a ciphertext c = (c1, c2), each decryptor computes
and publishes c1i = cski

1 . Everybody computes C1 = ∏n
i=1 c1i and retrieves the cipher-

text by c2 ⋅C−1
1 .

While this version is distributed, it is not resilient, since a single decryptor can block
the process. This problem can be fixed by using threshold secret sharing schemes (cf.
section 2.6)

2.3 Commitment schemes

Encryption schemes deal with the hiding of a message. Furthermore, a ciphertext
computed from a particular message with a specific key and specific randomness is
binding to the message, as the sender cannot find another one that maps to the same
ciphertext (under the same parameters). As a result, they can be used for the user to
commit to messages, in a way that the messages are not changed and not revealed.
The same functionality can be realized by a dedicated commitment scheme, defined
in Definition 2.8.

28 Chapter 2. Cryptographic Preliminaries

Definition 2.8: Commitment scheme

A commitment scheme CS consists of three algorithms (KGen, Commit, Open)
and three sets K, M, C such that:

– ck← KGen(1λ), generates the public commitment key ck ∈K

– (c, o) ∶= Commitck(m), commits to the message m ∈ M using ck and
generates the opening value o

– {0, 1} ∶= Openck(c, o, m), validates if the commitment c ∈ C corresponds
to m ∈M

The security properties of commitment schemes are that they must be hiding and
binding, ensuring intuitively that a message cannot be leaked by the commitment
and that given the commitment the message cannot be changed. The hiding property
can be defined using a game similar to Algorithm 2.4, where o plays the role of the
decryption key, while the binding property is defined in Algorithm 2.7

Algorithm 2.7: BindA,CS Game
Input : security parameter λ
Output: {0, 1}
ck← CS .KGen(1λ)
(m1, m2, o1, o2, c)← A(ck,guess)
if CS .Openck(c, o1, m1) = 1 AND CS .Openck(c, o2, m2) = 1 AND m1 ≠ m2 then

return 1
else

return 0
end

Definition 2.9: Binding

A commitment scheme CS = (KGen, Commit, Open) is binding if for all adver-
saries A:

Pr[BindA,CS(λ) = 1] ≤ negl(λ)

A commitment scheme is computationally binding if the A in Definition 2.9 is prob-
abilistic polynomial time. If this is not the case the commitment scheme is perfectly
binding. Respectively, it can also be computationally or perfectly hiding.

Hash functions Cryptographic hash functions (denoted as H) take as input a bi-
nary string of arbitrary length m ∈ {0, 1}∗ and produce a fixed-length l output h ∈
{0, 1}l in such a way that the following requirement is met [GPZ15]:

– Collision Resistance: It is computationally infeasible to find m1, m2 such that
H(m1) = m2

2.3. Commitment schemes 29

Some weaker requirements that are implied by coercion resistance:

– Preimage Resistance: Given h, it is computationally infeasible to find m such
that h = H(m)

– Second Preimage Resistance: Given h, m1, it is computationally infeasible to
find m2 such that h = H(m1) = H(m2)

We can instantiate a commitment scheme with a cryptographic hash function by set-
ting Commitck(m) = (H(m∣∣ck), ck) and Openck(c, ck, m) ∶= (c = H(m∣∣ck)). The
Preimage Resistance property guarantees computational hiding, while the Collision
Resistance property guarantees binding.

An ideal representation of a hash function is a Random Oracle (RO) [BR93], which is a
black box function that when given the input x (for the first time) returns a uniformly
selected string s. However, when queried again for the same x it consistently returns
the same s. The random oracle hypothesis is stronger than collision resistance, as
every random oracle is collision-resistant.

Pedersen commitments The most popular commitment scheme in the discrete
logarithm setting was proposed in [Ped91]. The key generation algorithm selects a
q order group G where the discrete logarithm assumptions holds and two random
generators ck = (g, y). In order to commit to a message m ∈ G, the sender selects an
element r←$ Zq and computes c = Commitck(m, r) = gmyr. Opening the commitment
simply reveals the randomness r and the message m and checks if c = gmhr.

The Pedersen commitment scheme can be proved to be computationally binding and
perfectly hiding. To see the first property assume that the adversary canwin the game
in Algorithm 2.7 and produce m0, m1 such that c = Commitck(m1, r1) = gm1 hr1 =
gm2 hr2 . The the adversary can compute the discrete logarithm x, of y = gx as x =
m1−m2
r2−r1

which contradicts that in G the discrete logarithm assumption holds. To see
that Pedersen commitment is perfectly hiding note that∀(c, m) ∈ G∃! r = logy(cgm−1) ∶
c = Commitck(m, r) = gmyr. As a result, the sender can always produce pairs m, r that
successfully open the commitment, thus fooling any adversary.

It is very important to note that the commitment key must be randomly (honestly)
generated in order for the binding property to hold. If that is not the case then the
sender can cheat. However, this has not always been the case, resulting in the break-
ing of real-world voting schemes [Cul+19].

30 Chapter 2. Cryptographic Preliminaries

2.4 Zero-Knowledge Proofs of Knowledge

The vote copying vulnerability that occurs because of the malleability of homomor-
phic cryptosystems can be thwarted, if the voter could somehow prove that she has
access to the plaintext corresponding to an encrypted ballot, at the time of casting.
Of course, this proof must not reveal its actual contents. Such a situation exactly
matches the guarantees of a Zero-Knowledge Proof, introduced in [GMR85], where a
prover P uses an interactive protocol to convince a V about the validity of a state-
ment without disclosing anything else. Such a protocol must possess the following
properties:

– Completeness: Honest provers (i.e. whose statement is valid) always convince
honest verifiers.

– Soundness: Dishonest provers (i.e. who hold invalid statements) cannot con-
vince verifiers, except with negligible probability.

– Zero-Knowledge: Dishonest verifiers (i.e. who want to learn more than the va-
lidity of the statement) succeed with negligible probability.

The statement to be proved is formally modelled as a binary relation R = {(prms, w) ∈
P ×W} where P is the set of public inputs available to both P,V and W is the set of
private inputs to the P (the anything else part that must not be revealed by the proof).
From R one can create the NP language LR = {prms ∈ P ∶ ∃w(prms, w) ∈ R}.

So, zero-knowledge proofs can be defined more formally as:

Definition 2.10: Zero knowledge proofs

A zero-knowledge proof for a relation R and a language LR is a protocol
⟨P(w),V(), prms⟩ where (prms, w) ∈ R between a prover and a verifier for
which the following properties hold:

– Completeness: Pr[(�, 1)← ⟨P(w),V(), prms⟩] = 1, ∀(prms, w) ∈ R
– Soundness: Pr[(�, 1)← ⟨P∗(w′),V(), prms⟩] = negl(λ), ∀prms ∉

LR, ∀P∗, w′

– Zero-Knowledge: ∀V∗, ∃PPTSim such that the probability distributions
of ⟨P(w),V(), prms⟩ and ⟨Sim,V∗(), prms⟩ are indistinguishable.

If P∗ in the soundness condition of Definition 2.10 is computationally restricted then
the protocol is called a zero-knowledge argument. If the probability distributions
of ⟨P(w),V(), prms⟩ and ⟨Sim,V∗(), prms⟩ in the zero-knowledge condition of Def-
inition 2.10 are only computationally indistinguishable then the protocol provides
computational zero-knowledge. If the verifier in the same condition is honest then

2.4. Zero-Knowledge Proofs of Knowledge 31

the protocol provides Honest Verifier zero-knowledge (HVZK). Note that in Defini-
tion 2.10 the verifier is convinced for the existence of a witness. Zero-knowledge
proofs that also convince the verifier that the prover knows a particular witness for
the validity of the relation, are called zero-knowledge Proofs of Knowledge or ZKPoK.
They are formalized using an additional algorithm, called the Knowledge extractor
(see Definition 2.11)

2.4.1 Σ-protocols

In this thesis, we extensively use a particular variation of ZKPoK, called Σ-protocols,
which are ZKPoK protocolswith 3 rounds of interactions and an honest verifier. These
3 rounds consist of the following messages:

– Commit: The prover selects a random value and sends a binding commitment
for it to the verifier.

– Challenge: The verifier selects a random challenge.

– Response: Theprover respondswith a combination of thewitness, the committed
value and the challenge.

After the response, the verifier executes a Verify functionality to accept the tran-
script of the protocol. As a result, the protocol transcript consist of triples (com-
mit,challenge,response). More formally [Sch20]:

Definition 2.11: Σ-protocols

A Σ-protocol for relation R is a protocol between a prover P and a verifier V
that consists of three messages (t, c, r) satisfying the following three proper-
ties:

– Completeness: If both P,V follow the protocol then V always accepts.
– Special soundness: There exists an efficient algorithm E (extractor) which

given any transcript of two accepting conversations (t, c, r), (t, c′, r′)
with the same commit message, always produces a witness w such that
(prms, w) ∈ R.

– Special honest-verifier zero-knowledge There exists an efficient algorithm
Sim (simulator) that ∀prms ∈ LR and ∀c ∈ C can produce tran-
scripts (t, c, r) with the same probability distribution as conversations
⟨P(w),V(), prms⟩ between honest prover and verifier for any w ∈W, c ∈
C where (prms, w) ∈ R. Furthermore, if prms ∉ LR, Sim can produce ac-
cepting conversations for a given c ∈ C.

32 Chapter 2. Cryptographic Preliminaries

A Σ-protocol can be made non-interactive by replacing the random challenge of V,
with the output of a random oracle [FS86]. In practice, the random oracle is in-
stantiated with a hash function H. In this thesis, non-interactive Σ-protocols are
denoted as NIZK{(prms), (w) ∶ (prms, w) ∈ R} where w is the private witness of
the P that validates the relation R. As a result, a non-interactive Σ-protocol com-
prises two functionalities: NIZK.Prove(prms, w) = π that generates the proof π and
NIZK.Verify(prms, π) ∈ {0, 1} that outputs if a proof is valid.

Schnorr Σ-protocol

The prototypical Σ-protocol was introduced in [Sch89], and proves knowledge of the
discrete logarithm x of a value y = gx in a group G of order q generated by g. Such
a protocol can be used to prove knowledge of the private key, that corresponds to
a public key in the ElGamal cryptosystem. The Schnorr protocol πS is depicted in
Figure 2.1.

NIZK{(G, g, q, y), (x) ∶ y = gx}

Prover Verifier

t←$ Zq

T ∶= gt

T

c←$ Zq

or in the random oracle model:

c ∶= H(T, y)

c

r ∶= t + cx

r

Accept if and only if:

gr = Tyc

FiguRe 2.1: Proof of knowledge of discrete logarithm (Schnorr protocol)

The proof can be simulated by anyone by pre-selecting the commitment as gry−c. It
requires 1 exponentiation from P and 2 exponentiations from V.

2.4. Zero-Knowledge Proofs of Knowledge 33

The non-interactive version of πS replaces the honestly generated challenge c by
using a call to a random oracle H. As a result, NIZKSchnorr.Prove((G,H, g, q, y), x) =
(c, r) and NIZKSchnorr.Verify((G,H, g, q, y), (c, r)) = (c = H(gry−c, y))

Chaum-Pedersen Σ-protocol

Another Σ-protocol that is extensively used in the electronic voting literature was
proposed in [CP93] and is depicted in Figure 2.2. It can be used to show discrete
logarithm knowledge and equality. The Chaum-Pedersen can be equivalently formu-
lated as a proof that the tuple (g1, g2, y1, y2) is a Diffie Hellman (DH) tuple, since
if y1 = gx

1 AND y2 = gx
2 , then since g2 = ga

1 for some a ∈ Zq: (g1, g2, y1, y2) =
(g1, ga

1, gx
1 , gax

1).

NIZK{(G, q, g1, g2, y1, y2), (x) ∶ y1 = gx
1 AND y2 = gx

2}

Prover Verifier

t←$ Zq

T1 ∶= gt
1

T2 ∶= gt
2

T1, T2

c←$ Zq

or in the random oracle model:

c ∶= H(T1, T2, y1, y2)

c

r ∶= t + cx

r

Accept if and only if:

gr
1 = T1yc

1 AND

gr
2 = T2yc

2

FiguRe 2.2: Proof of knowledge of discrete logarithm equality (Chaum - Ped-
ersen protocol)

The proof requires 2 exponentiations from P and 4 exponentiations from V. It can be
simulated in a similar manner as in section 2.4.1.

34 Chapter 2. Cryptographic Preliminaries

The non-interactive version, πCP outputs again a tuple (c, r) which must verify both
relations:

c = H(gr
1y−c

1 , y1)

c = H(gr
2y−c

2 , y2)

Note that the Chaum-Pedersen protocol is essentially the Schnorr-protocol applied
to the homomorphism f1 ∶ G → (G×G). As a result, the same protocol can be used
to prove that an ElGamal ciphertext is raised to a known x power, by applying the
homomorphism f1 ∶ (G×G)→ (G×G)× (G×G).

Σ-Protocol for Pedersen commitment

The protocol in Figure 2.3 to prove knowledge of the opening of a Pedersen commit-
ment, was proposed as an identification protocol in [Oka92].

NIZK{(G, g, q, y, v), (m, r) ∶ v = gmyr}

Prover Verifier

t1, t2 ←$ Zq

T ∶= gt1 yt2

T

c←$ Zq

or in the random oracle model:

c ∶= H(T, y, x)

e

r1 ∶= t1 + em

r2 ∶= t2 + er

r1, r2

Accept if and only if:

gr1 yr2 = Tvc

FiguRe 2.3: Proof of knowledge of Pedersen commitment openings

The proof requires 2 exponentiations from P and 3 from V. The non interactive ver-
sion πP outputs again a tuple (c, r1, r2)whichmust verify the relation: c = H(gr1yr2v−c, y, c).

2.4. Zero-Knowledge Proofs of Knowledge 35

Composition of Σ-protocols

Actually the protocol in Figure 2.2 is a special case of Σ-protocol composition. In
[CDS94] a complete framework is provided in order to combines Σ-protocol using
disjunction, conjunction, equality and more. The disjunction case (or simply OR-
PROOF) is particularly tricky since the prover must prove knowledge of any one wit-
ness in a possible set, while knowing only one. In order for the combined proof to be
valid, P must combine the actual proof with ‘fake’ proofs for witnesses that he does
not know. In order to achieve this the simulator of Definition 2.11 will be used for
the fake proofs, as we described in the case of the Schnorr protocol in section 2.4.1.
The disjunction of two Schnorr protocols is depicted in Figure 2.4.

NIZK{(G, g, q, y1, y2), (x) ∶ y1 = gx1 OR y2 = gx2}

Prover Verifier

t1, t2, c2 ←$ Zq

T1 ∶= gt1

T2 ∶= y−c2
2 gt2

T1, T2

c←$ Zq

or in the random oracle model:

c ∶= H(T1, T2, y1, y2)

c

c1 = c − c2

r1 ∶= t1 + c1x1

r2 ∶= t2

r1, r2

Accept if and only if:

gr1 = T1yc
1 AND

gr2 = T2yc
2

FiguRe 2.4: Disjunction of Schnorr Proofs

The proof requires 3 exponentiations from P and 4 exponentiations from V.

36 Chapter 2. Cryptographic Preliminaries

The non-interactive version πORS is a tuple (c, r1, r2) that satisfies the relations:

c = H(gr1y−c
1 , y1)

c = H(gr2y−c
2 , y2)

Applications of Σ-protocols to electronic voting

Using these tools one can construct many useful Σ-protocols. In this thesis we utilize
the following:

– Proof of correct ElGamal encryption πEnc of a known message m in ciphertext
c, i.e.
NIZK{(G, g, q,pk, c, m), (r) ∶ c = Encpk(m, r)}.

If c = (c1, c2) = Encpk(m, r) = (gr, mpkr) then (c1, c2m−1) = (gr,pkr). Proving
correct encryption of a message reduces to proving that (g,pk, c1, c2m−1) is a
DH tuple, which can be done using the πCP of Figure 2.2.

– Proof πReEnc that an ElGamal ciphertext c′ is a reencryption of c i.e.
NIZK{(G, g, q,pk, c, c′), (r′) ∶ c′ = ReEncpk(m, r′)}.

If c = Encpk(m, r) = (gr, mpkr) and c′ = Encpk(m, r + r′) = (gr+r′ , mpkr+r′) then
c′c−1 = (gr′ ,pkr′) which reduces to πCP proving that (g,pk, gr′,pkr′) is a DH
tuple (Figure 2.2).

– Proof of correct decryption πDec of an ElGamal ciphertext c = (c1, c2) to a
message m. In order for the decryption to be correct, the correct private key
must be known and used by the prover, i.e. gsk = pk and c2 = mcsk1 . This
corresponds to the composition of two πS or equivalently to πCP (Figure 2.2):
NIZK{(G, g, q,pk, c, m), (sk) ∶ gsk = pk AND c2m−1 = csk1 }

– Proof of knowledge πm of plaintext encrypted in a lifted - ElGamal ciphertext
c. To be more specific: NIZK{(G, g, q,pk, c), (m, r) ∶ c′ = Encpk(gm, r)}. This
proof is a combination of the Schnorr Σ-protocol and the Σ-protocol of the Ped-
ersen commitment openings. We can come up with the same proof by applying
the general pattern of [Gro05] as described in Figure 2.5.

2.4. Zero-Knowledge Proofs of Knowledge 37

NIZK{(G, g,pk, c), (m, r) ∶ c = Encpk(gm, r)}

Prover Verifier

m1 ←$ M, r1 ←$ Zq

c1 ∶= Encpk(gm1 , r1)

c1

e←$ Zq

or in the random oracle model:

e ∶= H(c, c1)

e

m′1 ∶= m1 + em

r′1 ∶= r1 + er

m′1, r′1

Accept if and only if:

Encpk(gm′1 , r′1) = c1 ⋅ ce

FiguRe 2.5: Proof of knowledge of plaintext in lifted ElGamal ciphertext

Σ-protocol disjunction is of particular interest in the electronic voting scenario case,
since it can be used to prove vote validity, i.e that an encrypted vote belongs to a set
of valid options. For instance, if the possible candidates are m1, m2, m3 the voter must
prove that her encrypted ballot contains an encryption of m1 OR m2 OR m3. This task
can be performed by using a disjunction of 3 proofs of correct ElGamal encryption
πEnc for m1, m2, m3 respectively. Using this technique, the proof size is proportional
to the number of elements in the set, which is impractical. Many techniques can
improve it DBLP:conf/acns/Groth05,Camenisch2008.

Use of strong Fiat-Shamir heuristic A final note concerns non-interactive Σ-
protocols utilizing the Fiat-Shamir heuristic. [BPW12] notes two variants of the
heuristic, as far as the challenge step is concerned. In particular, in the strong vari-
ant, the challenge is computed on both the commitment and the full statement to be
proved. On the other hand in the weak variant only the commitment is taken into ac-
count. If the prover is malicious and can adaptively changes the statement, the weak
variant can yield unsound proofs. Recall, that use of the strong Fiat-Shamir heuris-
tic can create NM-CPA secure schemes from IND-CPA secure schemes accompanied
with NIZKPoK [BPW12].

38 Chapter 2. Cryptographic Preliminaries

To better illustrate the weakness, assume that a malicious prover P∗ is allowed to
adaptively select y2 in = NIZK{(G, q, g1, g2, y1, y2), (x) ∶ y1 = gx

1 AND
, y2 = gx

2} of Figure 2.2.

– P∗ selects a, b←$ Zq and commits to (T1, T2) = (ga
1, gb

1)

– The challenge is computed only as c = H(T1, T2), without including y1, y2.

– The response is computed as r = a + cx

– The relation gr
1 = T1yc

1 verifies correctly.

– P∗ selects y2 = (gr
2T−1

2)c
−1

– Note that the relation gr
2 = T2yc

2 verifies correctly, despite the fact that with
overwhelming probability x = logg1y1 ≠ logg2y2.

This weakness has been actively exploited even in voting systems [BPW12; Cul+19],
causing breaks in verifiability and privacy. To bypass thisweakness all non-interactive
versions of Σ-protocols should include the complete public input and the statement to
be proved. In the exposition in the following chapters, we omit for better readability,
but we note that a secure implementation must take this ‘detail’ into account.

2.5 Digital Signatures

Encryption schemes deal with the secrecy of a message. Digital signatures, initially
proposed in [DH76] deal with the authenticity of the message, i.e. that a message
was sent by the claimed sender and that it was not altered in transit. Digital signa-
tures, can be constructed out of public key cryptosystems by using the private key for
signing sk and the public key for verifying (vk), also enabling the public verifiability
of these properties. However, as we shall see in subsection 2.5.2, the visibility of the
verifiability operations can be tweaked, giving access to many interesting and useful
schemes.

Definition 2.12: Digital Signature Scheme

A signature scheme DS is a triple of algorithms (KGen, Sign, Verify) and three
sets K, M, S such that:

– (vk, sk) ← DS .KGen(1λ), generates the verification and signing key
vk, sk ∈K.

– σ ∶= DS .Signsk(m), signs the message m ∈M using sk.
– {0, 1} ∶= DS .Verifyvk(m, σ), verifies the signature σ on message m, out-

putting 1 if and only if the verification is successful.

2.5. Digital Signatures 39

For the scheme to make sense, correctness must hold:

∀m ∈M, vk, sk ∈K

DS .Verifyvk(m,DS .Signsk(m)) = 1

The main security property of digital signatures is unforgeability, meaning that only
the signer S (identified by the possession of the signing key) can generate valid signa-
tures verified by the corresponding verification key. Since the signatures are public,
the aspiring forger can utilize previously signed messages. This is formalized in the
game Algorithm 2.8, where the forger can also generate his own messages.

Algorithm 2.8: ForgeA,DS
Input : security parameter λ
Output: {0, 1}
((sk, vk)← DS .KGen(1λ)
{(mi, σi)}

poly(λ)
i=1 ← ADS.Signsk(issue,pk)

(m, σ)← A(guess)
if DS .Verify(m, σ) = 1 AND ∀i m ≠ mi then

return 1
else

return 0
end

Definition 2.13: Unforgeability

A signature scheme DS is (existentially) unforgeable (under a chosen message
attack) if for every PPT A there is a negligible function of λ where:

Pr[ForgeA,DS(λ) = 1] ≤ negl(λ)

Okamoto-Schnorr Signatures Signature schemes can be created from Σ-protocols,
by applying the Fiat-Shamir heuristic [FS86]. Instead of supplying only the commit-
ment to the hash function, the signer provides themessage to be signed and the public
key. In essence, the signature is a proof of knowledge of the private key and the mes-
sage.

The Schnorr signature scheme derives directly from the Schnorr Σ-protocol [Sch91].

This thesis proposes two signature schemes that are extensions of the scheme pro-
posed in [Oka92] also known as Okamoto-Schnorr signature scheme. The function-
ality is depicted in Figure 2.7.

40 Chapter 2. Cryptographic Preliminaries

Common input: random primes p, q∣(p − 1), g ∈ q-order subgroup G of Zp
U ’s private input: m ∈M

S’s private input : s ∈Zq
S’ public verification key: v = g−s mod p
Commitment Phase. The Signer:

– Picks r←$ Zq;

– Computes x ∶= gr mod p;

– Sends x to the user.

Challenge Phase. The User:

– Set e ∶= H(m, x, v)

– Sends e to the signer.

Signing Phase. The Signer:

– Computes y ∶= r + es mod q;

– Outputs signature σ ∶= (e, y).

(Public) Verification Phase.

– Accept if and only if e = H(m, gyve, v)

FiguRe 2.6: Schnorr Signatures

Common input: random primes p, q∣(p − 1), g1, g2 elements of q-order subgroup G of Zp
U ’s private input: m ∈M

S’s private input : (s1, s2) ∈Zq ×Zq
S’ public verification key: v = g−s1

1 g−s2
2 mod p

Commitment Phase. The Signer:

– Picks r1, r2 ←$ Zq;

– Computes x ∶= gr1
1 gr2

2 mod p;

– Sends x to the user.

Challenge Phase. The User:

– Set e ∶= H(m, x, v)

– Sends e to the signer.

Signing Phase. The Signer:

– Computes y1 ∶= r1 + es1 mod q, y2 ∶= r2 + es2 mod q;

– Outputs signature σ ∶= (x, e, y1, y2).

(Public) Verification Phase.

– Accept if and only if x = gy1
1 gy2

2 ve (mod p)

FiguRe 2.7: Okamoto-Schnorr Signatures

2.5. Digital Signatures 41

The security of this scheme has been studied in [PS00]. Performance-wise the scheme
requires 2 exponentiations for the signer and 3 for the verifier.

2.5.1 Blind Signatures

In most signature schemes the signer has access to the message to be signed. In
[Cha83], David Chaum proposed a new type of digital signature, called a blind signa-
ture, which allows a signer to sign messages without having access to their contents,
thus protecting the privacy of the message contents. The user first blinds the mes-
sage and the signer signs it in this blinded form. The user subsequently unblinds the
signature, and retrieves a signature for the plain message. This unblinded signature
does not differ in anyway from a normal signature. Note that the signer essentially
creates an intermediate representation of the final signature, who is then ‘forged’ by
the user during unblinding to create the final signature. The motivating application,
behind this primitive is anonymous centralized electronic cash. A bank blindly signs
tokens created by the user to vouch for her capacity to spend a coin of particular
value. Blinding protects the user, as it stops the bank from linking signing requests
with signature verifications. Furthermore, the fact that the signer is impervious to
the contents of the vote, motivates its use for electronic voting as well. Here the elec-
tion authority authorizes the ballot submitted by the user without having access to
its contents.

Blind signatures inherit the unforgeability security property from plain digital sig-
natures. However, they must also express the signer should not be able to retrieve
the signed message (in the voting scenario) or associate signatures with protocol ex-
ecutions (in the e-cash scenario). As a result, their security also depends on having
blindness or unlinkability, formally defined in the game in Algorithm 2.9 which is
adapted from [SU12]. The goal of the adversary is to learn (a function of) the mes-
sage to be signed, which in blind signatures is a secret input of the user. As a result,
the adversary sets up the keys to his advantage and selects two messages. The user
executes the signing protocol with these messages in random order. In the end the
adversary must guess which message was signed first and which second, in effect
breaking the blindness property. Note that the signing is not simply an algorithm
executed by the signer, but an interactive protocol executed between the signer and
the user, where the output (i.e. the signature) comes from the user.

Definition 2.14

A blind signature scheme Π is perfectly blind if for every (unbounded) A:

Pr[BlindExpA,Π(λ) = 1] = 1
2

42 Chapter 2. Cryptographic Preliminaries

Algorithm 2.9: BlindExpA,Π

Input : security parameter λ
Output: {0, 1}
(vk, sk, m0, m1)← A(find, 1λ)
b←${0, 1}
b′←${0, 1}
σb ← Sign⟨A(issue, sk),U(mb), (pk)⟩
σ1−b ← Sign⟨A(issue, sk),U(m1−b), (pk)⟩
if Verify(mb, σb) = 1 AND Verify(m1−b, σ1−b) = 1 then

b′ ← A(guess, σ0, σ1)
end
if b = b′ then

return 1
else

return 0
end

The unblinding used to produce the signature has an important complication regard-
ing unforgeability: The final signature actually comes from the user now, and not the
signer. As noted in [PS96] this breaks the standard definition of forgery as described
in Algorithm 2.8: The user herself creates the signature from an ‘intermediate’ repre-
sentation provided by the signer. As a result, the standard unforgeability definitions
do not make sense in this case. Instead, unforgeability is defined as the inability of
a malicious user to create more signatures than the number of interactions with the
signer, in direct reference to the e-cash and e-voting scenarios: the user cannot make
more coins (ballots) than the bank (election authority) approved. This interpretation
of unforgeability has been formalized in [PS00] with the notion of (l, l + 1)-Forgery,
where for any integer l the forgerAmust produce l + 1 valid signatures after at most
l interactions with the signer S. One-More Forgery is a (l, l + 1)-Forgery, where l is
polynomially bounded, while Strong One-More Forgery is a (l, l + 1)-Forgery, where l
is polylogarithmically bounded.

Algorithm 2.10: OneMoreForgeA,Π

Input : security parameter λ
Output: {0, 1}
(sk, vk)← KGen(1λ)
{(mi, σi)}l+1

i=1 ← Sign⟨S(sk),A(⋅), (pk)⟩poly(λ)i=1
if (∀i, j with i ≠ j⇒ mi ≠ mj) AND (∀i Verify(prms,pk, skV, mi, σi) = 1) AND k ≤ l
then

return 1
else

return 0
end

2.5. Digital Signatures 43

Definition 2.15

A blind signature scheme Π is one more unforgeable if for every PPT A there
is a negligible function of λ where:

Pr[OneMoreForgeA,Π(λ) = 1] ≤ negl(λ)

The security of blind signatures has been studied in the random oracle model in
[PS96]. Their resultswere later refined in [PS00] and revisited in [SU12]. A complexity-
based approach was presented in [JLO97], however the schemes analyzed are deemed
largely theoretical.

Our novel primitives CBS (section 3.1) and PACBS (section 3.1) are direct extensions of
the Okamoto - Schnorr (OS) blind signature scheme [Oka92], presented in Figure 2.8.

Common input: random primes p, q∣(p − 1), g1, g2 elements of q-order subgroup G of Zp
U ’s private input: m ∈M

S’s private input : (s1, s2) ∈Zq ×Zq, b ∈ {0, 1}
S’ public verification key: v = g−s1

1 g−s2
2 mod p

Commitment Phase. The Signer:

– Picks r1, r2 ←$ Zq;

– Computes x ∶= gr1
1 gr2

2 mod p;

– Sends x to the user.

Blinding Phase. The User:

– Selects blinding factors u1, u2, d←$ Zq;

– Computes x∗ ∶= xgu1
1 gu2

2 vd mod p, e∗ ∶= H(m, x∗), e ∶= e∗ − d mod q;

– Sends e to the signer.

Signing Phase. The Signer:

– Computes y1 ∶= r1 + es1 mod q, y2 ∶= r2 + es2 mod q;

– Outputs blind signature β ∶= (x, e, y1, y2).

Unblinding Phase. The User:

– Unblinds by computing σ1 ∶= y1 + u1 and σ2 ∶= y2 + u2;

– Outputs σ ∶= (x∗, e∗, σ1, σ2).

(Public) Verification Phase.

– Check if x∗ = gσ1
1 gσ2

2 ve∗

FiguRe 2.8: Okamoto-Schnorr Blind Signatures

44 Chapter 2. Cryptographic Preliminaries

2.5.2 Designated Verifier Signatures

Blind signatures restrict access to the message being signed in order to protect the
privacy of the user. Another variation of digital signatures, Designated Verifier Sig-
natures (DVS) restrict their verifiability, for a similar reason. DVS originate from
designated verifier proofs, proposed in [JSI96]. These proofs are only verifiable by
an entity specified by the prover during their creation. From their inception, one of
their possible uses involved coercion resistance electronic voting; whether the vote is
counted would not be a publicly available fact, so that a coercer could check it. Only
the voter would be convinced about the validity of the vote or a credential.

More concretely, assume that the prover wants to prove the statement R(prms, w)
where w is a private input known toP. Tomake the proof designated by a specific ver-
ifier, the statement to be proved becomesR(prms, w)OR I know the private key of the verifier.
When the verifier receives the proof, she can be convinced of R(prms, w), assuming
that her private key has not leaked. However, a third party is not sure whether he is
viewing the original proof or a proof simulated by the verifier.

More formally [LWB05]:

Definition 2.16: Designated Verifier Signatures

A designate verifier signature scheme DVS is a tuple of algorithms
(KGen, Sign, Sim, Verify) and three sets K, M, S such that:

– (vkS, skS, vkV, skV) ← DVS .KGen(1λ), generates the verification and
signing key for the signer and the designated verifier respectively.

– σ ∶= DVS .SignskS,vkV
(m), signs the message m ∈M using skS. Note that

the algorithm is parameterized with the public key of the verifier.
– σ ∶= DVS .SimvkS,skV(m), simulates a signature for the message m ∈ M

using skV. Note that the algorithm is parameterized with the public key
of the signer.

– {0, 1} ∶= DVS .VerifyvkS,vkV
(m, σ), verifies the signature σ on message

m, outputting 1 if and only if the verification is successful.

Correctness implies that:

∀m ∈M,pkS, skS, vkV, skV ∈K

DVS .VerifyvkS,vkV
(m,DVS .SignskS,vkV

(m)) = 1 AND

DVS .VerifyvkS,vkV
(m,DVS .SignvkS,skV

(m)) = 1

According to the game in Algorithm 2.8, a simulated designated verifier signature is
a forgery since it is not created using the private key of the signer. However, this

2.5. Digital Signatures 45

forgery is useful in DVS, so the game in Algorithm 2.8 must be updated, so that the
forger has access to the simulation functionality:

Algorithm 2.11: ForgeA,DVS
Input : security parameter λ
Output: {0, 1}
(vkS, skS, vkV, skV)← DVS .KGen(1λ)
{(mi, σi)}

poly(λ)
i=1 ← ADVS.SignskS,vkV

,DVS.SignvkS,skV (issue, vkS, vkV)
(m, σ)← A(guess)
if DVS .Verify(m, σ) = 1 AND ∀i m ≠ mi then

return 1
else

return 0
end

Definition 2.17: Unforgeability

A signature scheme DVS is (existentially) unforgeable (under a chosen mes-
sage attack) if for every PPT A there is a negligible function of λ where:

Pr[ForgeA,DVS(λ) = 1] ≤ negl(λ)

In electronic voting, designated verifier signatures have been used is schemes that
provide receipt-freeness and coercion resistance. Their main use is that they provide
deniability through their simulatability. All voters possess key pairs and when the
EA wants to provide proof that a credential or ballot is valid, it includes the public
key of the voter inside. As a result, when a coercer demands proof that the provided
ballot is valid the voters simulates it using her private key.

46 Chapter 2. Cryptographic Preliminaries

δReEnc = DVS{(G, g, q, y, c, c′,pkV,pkEA), (r) ∶ c′ = (c′1, c′2) = (grc1,pkrc2) = ReEnc(c)}

Prover (r) Verifier (skV)

t1, t2, t3 ←$ Zq

T1 ∶= gt1 , T2 ∶= pkt1 , T3 = gt2pkt3
V

T1, T2, T3

c←$ Zq

or in the random oracle model:

c ∶= H(T1, T2, T3,pkEA,pkV)

c

s ∶= t1 + r(c + t2)

s, t2, t3

Accept if and only if:

T3 = gt2pkt3
V

gs = (c′1/c1)c+t2 T1

pks
EA = (c

′
2/c2)c+t2 T2

FiguRe 2.9: Designated verifier proof of correct reencryption from [HS00]

A designated verifier proof of correct reencryption δReEnc (i.e. a variation of πReEnc),
that is used in voting systems of interest [CCM08] in this thesis was proposed in
[HS00] and is depicted in Figure 2.9. If the voter has kept skV secret, then he can fake
the value T3 by selecting t′2

′, t′3: t2 + skVt3 = t′2 + skVt′3 to provide a different ballot to
the coercer (vote buyer) that satisfies δReEnc.

In strong designated verifier signatures, also defined in [JSI96], verifiability is not
public, and the private key of the verifier, must be used for verification. The simplest
way to create them is to encrypt the signature with the public key of the verifier. In
the proposed voting scheme, we use strong designated verifier signature in a ’reverse’
manner: The voter embeds the public key of the EA in the ballot, to allow the tallier
to check if a credential (signature) is valid, without the coercer being able to do so.

2.6. Threshold Secret Sharing 47

2.6 Threshold Secret Sharing

Knowledge/possession of the secret key in asymmetric cryptosystems yields signifi-
cant power, as the holder can read encrypted messages or create signatures. In elec-
tronic voting, this can have the effect that the election authority can have access to
the plain contents of an encrypted ballot. Combined with available identity informa-
tion on the voters, this would mean that the election authority is aware of the voter
- vote correspondence. Consequently, the EA must be trusted not to make use of
this power. In order to reduce the required trust and the likelihood of such a sce-
nario occurring, one could share the secret key between different agents so that the
execution of the signing-decryption operations requires the cooperation of either all
or a subset of them. In fact, by selecting agents with conflicting interests one can
insert game-theoretic dynamics into the situation, thus making deviating behavior
more difficult. This is achieved with the use of secret sharing schemes that give rise
to threshold cryptosystems.

A secret sharing scheme, where all participantsmust cooperate to decrypt an ElGamal
ciphertext was presented in section 2.2. Nowwe relax the participation requirements.

In a (t, n) threshold secret sharing scheme, an agent called the dealer has a secret s
that wants to share between n participants called the players in such a way that at
least t of them can reconstruct it, but no less.

The prototypical secret sharing scheme was presented in [Sha79] and is based on
polynomial interpolation using Lagrange coefficients for sharing of element of s in
Fp where p is a prime. The idea of the scheme is that a t − 1 degree polynomial F
can be uniquely reconstructed using t points {(xi, p(xi))}t

i=1, as there are infinite t
degree polynomials that contain these t points but a single t − 1 degree polynomial.
Let F(x) = ∑t

i=1 yi∏t
j=1,j≠i

x−xj
xi−xj

As a result, in order to share a secret s:

– The dealer chooses a random polynomial of degree t − 1 so that F(0) = s

– Distributes n pairs {(xi, F(xi))}n
i=1, xi ≠ 0

– t players can reconstruct the polynomial (and recover s), but t − 1 players can-
not. In fact, we are not interested in reconstructing the polynomial but only in
retrieving F(0)

– Each player i computes the Lagrange coefficients λi(0) =∏t
j=1,j≠i

−xj
xi−xj

mod p

– t players compute F(0) = ∑t
i=1 F(xi)λi(0)mod p

48 Chapter 2. Cryptographic Preliminaries

The scheme above assumes that all the players are honest. However, this might not
always be the case [Ped91]:

– The dealer might give out incorrect shares to all or part of the players. As a
result, the secret will not be reconstructed. To deal with this threat the players
must be able to validate them.

– The player might not present their correct shares during reconstruction. To deal
with this threat the shares need to be checkable by everybody.

These issues are dealt by verifiable secret sharing which combines secret sharing with
Non-Interactive zero-knowledge Proofs of Knowledge and commitment schemes [Fel87;
Sch99].

2.6.1 Threshold cryptosystems

Secret sharing schemes can be combined into cryptosystems to split the decryption
and signing functions in order to reduce the power of a single authority. Note that
this should not be done naively, by reconstructing the secret key, since this will be
useful only for a single encryption/signature, as the participants will afterwards learn
the key. In fact, the sharing function needs to be embedded into the signing and
decryption functions.

As an example, consider the threshold version of the ElGamal cryptosystem (sec-
tion 2.2), where the key generation functionality KGen is modified, so that it outputs
shares of the private key sk except the public key pk. This shares are distributed to the
authorities that will have power of decryption. The encryption function takes place
without change.

Decryption of a ciphertext c = (c1, c2) proceeds in two stages:

– Each player Pi creates a decryption factor using its share of sk by computing:
si = c1

F(xi)

– t ‘decrypted’ shares are combined by:

∏
i

sλi(0)
i =∏

i
si

F(xi)λi(0) =

c1
∑i F(xi)(i)λi(0)) = c1

F(0) = csk1

– Decryption follows by computing c2 ⋅ c
−sk
1

2.6. Threshold Secret Sharing 49

2.6.2 Plaintext Equivalence Tests

A Plaintext Equivalence Test, henceforth referred to as PET , is a cryptographic prim-
itive introduced in [JJ00] which aims to convince a set of t participants that two ci-
phertexts indeed encrypt the same plaintext. It is meant to operate in a distributed
setting, which means that the decryption key is shared among the participants. To
avoid cheating [JJ00] assumes that at least one of the participants must be honest, i.e.
truthfully follow the protocol. However, some part of the secret key must be provided
to the functionality as the PET would otherwise violate the IND-CPA security prop-
erty.

Definition 2.18: PET

A Plaintext Equivalence Test is a cryptographic protocol such that:

PET (Encpk(m1),Encpk(m2)) = 1⇔ m1 = m2

In the case of ElGamal encrypted ciphertexts, the inputs to the protocol are two tu-
ples c = (c1, c2), c′ = (c′1, c′2) and the output is true if they encrypt the same plain-
text and false otherwise. The main idea employed is that the equivalent ciphertext
cPET = (c1

c′1
, c2

c′2
) will be the encryption of 1 if the ciphertexts encrypt the same plain-

text. Otherwise it will decrypt to a random integer. ThePET functionality is depicted
in Algorithm 2.12:

All players blind cPET and create the proof πi1 that they know the blinding factor.
Then all players create a common blinded ciphertext and a decryption factor ψi along
with a proof of knowledge of the private key share. Then everybody pools together
the values of ψi and decrypt the ciphertext. If the plaintext is 1, it means that c, c′

encrypted the samemessage. Otherwise, decryption returns a randomgroup element,
which means that the test is unsuccessful.

Each participant in PET performs 6 exponentiations to create the values (3 for the
values of the algorithms and for 3 the proofs). The verification of all the generated
proofs requires 6t exponentiations.

[MPT20] note that if all players collude then they can falsely prove either that two
ciphertexts do encrypt the same plaintext (when they do not) or that two ciphertexts
do not encrypt the same plaintext (when in fact they do).

As a simple way to cheat in the former case consider the following simple scenario:
All colluding players agree to zi such that ∑i zi = 0. As a result, in Algorithm 2.12
ϕ = (1, 1), so a trivial encryption of 1 is presented, which is valid even if m1 ≠ m2.

50 Chapter 2. Cryptographic Preliminaries

Algorithm 2.12: PET functionality for ElGamal ciphertexts
Input : G, g, q,

pki such that: ∏t
i pki = pk,

c = (c1, c2), c′ = (c′1, c′2) encrypted under pk
Private Input: ski ∈Zq such that ∑t

i ski = sk
Output : {0, 1}
cPET ∶= c

c′ = (
c1
c′1

, c2
c′2
)

zi ←$ Zq
ci,PET ∶= czi

PET = (ci1, ci2) = ((c1
c′1
)zi , (c2

c′2
)zi)

πi1 ← NIZK{(G, g, q,pk, cPET , ci,PET), (zi) ∶ ci,PET = czi
PET }

Publish (ci,PET , πi1)
Wait until all players have posted
Verify the proofs πi1 posted from other players

ϕ ∶=∏t
i ci,PET = (∏i c1i,∏i c2i) = (c∑i zi

1i , c∑i zi
2i) = (x, y)

ψi ∶= xski

πi2 ← NIZK{(G, g, q,pk, ψi), (ski) ∶ ψi = xski}

Publish (ψi, πi2)
Wait until all players have posted
Verify the proofs πi2 posted from other players

ρ ∶= y/∏t
i ψi

if ρ = 1 then
return 1

else
return 0

end

2.7. Verifiable Shuffles 51

The probability that this happens by accident is negligible. In order to thwart this
attack, a check must be added so that if∏i ci,PET = (1, 1) then the protocol aborts.

A more subtle way from [MPT20] to cheat and prove that m1 = m2 utilizes the attack
against the Fiat-Shamir heuristic from [BPW12], where the full statement has not
been included in the call to the random oracle (cf. section 2.4.1). This allows the
ciphertexts to be selected after the proof is created, in a way that make the proof
hold, regardless of whether the plaintexts are equivalent.

There are two ways to fix this vulnerability which has been found to affect most
electronic voting systems that use fake credentials to achieve coercion resistance
[MPT20]. The first way, makes the assumption that there is at least one honest player.
However, if applied to electronic voting, it is in conflict with the universal verifiabil-
ity property, where the EA is assumed to be corrupted. In order to deal with this
problem, it must be ensured that the prover creates the proof after the ciphertexts
have been selected. To do this both ciphertexts must be present in the call to the hash
function implementing the Fiat-Shamir random oracle.

Whenever we use the PET primitive in this thesis, we refer to the version with the
strong Fiat-Shamir transform. As a result, the distributed equivalence test can take
place with all members corrupted, and provide a plaintext equivalence proof.

2.7 Verifiable Shuffles

In section 1.2 we remarked that there can be twoways to implement the ballot secrecy
requirement. The one involves the secrecy of the ballot contents, implemented by an
IND-CPA secure cryptosystem such as ElGamal. However, there is another possible
solution: to disassociate the ballot contents from the voter identity, thus achieving
vote unlinkability. In more detail, the users submit their votes to an anonymizing
functionality and they emerge transformed without any identity information, in ran-
dom order, stripping away network addresses and timing data.

However, since such a functionality directly processes ballots, there is much room
for adversarial manipulation. For instance, ballots could be dropped or replaced with
altered contents. As a result, an anonymizing functionality should also provide evi-
dence that its operations followed the protocol correctly. We shall call such a func-
tionality a verifiable shuffle or a verifiable mixnet 1.

Verifiable shuffles have been used inmany politically binding elections (e.g. in Switzer-
land as described in [Cul+19]). Formally, they are defined in Definition 2.19 adapted
from [Boy+18]:

1Typically a mixnet is a sequence of shuffles, but we use refer to a shuffle as a collective functionality

52 Chapter 2. Cryptographic Preliminaries

Definition 2.19: Verifiable shuffle

A verifiable shuffle or mix is a tuple of algorithms Shuffle =
(Gen, Submit , Mix , Verify) such that:

– (pk, sk)← Shuffle .Gen(1λ), generates the public and secret keys.
– ci ← Shuffle .Submit pk(mi) is an algorithm, parameterized by the pub-

lic key, that allows the users to input their messages. The vector of mes-
sages is denoted m⃗ = (mi)ni=1. After all inputs are submitted the output
is produced denoted c = (ci)ni=1

– (m, πShuffle)← Shuffle .Mix (c) is an algorithm that performs the actual
shuffling of the n submitted messages and outputs the same underlying
messages in a different form and order accompanied by a proof of correct
operation.

– {0, 1} ← Shuffle .Verify(πMix) checks the proof of correct operation of
the functionality.

Internally, Shuffle uses an encryption scheme and a proof of knowledge system in
order to implement and generate the Shuffle .Mix , πMix respectively. In particular
Submit pk(mi) = Encpk(mi, ri) where the randomness ri is selected by the user. The
Verify functionality may also provide evidence that pinpoint the culprit in the case of
malicious behavior, thus providing accountability as well. For instance, it can be used
to prove that a particular sender submitted an invalid ciphertext (e.g by duplicating
another already submitted input) or that a specific mix server did not follow the spec-
ification of the Mix functionality. The various types of mixnets are differentiated by
how they perform the Shuffle .Mix functionality and how they create the πMix .

Shuffles have a 40 year research history in the literature, during which they have
been proposed as a general uses anonymity primitive with application in anonymous
browsing, email, auctions, electronic voting and more. They originally appear in
[Cha81]. This initial version does not include the Shuffle .Verify functionality and
πMix nor does it take advantage of encryption malleability. The Shuffle .Mix func-
tionality is distributed into m entities called mix servers each equipped with its own
key pair (pk, sk)mj=1. Behind the scenes the Chaumian mixnet uses the RSA cryptosys-
tem [RSA78] where Shuffle .Submit pk(mi) = {Encpkj

}1
j=m(mi), that is, the users en-

crypt their inputs with the public keys of the mix servers in reverse order. During
processing each mix server, sequentially batch processes all ciphertexts, by removing
each layer of encryption using its private key after applying the random permutation.
In the end the mixnet outputs the original plaintexts in random order via the last mix
server. The communication between the mix servers takes place using a BB (broad-
cast channel with memory), implemented in practice with a central repository. As a

2.7. Verifiable Shuffles 53

result, these first generation mixnets are also called Decryption mixnets. Each sender
has access to the BB and can identify the output of each mix server.

Second generation mixnets were proposed in [PIK93]. They are also called Reencryp-
tion mixnets, as they utilized the malleability properties of the underlying cryptosys-
tem. There is one common public key, while the secret key is distributed to all the
mix servers. Each of them simply permutes and reencrypts the ciphertexts. In the
end the ciphertexts are threshold decrypted. As a result, reencryption mixnets are
usually combined with a threshold cryptosystem.

Mixnets in these categories are secure under a threat model were the adversary is
passive. In fact a single honest mix server suffices for privacy under this setting. The
need for verifiable mixnets was made evident after the discovery of tagging attacks
in [PP89; Pfi94]. An active adversary can use the malleability to his advantage by
injecting a tag to the message he wants to track. For example, in the case of ElGamal
encryption, in order to track the message m encrypted as c, the adversary chooses
x←$ Zq and with the help of a corrupted participant injects cx. Because of the ho-
momorphic properties the output will contain both m, mx which the adversary can
check. This tagging attack is ubiquitous the security literature and can be used to
break many properties of cryptographic voting systems. More attacks can be per-
formed by the mix server who process all the messages from all users.

An overview of verifiability in shuffles is presented in [HM20]. In general, there
are two types of verifiable mixnets: the first enable individual or sender verifiability
[Wik05] where each sender can check that her own message was correctly shuffled.

– Message tracing: Each sender keeps the randomization and all intermediate ci-
phertexts used to produced the input of a decryption mixnet. Subsequently she
compares the output of each mix server with its own intermediate ciphertext
and posts an anonymous complain if she cannot find it.

– Verification codes: Each sender includes a random code with its message be-
fore submission to the functionality. After processing, the sender checks if the
verification code appears in the output.

The first universally verifiablemixnet was proposed in [SK95], where a cut and choose
protocol was proposed to check the correct operation of the mixnet. Each mix server
creates a secondary shuffle (permutation and randomization values). When chal-
lenged it reveals with equal probability the second shuffle or a combination of the
primary and secondary shuffle. The scheme was improved in [Abe98]. It is the basis
of the Zeus fork of Helios [Tso+13].

54 Chapter 2. Cryptographic Preliminaries

There are two types of universally verifiable mixnets: Shuffles in the first category
provide proofs for the correctness of the complete shuffle operation, with overwhelm-
ing soundness and without sacrificing message privacy. They employ what is known
as proof of shuffles which apply mostly to reencryption mixnets. They utilize the
malleability of the encryption scheme by reencrypting the shuffle inputs after they
have been randomly permuted. That is: Mix (m) ∶= ReEnc(ϕ(m)), where ϕ is a per-
mutation selected uniformly at random.

In general the proof of shuffle πShuffle is provided by each mix server and is the non-
interactive version of a proof that the permutation and reencryption operations have
been correctly executed:

πShuffle ∶= NIZK{(pk, c, c′), (ϕ, r) ∶

c(i) = ReEncpk(c−1
ϕ (i), ri),

∀i ∈ [n], ri ∈ r, ci ∈ c, c′i ∈ c′}

In the end, all mix servers prove correct decryption. There are many works on proofs
of shuffle in the literature [FS01; Nef01; Wik09; TW10; BG12] to name a few. Their
main drawback is that they are computationally demanding.

To improve the performance of universally verifiable mixnets, other methods have
been proposed. The performance trade-off is the loss of soundness and in some cases
some loss of privacy. For instance, in Randomized Partial Checking [JJR02] the ver-
ifier asks the prover (each mix server) to reveal the correspondence between half of
the inputs and outputs of the shuffle. As a result, a mix server is caught cheating
with probability 1

2 . Despite the fact that some portion of the output is revealed the
probability that a message is traced end-to-end decreases with the number of servers.
Other variations are presented in [HM20].

2.8 The road to PACBS

The main ideas of PACBS originate from blind and designated verifier signatures.
They aim to protect the votes cast from the signer and to protect the verification
of the signatures from the coercer. However, we also use many ideas from many
different variations of digital signatures found in the literature, that fiddle with the
roles and actions of the participants in the basic setting (section 2.5) to enable dif-
ferent usage scenarios with different security properties. For instance, we were in-
spired from group [CH91], ring [RST01] and designated confirmer signatures (DCS)
[Cha94]. Moreover, ideas from cryptographic primitives such as partially blind signa-
tures [AO00], plaintext equivalence tests (PETs) [JJ00], designated verifier proofs (DVP)

2.8. The road to PACBS 55

[JSI96] and conditional disclosure of secrets (CDS) [Ger+00] are utilized.

Group signatures [CH91] aim to provide signer anonymity within a group. This means
that the signature is validated as coming from the group as a whole, without giving
evidence as to which member of the group actually signed. Of course in the case of
a dispute, the traceability property allows the group manager to specify which group
member actually signed. The problem with group signatures is that they do not allow
ad-hoc group creation, as the members must be predefined. This predicament is dealt
with ring signatures.

The idea of a designated verifier originates from [Cha94] before being applied to
[JSI96]. Its original use was to solve the problem of signer unavailability of undeni-
able signatures [CA89], by introducing another party to the protocol that can confirm
a signature in case the signer is unavailable. The use of a group/ring signature scheme
with a designated verifier signature is equivalent to the signer sending a message to
the verifier through the signature. For instance, if the group members are treated as
possible responses to the message to be signed, a designated group signature is equiv-
alent to sending a particular response to the verifier. This resembles again conditional
disclosure of secrets [Ger+00], which was proposed as a way for a client to obtain a
secret held by a server if and only if the input of the client satisfies a certain condi-
tion. The client may hold a secret key and encrypt the input using the corresponding
public key that is known to the server.

57

3 Publicly Auditable Conditional
Blind Signatures

Doveryay, no proveryay (Trust, but
verify)

Russian proverb

We are now ready to combine the primitives we discussed in chapter 2 to present one
of the three main results of this thesis, Publicly Auditable Conditional Blind Signatures
- (PACBS), a blind signature scheme, where the validity of the generated signatures is
conditional to a predicate on publicly available data. However, they are not publicly
verifiable. Their validity is decided by a designated verifier 1, who is identified by
a private key. To counter the actions of a corrupted signer or a corrupted verifier,
that do not respect the predicate during signing or verification and produce arbitrary
signatures and results, we equip the scheme with the capability to produce evidence
that can be later audited, by anyone, in order to verify its security. This evidence, is
intended to make up for the loss of public verifiability. Blindness provides stronger
privacy guarantees towards the signer.

The main goal of PACBS is to implement the functionalities that are usually found in
coercion-resistant voting protocols. The general idea is that the predicate expresses
the real-world condition of whether the voter is coerced or not. Its result is embedded
in the signature creation by the signer, which will be valid if and only if it evaluates
to true. The election tallier then, instead of comparing all possible credentials, can
simply check the validity of the signature and decide whether to count the vote or
not. The application of PACBS in a voting protocol is detailed in chapter 5.

We begin the exposition by detailing a simpler version, Conditional Blind Signatures -
CBS, from [GPZ17], that lacks the auditability properties in order to clearly illustrate
the operation and security model of the primitive. We then equip CBS with auditable
evidence, arriving to PACBS from [Gro+20].

1Based on [Gro+20]

58 Chapter 3. Publicly Auditable Conditional Blind Signatures

3.1 Conditional Blind Signatures

3.1.1 Definitions

In Conditional Blind Signatures (CBS) the signer has a private input bit b on which
it bases the validity of the signature, which is verified by a designated verifier. It is
valid if and only if b = 1. No evidence is produced from signing or verifying in this
simpler version.

Definition 3.1: Conditional Blind Signatures

A conditional blind signature (CBS) scheme is a triple (CBS.Gen, CBS.Sign,
CBS.Verify) such that:

– ((skS,pkS), (skV,pkV), prms)← CBS.Gen(1λ)
– (⋅, σb)← CBS.Sign⟨S(skS, b),U(m), (prms,pk)⟩
– {0, 1}← CBS.Verify(prms,pk, skV, m, σb)

CBS.Gen is an algorithm that outputs two pairs of keys, (skS,pkS) for signing and
(skV,pkV) for verification, the message space M and the signature space S, described
by a set of parameters (e.g. group generators) collectively denoted as prms. For con-
venience both public keys are grouped together and denoted as pk = (pkS,pkV).

CBS.Sign is a protocol executed between the signer and the user. The secret input
of the signer is the signing key skS and the secret information bit b, while the secret
input of the user is the message m to be signed. The public input consists of the group
parameters and the public keys. The protocol output for the user is a signature σb of
m, while the signer receives no output.

CBS.Verify is an algorithm which outputs a single bit representing the validity of
the signature. A valid signature is one for which CBS.Verify(⋅) = 1. Correctness
must hold, that is CBS.Verify(⋅, m, σb) outputs 1 if and only if σb is the output of the
execution of the protocol CBS.Sign on message m and the secret information bit of S
is b = 1, except with negligible probability.

3.1.2 Security Properties

The security of CBS is captured using the Blindness, Unforgeability and Conditional
Verifiability properties. These properties are defined using the respective games for
plain blind signatures [SU12] extended to accommodate for the secret conditionality
bit and the separate keys of the verifier.

3.1. Conditional Blind Signatures 59

Blindness

Theblindness property is formally defined using the game presented in Algorithm 3.1,
which states that amalicious signer cannot tell which of the twomessages m0, m1 was
signed first, except with negligible probability. Note that the signatures on which the
adversary is challenged are forced to be valid (b = 1)

Algorithm 3.1: CBS-BlindExpA,CBS
Input : security parameter λ
Output: {0, 1}
(prms,pk, skS, skV, m0, m1)← A(find, 1λ)
b←${0, 1}
(⋅, σb)← CBS.Sign⟨A(issue, skS, 1),U(mb), (prms,pk)⟩
(⋅, σ1−b)← CBS.Sign⟨A(issue, skS, 1),U(m1−b), (prms,pk)⟩
if CBS.Verify(prms,pk, skV, mb, σb) = 1 AND
CBS.Verify(prms,pk, skV, m1−b, σ1−b) = 1 then

b′ ← A(guess)
end
if b = b′ then

return 1
else

return 0
end

Definition 3.2: CBS Blindness

A conditional blind signature scheme CBS is perfectly blind if for every (un-
bounded) A:

Pr[CBS-BlindExpA,CBS(λ) = 1] = 1
2

Unforgeability

The unforgeability property is captured using the notion of One More Forgery of
[PS00], which states that, if l is an integer, polynomial in the security parameter
λ, an attacker can produce l + 1 valid signatures, after at most l successful interac-
tions with the signer. The Strong One More Forgery [PS00] is a variation of the above
case, where l is polylogarithmically bound to the security parameter. More formally,
in the game CBS-OneMoreForge, A can obtain both valid (b = 1) and invalid (b = 0)
signatures after k successful interactions.

60 Chapter 3. Publicly Auditable Conditional Blind Signatures

Algorithm 3.2: CBS-OneMoreForgeA,CBS
Input : security parameter λ
Output: {0, 1}
((skS,pkS), (skV,pkV), prms)← CBS.Gen(1λ)
{(⋅, (mi, σi))}l+1

i=1 ← CBS.Sign⟨S(skS, b),A(⋅), (prms,pk)⟩poly(λ)i=1
/* k: the number of successful protocol interactions */
if (∀i, j ∈ [l + 1] with i ≠ j⇒ mi ≠ mj) AND (∀i ∈
[l + 1] CBS.Verify(prms,pk, skV, mi, σi) = 1) AND k ≤ l then

return 1
else

return 0
end

Definition 3.3: CBS unforgeability

A conditional blind signature scheme CBS is one more unforgeable if for every
PPT A there is a negligible function of λ where:

Pr[CBS-OneMoreForgeA,CBS(λ) = 1] ≤ negl(λ)

In order for the verification of the signatures (and thus the checking of the forgeries)
to be trustworthy, the verifier (identified by the possession of skV) should be trusted.
Consequently, in Algorithm 3.2, the adversary does not receive skV. In effect this
makes forgery a concern only against outsiders, i.e. everybody except the real signer
and the designated verifier. This is consistent with the security model for designated
verifier signatures [LWB05; Li+07], where signature simulations by the designated
verifier are not treated as forgeries, but as aids towards the protocol’s goals. In fact,
in the applications of CBS, such simulations are utilized in order to make the scheme
more versatile (cf. section 3.4, section 5.1).

Conditional Verifiability

For CBS, an extra property is described, called Conditional Verifiability, which states
that an adversary cannot guess the validity of a signature without the secret verifica-
tion key. The adversary is assumed to be an external entity, i.e neither the signer nor
the verifier. This is justified as the signer must already know the value of b to cre-
ate the signature, and the verifier learns the value of b by executing the verification
functionality.

This is defined using the CBS-CondVerExp game presented in Algorithm 3.3, which
intuitively resembles the IND-CPA property of public-key encryption, as it is meant
to ‘hide’ the conditional bit of the signatures.

3.2. Okamoto-Schnorr CBS construction 61

the adversary can adaptively obtain a polynomially restricted number of valid or in-
valid signatures (denoted by ⋅ in the input of S) by submittingmessages of his choice to
the signer through the CBS.Sign protocol. Then the adversary submits the challenge
and is presented with a signature whose validity is decided by a random coin flipped
by the challenger. The adversary can then continue to submit signing requests. In
the end, he must guess the coin toss.

Algorithm 3.3: CBS-CondVerExpA,CBS
Input : security parameter λ
Output: {0, 1}
((skS,pkS), (skV,pkV), prms)← CBS.Gen(1λ)
b←${0, 1}
{(⋅, σi)}

poly(λ)
i=1 ← CBS.Sign⟨S(skS, ⋅),A(mi), prms,pk⟩poly(λ)i=1

m ← A(challenge)
(⋅, σ)← CBS.Sign⟨S(skS,b),A(m), prms,pk⟩
{(⋅, σi)}

poly(λ)
i=1 ← CBS.Sign⟨S(skS, ⋅),A(mi), prms,pk⟩poly(λ)i=1

b′ ← A(guess)
if b = b′ then

return 1
else

return 0
end

Definition 3.4: CBS Conditional Verifiability

A conditional blind signature scheme CBS is conditionally verifiable if for ev-
ery PPT A there is a negligible function of λ such that

Pr[CBS-CondVerExpA,CBS(λ) = 1] ≤ 1
2
+ negl(λ)

Note that no verification oracle is provided to the adversary and he can only make
signing requests. This is better suited to the intended usage of the primitive, where
publicly revealing the validity of the signature would also reveal the value of the
secret bit. In real-world applications, when a scheme that utilizes CBS needs to reveal
the validity of a signature, it can do so by employing anonymization or obfuscation
techniques, thus rendering the knowledge of the result of the predicate useless.

3.2 Okamoto-Schnorr CBS construction

A construction of the CBS primitive can be based on the Okamoto - Schnorr blind
signatures [Oka92].

62 Chapter 3. Publicly Auditable Conditional Blind Signatures

The parameter generation procedure, depicted in Algorithm 3.4, creates a group G

with prime order q (2λ−1 ≤ q < 2λ) and generators g1, g2, where the DDH assumption
holds. The existence of a random oracle H ∶ M ×G → Zq is assumed. The secret
signing key comprises the values s1, s2 ∈ Zq with corresponding public signing key
v. The secret verification key is s ∈Zq with public counterpart k.

Algorithm 3.4: OSCBS.Gen(1λ)
Input : security parameter λ

Output: sk,pk, prms

(q, G)← GroupGen(1λ)
(g1, g2)←$ G

s1, s2, s←$ Zq

v ∶= g−s1
1 g−s2

2
k ∶= gs

1
prms ∶= (G, g1, g2,H)
skS ∶= (s1, s2); pkS ∶= v
skV ∶= s; pkV ∶= k
return ((skS,pkS), (skV,pkV), prms)

The signing protocol is presented in Figure 3.1. It proceeds through four phases as
in [Oka92]. The signer commits to an element x. The user blinds the message along
with the commitment and the signer produces the blind signature. Finally, the user
unblinds the signature. In summary, in the case of valid signatures, the OSCBS in-
stantiation, is a direct adaptation of the Okamoto-Schnorr blind signatures from Fig-
ure 2.8, with the only difference being the ‘lifting’ of β1 and σ1 respectively. Invalid
signatures, consist of randomly sampled values.

In the verification stage (Algorithm 3.5), the verifier checks the hash of the message
and the commitment using the secret key s ∈ Zq. If the signer’s secret bit is 1, then
the signature will be valid, otherwise the verification equation will not hold. Thus
the verifier, implicitly learns the secret bit of the signer.

Algorithm 3.5: OSCBS.Verify(prms,pk, skV, m, σ)
Input : prms,pk = (v, k), skV = s, m, σ = (x∗, e∗, σ1, σ2)
Output: {0, 1}
e∗ ∶= H(m, x∗)
if x∗s = σ1 ⋅ g2

σ2⋅s ⋅ ve∗⋅s then
return 1

else
return 0

end

3.2. Okamoto-Schnorr CBS construction 63

Common input: prms, pk = (pkS,pkV) = (v, k)
U ’s private input: m ∈M

S’s private input : b ∈ {0, 1}, skS = (s1, s2) ∈Zq ×Zq
Commitment Phase. The Signer:

– Picks r1, r2 ←$ Zq;

– Computes x ∶= gr1
1 gr2

2 ;

– Sends x to the User.

Blinding Phase. The User:

– Selects blinding factors u1, u2, d←$ Zq;

– Computes x∗ ∶= xgu1
1 gu2

2 vd, e∗ ∶= H(m, x∗), e ∶= e∗ − d;

– Sends e to the Signer.

Signing Phase. The Signer:

– Computes y1 ∶= r1 + es1, y2 ∶= r2 + es2;

– If b = 1 computes (β1, β2) ∶= (ky1 , y2);

– If b = 0 selects random (β1, β2)←$ G×Zq;

– Outputs β ∶= (x, e, β1, β2).

Unblinding Phase. The User:

– Unblinds by computing σ1 ∶= β1 ⋅ ku1 and σ2 ∶= β2 + u2;

– Outputs σ ∶= (x∗, e∗, σ1, σ2).

FiguRe 3.1: The protocol OSCBS.Sign⟨S((s1, s2), b),U(m), prms,pk⟩

64 Chapter 3. Publicly Auditable Conditional Blind Signatures

Performance Signing requires 3 exponentiations if the signature is valid and 2 if
not. This means that a valid signature requires more processing by the signer. This
can be fixed, by first selecting a random element of Zq and then performing an extra
exponentiation to receive a random element of G even if b = 0. The user requesting
the signature must perform 4 exponentiations. Verification requires 3 exponentia-
tions.

3.3 CBS Security Analysis

Correctness

Theorem 3.1: OS CBS Blindness

The Okamoto-Schnorr CBS scheme is correct.

Proof. Correctness follows from straightforward computations on the equation checked
in Algorithm 3.5. Indeed:

σ1 ⋅ g2
σ2⋅s ⋅ ve∗⋅s =

ky1ku1 ⋅ g(y2+u2)⋅s
2 ⋅ (g−s1

1 g−s2
2)

(e+d)s =

kr1+es1+u1 ⋅ g(r2+es2+u2)⋅s
2 ⋅ (g−s1

1 g−s2
2)

(e+d)s =

g1
(r1+es1+u1)⋅s ⋅ g(r2+es2+u2)⋅s

2 ⋅ (g−es1
1 g−es2

2)s(g−ds1
1 g−ds2

2)
s
=

g1
(r1+u1)⋅s ⋅ g(r2+u2)⋅s

2 ⋅ (g−ds1
1 g−ds2

2)
s
=

(g1
r1 g2

r2 ⋅ g1
u1 g2

u2 ⋅ (g−ds1
1 g−ds2

2))s =

(x ⋅ g1
u1 g2

u2 ⋅ vd)s =

x∗s

∎

Blindness

For the blindness property the arguments of the original Okamoto-Schnorr scheme
in [Oka92] and [AO00] hold. More specifically, the commitment is blinded in exactly
the same way in both schemes and the second parts of the signatures are identical in
both cases. In addition, the message hash is hidden using the value d exactly as in
[Oka92]. The first part of the signature is ‘lifted’, but the mapping from y1 to ky1 is
one to one and onto.

Theorem 3.2: OS CBS Blindness

The Okamoto-Schnorr CBS scheme satisfies perfect blindness.

3.3. CBS Security Analysis 65

Proof. Let S∗ be the unbounded adversary in the blindness game in Algorithm 3.1
and viewi = (xi, ei, βi) for i ∈ {0, 1} be the view 2 of S∗. There exists a unique tuple
(u1, u2, d) that maps viewi to signature σj for both cases of i, j ∈ {0, 1}.

u1 = logk(σj1 ⋅ β−1
i1)⇒ gu1s

1 = σj1 ⋅ β−1
i1 ,

u2 = σj2 − βi2,

d = e∗j − ei

This tuple causes both signatures to be valid:

x∗
s

j = (xig
u1
1 gu2

2 vd)s = gsr1
1 gsr2

2 gsu1
1 gsu2

2 vsd

= gsr1
1 gsr2

2 (σj1β−1
i1)g

s(σj2−βi2)
2 vs(e∗j −ei)

= (σj1g
σj2s
2 vse∗j) ⋅ gsr1

1 gsr2
2 β−1

i1 g−sβi2
2 v−sei

= (σj1g
σj2s
2 vse∗j) ⋅ gsr1

1 gsr2
2 g−s(r1+eis1)

1 g−s(r2+eis2)
2 gs1sei

1 gs2sei
2

= (σj1g
σj2s
2 vse∗)

As a result, in the blindness game in Algorithm 3.1, the view of the adversary and
the signatures are statistically independent for both cases of the coin flip. So the
probability that an unbounded adversary succeeds in linking two protocol executions
to the corresponding messages and signature pairs is exactly 1/2.

∎

Strong One More Forgery

The scheme is also secure against the strong version of the One More Forgery def-
inition [PS00]. Note that an adversary can create invalid signatures by randomly
choosing y2 ∈ Zq and a random element of G. As a result, in the security proof, an
interaction with the signer for an invalid signature does not provide any advantage,
so it can be assumed that the adversary only interacts with the signer to obtain valid
signatures. Theorem 3.3 demonstrates that the scheme is secure under the strong one
more forgery definition.

2For simplicity, both components of the blind signature as are collectively referred as βi i.e. βi = (βi1, βi2).
The same applies to σi as well.

66 Chapter 3. Publicly Auditable Conditional Blind Signatures

Theorem 3.3: OS CBS unforgeability

Suppose there exists a PPT adversary A that wins the OneMoreForge exper-
iment, for l polylogarithmic in the security parameter λ, with non negligible
probability. Then there exists a PPT algorithm B that solves the Computa-
tional Diffie Hellman problem with non negligible probability.

Proof. Let A be a PPT adversary that wins the game in Algorithm 3.2 with non-
negligible probability. This means that it can produce l + 1 valid signatures of the
form (x∗, e∗, σ1, σ2)3 after l interactions with the signer S and the random oracle H.
The transcript of each interaction ofAwith S is the blind signature tuple (x, e, β1, β2).
The transcript of each interaction of A with H is the tuple (m, x∗, e∗).

A PPT adversary B will be constructed, that impersonates S to makeA produce valid
signatures σ = (x∗, e∗, σ1, σ2) and σ̃ = (x∗, ẽ∗, σ̃1, σ̃2) with the same initial message
x∗ and y2 − s2e ≠ ỹ2 − s2ẽ. These two valid signatures will allow B to break the CDH
Assumption.

FiguRe 3.2: Breaking the CDH Assumption by forging OSCBS

The construction is presented at a high level in Figure 3.2. In more detail, B receives
a triple of public group elements g1, g2, k where k = gs

1 with unknown s ∈ Zq and
3To be exact the signatures should be denoted as {(x∗, e∗, σ1, σ2)}l+1

i=1 , but for simplicity the indices are
omitted

3.3. CBS Security Analysis 67

g2 = ga
1 for some unknown a ∈ Zq. To break the CDH Assumption B must compute

gas
1 = gs

2. To setup the OSCBS forgery, B selects s1, s2 ∈ Zq and computes the public
signing key v = g−s1

1 g−s2
2 and sets the public verification key as k. B replaysA until it

outputs the two valid signatures σ1, σ̃1 with the same initial message x∗.

Since the verification equation in Algorithm 3.5 holds for valid signatures:

(x∗)s = σ1 ⋅ gσ2s
2 ⋅ v

e∗s and (x∗)s = σ̃1 ⋅ gσ̃2s
2 ⋅ v

ẽ∗s

As x∗ is the same in both cases:

σ1 ⋅ gσ2s
2 ⋅ v

e∗s = σ̃1 ⋅ gσ̃2s
2 ⋅ v

ẽ∗s ⇒ σ1 ⋅ σ̃1
−1 = g(σ̃2−σ2)s

2 ⋅ v(ẽ∗−e∗)s

All values except s are known to B. For simplicity set:

– τ = σ1 ⋅ σ̃1
−1

– ρ = σ̃2 − σ2

– ϕ = ẽ∗ − e∗

Next, the public signing key v is analyzed:

τ = gρs
2 vϕs = gρs

2 (g
−s1
1 g−s2

2)
ϕs = gsρ

2 ⋅ g
−s1ϕs
1 g−s2ϕs

2 = k−s1ϕgs(ρ−s2ϕ)
2 ⇒

τks1ϕ = (gs
2)
(ρ−s2ϕ)

Now, B can compute gs
2 as:

gs
2 = (τks1ϕ)(ρ−s2ϕ)−1

(3.1)

It remains to be proved that such valid signatures σ1, σ̃1 can be efficiently produced
with non-negligible probability. This, however, is a direct consequence of the Oracle
Replay Attack used to prove the unforgeability of the blind Okamoto - Schnorr sig-
natures in [PS00]. Assume that A succeeds with probability at least ε in producing a
(l, l + 1) forgery for message m. The techniques of [PS00] require that l be polyloga-
rithmic in the security parameter.

B executes the signing protocol with B until a forgery is produced (or at most 1/ε)
times. Let k ≤ l be the actual number of times that A has interacted with the signer
S and Q the actual number of times that A has interacted with H. Assume that
(m, x∗) was sent to H on query j. Then each of the k signing interactions, is rerun
with the same random data, except for H, which is replaced by H̃ such that both
oracles agree on the first j − 1 answers to queries. It is proved in [PS00], that with a

68 Chapter 3. Publicly Auditable Conditional Blind Signatures

polynomial overhead at most a forgery will be produced on the same (m, x∗) with
non-negligible probability. Note that the data submitted to H in both OSCBS and the
original Okamoto - Schnorr blind signatures follow the exact same distribution (cf.
Figure 2.8). In fact, the only difference of the two protocols for valid signatures is
that the first part of the blind signature in OSCBS is the group element ky1 instead of
the index y1 ∈ Zq. Despite that the mapping between these values is one to one and
onto, the difference occurs after the oracle call. As a result, the probabilistic analysis
of the Oracle Replay Attack of [PS00] applies verbatim to OSCBS as well. ∎

Conditional Verifiability

Finally, it is shown that the system is conditionally verifiable by a reduction to the
DDH Assumption:

Theorem 3.4: OSCBS Conditional Verifiability

Suppose there exists a PPT adversary A that wins the CondVerExp with non
negligible probability. Then there exists a PPT algorithm B that solves the De-
cisional Diffie Hellman problem with non-negligible probability.

Proof. B will be constructed (Figure 3.3).

FiguRe 3.3: Breaking the DDHAssumption by utilizing a break in Conditional
Verifiability

3.3. CBS Security Analysis 69

Its input will be the tuple g, ga, gs, gc and the output will be a bit indicating whether
c = as or c is a random element of Zq. To do so, it proceeds as follows:

– B sets g1 = g, g2 = ga and k = gs
1 = gs and randomly chooses s1, s2 for

v ∶= g−s1
1 g−s2

2 . It gives g1, g2, k, v to A. According to the threat model of Al-
gorithm 3.3 the signing keys s1, s2 are not given to A.

– Using the secret key (s1, s2) B can answer A’s valid signature requests.

– When B gets a challenge request from A it randomly chooses r1, r2 and sends
x ∶= gr1

1 gr2
2 to A.

– A responds with e.

– B chooses random β2 ∶= y2 ∈Zq and sets: β1 = ky1 ∶= (gs)r1(gc)r2(gc)−y2(gs)s1e(gc)s2e

– B sends the signature pair (β1, β2) ∶= (ky1 , y2) and A executes the unblinding
phase to produce the signature σ.

– As before, B responds to A’s signing requests using the secret key (s1, s2).

– B outputs 1 (the input is a DDH tuple) if and only if A outputs 1 (the signature
is valid).

According to Algorithm 3.5 the signature σ = (σ1, σ2) is valid if and only if: (x∗)s =
σ1 ⋅ gσ2s

2 ⋅ ve∗s

By replacing the relevant protocol transformations from Figure 3.1:

(xgu1
1 gu2

2 vd)s = β1ku1 ⋅ g(β2+u2)s
2 ⋅ v(e+d)s⇔

xsgsu1
1 gsu2

2 vsd = β1gsu1
1 gsβ2

2 gsu2
2 vsevsd⇔

xs = β1gsβ2
2 vse⇔

β1 = xsg−sβ2
2 v−se⇔

ky1 = xsg−sy2
2 v−se⇔

(gs)r1(gc)r2(gc)−y2(gs)s1e(gc)s2e = xsg−sy2
2 v−se⇔

gsr1 gcr2 g−cy2 gss1egcs2e = gsr1 gsr2
2 g−sy2

2 gss1egss2e
2 ⇔

(gc)(r2−y2+s2e) = (gas)(r2−y2+s2e)

Provided that r2 − y2 + s2e ≠ 0, the signature is valid if and only if gc = gas, which
means that the input is a DDH tuple. Since y2 is chosen randomly, r2 − y2 + s2e = 0
holds with negligible probability which yields the result. ∎

70 Chapter 3. Publicly Auditable Conditional Blind Signatures

3.4 CBS Variations

The following variations of the OSCBS construction aim to make it more versatile
and, as a result, easier to be incorporated as a building block into other protocols.
The design of PACBS, this work’s main result, will be based on these two variations.
In this section, we abstract on some key ideas that are made concrete in section 3.6.

First of all, the communication rounds of OSCBS signing protocol can be reduced, by
removing the commitment phase in Figure 3.1, yielding the reduced round scheme
OSCBSr. This means that x can be replaced with a random element of G, generated
by a predetermined method. For instance, a random oracle could be used. But this is
not the only option, as x could be the output of a trusted setup or a secure multi-party
protocol. We only require that a common x is available to both U , S in the beginning
of the protocol. As a result, the protocol can omit the commitment message and
the first round. Furthermore, this enables the verifier in possession of s to generate
signatures herself, by using a random group element as v. The value of β1 will be
computed in this case by reversing the relevant part of the verification equation as
(x ⋅ g−β2

2 ⋅ v−e)s, where β2 is a random element in Zq.

Lemma 3.1

The reduced round OSCBSr is l one-more unforgeable if the three round OS-
CBS scheme is l one-more unforgeable.

Proof. We will first describe the case where the predetermined method to compute
x is a random oracle H; its programmability can be used as an advantage for the
adversary. Assume that A is a reduced round (OSCBSr) forger. We will construct an
algorithm B that forges OSCBS signatures without having access to the signing key
s. In order to answer A’s requests, B can (by assumption) request signatures from
the 3-round OSCBS signer S.

The input of B will be the public input of OSCBS namely G, g1, g2, v, k. When A
requests the commonly available x fromH, then B intercepts the request and initiates
a signing session with S who computes it. B stores x and forwards it to A. Note that
x is, by construction (Figure 3.1), a random element of G. A executes the blinding
phase of Figure 3.1 and sends e to B who in turn forwards it to S to create the blind
signature β = (x, e, β1, β2). Since invalid signatures do not aid the forger we assume
that the signature is always valid. Note that β2 is a random element in Zq, since s2, r2

are sampled uniformly at random by Algorithm 3.4 and Figure 3.1 respectively. Since
the signature is valid, it is easy to see that β1 = (x ⋅ g

−β2
2 ⋅ v−e)s. As a result, the tuple

β received from S is indistinguishable from a valid OSCBSr blind signature. This, by

3.5. Publicly Auditable Conditional Blind Signatures 71

assumption, means thatA, after an upper bound of l interactions, will generate a one-
more forgery for OSCBSr with non-negligible probability. By Figure 3.1, this forgery
is valid also for OSCBS.

In order to generalize the proof, we can assume that B initializes signing sessions
with S requesting an upper bound of poly(λ) commitment values x which are then
made available for A to use, before the latter selects its messages. ∎

Moreover, OSCBS can be easily combined with a homomorphic encryption scheme
like ElGamal [Gam85]. To this end, an encryption key pair (z, hz

1) must also be cre-
ated during the parameter generation phase. The encryption secret key z is in the
possession of the designated verifier. In the signing phase of Figure 3.1, S generates
the first part of the blind signature as β1 ∶= Enchz

1
(ky1). The user then unblinds it by

computing σ1 ∶= β1 ⋅Enchz
1
(ku1). Due to the multiplicative homomorphic properties

of the underlying cryptosystem the unblinded version of the signature is the same as
CBS, albeit in encrypted form. To verify, V follows Algorithm 3.5 after decrypting σ1

with z.

Finally, these two variations can be combined with the signature becoming Enchz
1
((x ⋅

g−β2
2 ⋅ v−e)s) where β2 is a random index again.

The details and security of these variations depend on the actual protocol instantiating
the predetermined method to generate the first round message. As a result, their
presentation in the current section should only be viewed as a stepping stone for the
PACBS primitive, where a complete analysis will be presented (cf. section 3.6).

3.5 Publicly Auditable Conditional Blind Signatures

In the CBS.Sign protocol the conditional bit b is a private input of the signer. As a re-
sult, a malicious signer can disregard it and provide an arbitrary signature. Moreover,
since the verification of a CBS signature is performed by a designated verifier, the user
cannot check the validity of the signature herself. This, while counter-intuitive, is one
of the design goals of the primitive, justified by its initial application to coercion re-
sistant electronic voting. However, such a goal must not come at the expense of the
signature’s verifiability. In particular, the user must be protected both against a ma-
licious signer that outputs an arbitrary signature, without taking b into account and
against a verifier that does not consider σb and outputs a validity result of his liking.
As a result, CBS must be augmented with a mechanism that will allow the user to
verify that she was not cheated by the signer and the verifier.

72 Chapter 3. Publicly Auditable Conditional Blind Signatures

This mechanism is introduced in Publicly Auditable Conditional Blind Signatures, a
form of CBS that provides auditable evidence for the signing and verification func-
tionalities. In particular, the Sign protocol is augmented with audit information to
ensure that the signing operations were carried out correctly and Verify is augmented
with evidence that verification operations conform to their specification. In order to
check this evidence, two extra functionalities calledPACBS.AuditSign andPACBS.AuditVrfy
are proposed, that use this audit information and output if the corresponding oper-
ations are compatible with a correct protocol execution. Moreover, in order to im-
plement the auditability requirement in a more realistic way, it is assumed that the
secret input b used in CBS is replaced by a predicate function, the input of which is
provided externally - e.g. b = pred(C1, C2) where C1, C2 are credentials and pred is
a function that checks their equality. The signer S, accompanies the signature with
evidence that he correctly followed the protocol, which means that the signature va-
lidity depends only on the result of pred on the given input. This in turn, allows an
honest user, in possession of some extra secret information (for example her own
credential), the definition of pred and the evidence to verify protocol compliance and
be sure that the signature she holds is a valid one. On the other hand, the public (or
an adversary) lacking the secret information can only check that the protocol was
followed faithfully, but cannot extract the signature validity.

A useful (but not exact) intuition for the distinction between the purpose of the pred-
icate and the PACBS.AuditSign and PACBS.AuditVrfy is the between semantics and
syntax. The predicate determines the semantics of the signature, while the generated
proofs and the corresponding functionalities PACBS.AuditSign and PACBS.AuditVrfy
concern the syntax of the signature. Everybody can verify syntax, however, the se-
mantics are only unlocked by the holder of the secret information.

3.5.1 Definition
Definition 3.5: PACBS Definition

A publicly auditable conditional blind signature scheme is a tuple (PACBS.Gen,
PACBS.Sign, PACBS.PACBS.AuditSign, PACBS.Verify, PACBS.AuditVrfy)
where:

– ((skS,pkS), (skV,pkV), prms)← PACBS.Gen(1λ)
– (⋅, (σb, πSign))← PACBS.Sign⟨S(skS),U(m), (prms,pk, d)⟩
– {0, 1}← PACBS.AuditSign(πSign, (prms,pk, d))
– ({0, 1}, πVerify)← PACBS.Verify(skV, m, σb, prms,pk)
– {0, 1}← PACBS.AuditVrfy(m, σb, result, πVerify, prms,pk)

3.5. Publicly Auditable Conditional Blind Signatures 73

PACBS.Gen is an algorithm that takes as input the security parameter 1λ and out-
puts two pairs of keys (skS,pkS) for signing and (skV,pkV) for verification, denoted
as pk = (pkS,pkV) and sk = (skS, skV). Moreover, PACBS.Gen outputs the message
space M, the signature space S and the public input space D which defines the inputs
that determine the validity of the signature. These sets are described by some param-
eters (e.g. group generators) collectively denoted as prms. Finally, the PACBS.Gen
algorithm produces a predicate function pred ∶ D → {0, 1} that will extract the con-
ditional part of the signature with the help of some public input.

PACBS.Sign is a protocol executed between the signer and the user. The public input
consists of the parameters and the public keys as well as d from D. The secret input
of the signer is the signing key skS. The signer takes into account the output of the
U algorithm on m and outputs a signature σb

4 that is conditional to some public
data d, along with evidence πSign that the signer operated correctly. This evidence
contains the transcript of the protocol along with proof that the internal operations
were carried out correctly.

PACBS.AuditSign is an algorithm, which receives the transcript of the signature cre-
ation protocol πSign to output a bit indicating if the signing operations were carried
out correctly.

PACBS.Verify is an algorithm which outputs a single bit representing the validity of
the signature along with proof πVerify that the verifier followed the protocol.

PACBS.AuditVrfy is an algorithm which receives the signature σb, the result of the
verification, result, and the evidence πVerify produced during verification and outputs
a bit indicating if the algorithm operations are correct with respect to the signature
and the result.

Correctnessmust hold, whichmeans thatPACBS.AuditSign(σb, ⋅, d), PACBS.Verify(⋅, σb, ⋅),
PACBS.AuditVrfy(⋅, σb, ⋅) output 1 if and only if σb is the output of the execution
of the protocol PACBS.Sign(⋅, d) on message m with public input d ∈ D such that
pred(d) = 1 except with negligible probability.

3.5.2 Security Properties

PACBS extends the blindness, unforgeability, and conditional verifiability properties
of CBS to take into account the predicate function. Furthermore, since the signing
and verification operations output evidence, they are also available to the adversary,
who might take advantage of them to break the security of the scheme.

4The notation σb is maintained, despite that there is no explicit b, in order to stress the fact that the
signature is conditional

74 Chapter 3. Publicly Auditable Conditional Blind Signatures

Blindness

The experiment in Algorithm 3.6 is identical to the CBS one, except for the involve-
ment of the predicate and the audit functionalities to check the correct operations.
Furthermore, the adversary is choosing the values d0, d1 to be used during thePACBS.Sign
protocols with the restriction that pred(d0) = pred(d1) = 1 as imposed by the require-
ments of CBS that the two outputted signatures are valid. Note that the signing tran-
script and proofs in πSign are either generated by, or are available to the adversary
(signer) and as a result, provide no advantage during the guessing stage. On the other
hand, A can use the verification proofs along with the signatures to guess. However,
as πVerify will be a function of the signature, they will provide A with no more in-
formation than what can be obtained from the signature itself. For completeness,
however, they are handed to A in Algorithm 3.6.

Algorithm 3.6: PACBS-BlindExpA,Π

Input : security parameter λ
Output: {0, 1}
(prms,pk, sk, m0, m1, d0, d1)← A(find, 1λ)
b←${0, 1}
(⋅, (σb, πSign,b))← PACBS.Sign⟨A(issue, skS),U(mb), (prms,pk, db))⟩
(⋅, (σ1−b, πSign,1−b))← PACBS.Sign⟨A(issue, skS),U(m1−b), (prms,pk, d1−b))⟩
(resultVerify,b, πVerify,b)← PACBS.Verify(prms,pk, skV, mb, σb)
(resultVerify,1−b, πVerify,1−b)← PACBS.Verify(prms,pk, skV, m1−b, σ1−b)
if resultVerify,b = resultVerify,1−b = 1 then

b′ ← A(guess)
end
if b = b′ then

return 1
else

return 0
end

Definition 3.6: PACBS Blindness

A publicly auditable conditional blind signature scheme Π is perfectly blind if
for every (unbounded) A:

Pr[PACBS-BlindExpA,Π(λ) = 1] = 1
2

Unforgeability

To capture unforgeability, the corresponding game for CBS (Algorithm 3.2) is slightly
modified.

3.5. Publicly Auditable Conditional Blind Signatures 75

Algorithm 3.7: PACBS-OneMoreForgeA,Π

Input : security parameter λ
Output: {0, 1}
(sk,pk, prms)← PACBS.Gen(1λ)
{(⋅, (mi, σi, πSign,i))}l+1

i=1 ← PACBS.Sign⟨S(skS, ⋅),A(⋅), (prms,pk, d)⟩poly(λ)i=1
/* k: the number of successful protocol interactions */
if (∀i, j ∈ [l + 1] with i ≠ j⇒ mi ≠ mj) AND k ≤ l AND
(∀i ∈ [k] ∶ PACBS.AuditSign(prms,pk, πSign,i) = 1) AND
(∀i ∈ [l + 1] ∶ (resulti, πVerify,i)← PACBS.Verify(prms,pk, skV, mi, σi);
resulti = 1 AND PACBS.AuditVrfy(prms,pk, mi, σi, πVerify,i) = 1) then

return 1
else

return 0
end

In the game the aspiring forger chooses input d in each oracle request. If the adversary
can find d for which he knows pred(d) he can get valid and invalid signatures at will.
Using this oracle, the adversary tries to obtain more than k valid signatures where k
is the number of interactions resulting in valid signature output.

Definition 3.7: PACBS Unforgeability

A publicly auditable conditional blind signature scheme Π is one more un-
forgeable if for every PPT A there is a negligible function of λ where:
Pr[PACBS-OneMoreForgeA,Π(λ) = 1] ≤ negl(λ).

Conditional Verifiability

Slight modifications are also needed to capture conditional verifiability. In particular,
b needs to be replaced with the value of the predicate function.

In the game, the adversary has access to a signing oracle of his choice and can ask for
signatures with auxiliary values that he chooses. A also selects the messages that will
be signed. He is challenged on a signature which is either valid or invalid depending
on a coin flip on random auxiliary values. His goal is to determine the result of the
coin flip or equivalently the value of the predicate. Note that, since S is assumed
honest, it follows the protocol in both cases. As a result, while πSign, will be valid in
all interactions, the collected proofs might leak information about the predicate, so
they are handed to A in the guessing stage.

76 Chapter 3. Publicly Auditable Conditional Blind Signatures

Algorithm 3.8: PACBS-CondVerExpA,Π

Input : security parameter λ
Output: {0, 1}
(sk,pk, prms)← PACBS.Gen(1λ)
b←${0, 1}
Let R0 = {d ∣ s.t. pred(d) = 0} and R1 = {d′ ∣ s.t. pred(d′) = 1}
d∗←$ Rb

{(⋅, (σi, πSign,i))}
poly(λ)
i=1 ← PACBS.Sign⟨S(skS),A(mi), (prms,pk, di)⟩

poly(λ)
i=1

m ← A(challenge)
(⋅, (σb, πSign,b))← PACBS.Sign⟨S(skS),A(m), (prms,pk, d∗)⟩
{(⋅, (σi, πSign,i))}

poly(λ)
i=1 ← PACBS.Sign⟨S(skS),A(mi), (prms,pk, di)⟩

poly(λ)
i=1

b′ ← A(guess, σc, πSign,b,{σi}
poly(λ)
i=1 ,{πSign,i}

poly(λ)
i=1)

if b = b′ then
return 1

else
return 0

end

Definition 3.8: PACBS Conditional Verifiability

A publicly auditable conditional blind signature scheme Π is conditionally
verifiable if for every PPT A there is a negligible function of λ such that
Pr[PACBS-CondVerExpA,Π(λ) = 1] ≤ 1

2 + negl(λ).

Note that for the definition of a PACBS construction to be meaningful, the predicate
pred should be infeasible to compute on random values of its domain.

Public Auditability

Public auditability for PACBS is defined with respect to the signing and verification
functionalities.

In the case of PACBS.AuditSign, the desideratum is the property that the user’s out-
put of the protocol respects the value of pred(d) even when executed against a ma-
licious signer. This means that if σb is the output of PACBS.Sign on secret input
m, then it is valid if and only if pred(d) = 1. In other words, if (result, πVerify) =
PACBS.Verify(prms,pk, skV, m, σb) then result = pred(d). For this the PASignExp
experiment is used, which is defined in Algorithm 3.9.

In this experiment, the adversary generates all the parameters and the secret keys of
the PACBS scheme and he chooses the values which he wishes to be challenged on.
A PACBS.Sign protocol is executed with these values and the goal of the adversary

3.5. Publicly Auditable Conditional Blind Signatures 77

Algorithm 3.9: PASignExpA,Π

Input : security parameter λ
Output: {0, 1}
(prms,pk, sk)← A(find, 1λ)
(d, m)← A(prms,pk, sk)
(σb, πSign)← PACBS.Sign⟨A(skS),U(m), (prms,pk, d)⟩
(result, πVerify)← PACBS.Verify(prms,pk, skV, m, σb)
if PACBS.AuditSign(prms,pk, πSign) = 1 AND result ≠ pred(d) then

return 1
else

return 0
end

is to output a signature and evidence, such that PACBS.AuditSign accepts and the
signature validity is different from the first output of the algorithm PACBS.Verify.

In the case of PACBS.AuditVrfy the aim is to ensure that when the designated verifier
reveals the validity of a signature the result is accurate with respect to PACBS.Verify.
This is necessary since the recipient of the signature does not know the value of the
predicate when the inputs are randomly chosen. For this, the PAVrfyExp experiment
is used, defined in Algorithm 3.10.

Algorithm 3.10: PAVrfyExpA,Π

Input : security parameter λ
Output: {0, 1}
(prms,pk, sk)← A(find, 1λ)
(m, σb, πVerify, b)← A(prms,pk, skV)
(result, ⋅)← APACBS.Verify(prms,pk, skV, m, σb)
if PACBS.AuditVrfy(prms,pk, b, σb, πVerify) = 1 AND result ≠ b then

return 1
else

return 0
end

In PAVrfyEXP the adversary is given all the parameters and the secret keys of the
PACBS scheme and his goal is to output a message, a signature and evidence such
that PACBS.AuditVrfy accepts b as the validity of the signature while PACBS.Verify
outputs 1− b.

78 Chapter 3. Publicly Auditable Conditional Blind Signatures

Definition 3.9: PACBS Public Auditability

A publicly auditable conditional blind signature scheme Π is publicly auditable
if for every PPT A there is a negligible function of λ such that

Pr[PASignExpA,Π(λ) = 1]+Pr[PAVrfyExpA,Π(λ) = 1] ≤ negl(λ)

3.6 Okamoto-Schnorr PACBS construction

In this section, a construction for a PACBS scheme is presented. It extends theOkamoto-
Schnorr CBS scheme (section 3.2), using the variations presented in section 3.4. In
particular, since this construction is meant to be used as a building block in a co-
ercion resistant electronic voting scheme, there is a benefit in reducing the rounds
of interaction between the user (voter) and the election authorities. As a result, the
presented construction is built on the reduced round OSCBSr, where the first part of
the issued signature is encrypted using ElGamal [Gam85] encryption and the verifier
can issue signatures. However, this is not necessary. A PACBS construction could be
built on any of the variations of CBS presented in section 3.2 or in section 3.4. As a
proof of concept, another PACBS construction is presented in section 3.8, which is a
direct extension of CBS and where the signer and the verifier do not share a key.

The PACBS scheme works in a group G of prime order q (2λ−1 ≤ q < 2λ), where
the DDH assumption holds. During the parameter generation phase random group
elements (g1, g2, v, h1) are selected. The signature message space consists of pairs of
group elements (ElGamal ciphertexts).

In order to make the signature conditional to public data, a function embed is used
that implicitly inserts a value that acts as the ‘secret bit’:

embed ∶ (G2 ×G2)→ G2

where:
embed(C1, C2) ∶= (C2/C1)α ⋅Ench(1, γ) (3.2)

The values α, γ ∈Z∗q are blinding factors selected by the signer. The predicate pred is
defined as:

pred ∶ G2 ×G2 → {0, 1}

where:

pred(C1, C2) ∶=
⎧⎪⎪⎨⎪⎪⎩

1, if Decz(C1) = Decz(C2)
0, otherwise

(3.3)

3.6. Okamoto-Schnorr PACBS construction 79

The predicate function receives some group elements and some auxiliary information
and checks that they are equal to the values embedded inside the signature, which
means that the ciphertexts are equal. Note that in both cases there is no restriction
in the amount of public and auxiliary information to be used. For simplicity and to
correspond with the usage scenario in section 5.1 two pairs of group elements were
chosen for the exposition.

3.6.1 OSPACBS parameter generation

The parameter generation algorithm selects the appropriate group generators and
instantiates the predicate functions, as described in the previous section. A signing
key s ∈ Zq and a decryption key z ∈ Zq are also selected. These secret keys are
collectively denoted as sk. Note that s plays the role of the secret signing key skS,
while the tuple (s, z) plays the role of skV in Definition 3.5. The corresponding public
keys are k ∶= gs

1 and h ∶= hz
1, denoted as pk. Two random oracles H1 ∶ G4 ×G →

G, H2 ∶ m ×G→Zq are assumed.

Algorithm 3.11: OSPACBS.Gen Algorithm
Input : security parameter λ
Output: sk,pk, prms
(g1, g2, v, h1)←$ G

s←$ Zq
z←$ Zq
k ∶= gs

1
h ∶= hz

1

pred(C1, C2) ∶= {
1, if Decz(C1) = Decz(C2)
0, otherwise

prms ∶= (q, G, g1, g2, v, pred,H1,H2)
sk ∶= (s, z)
pk ∶= (k, h)
return (prms, sk,pk)

Note that the validity of the signature is based on the value of the predicate, regardless
of how it was constructed and embedded.

3.6.2 OSPACBS signing

The PACBS signing protocol is shown in Figure 3.4. Note that each algorithm in the
protocol is explicitly named for easier reference.

NIZKproofs for signing Theproof π1 is generated as a standard Chaum-Pedersen
[CP92] proof for valid encryption. The proof π3 is generated as a composition (cf.

80 Chapter 3. Publicly Auditable Conditional Blind Signatures

Common input: prms, pk, C1, C2 ∈ G2

U ’s private input: m ∈M

S’s private input : skS = s ∈Zq s.t. k = gs
1

U executes the OSPACBS.Blind Algorithm on input (prms, C1, C2, m):

– Compute x ∶= H1(C1, C2);

– Pick u1, u2, d←$ Zq and compute x∗ ∶= xgu1
1 gu2

2 vd, e∗ ∶= H2(m, x∗) and e ∶= e∗ − d;

– Send e to S.

S executes the OSPACBS.BlindSign Algorithm on input (prms, skS, C1, C2, e):

– Compute x ∶= H1(C1, C2);

– Pick y2 ←$ Zq and compute n ∶= xg−y2
2 v−e;

– Pick t←$ Zq and compute N ∶= Ench(n; t);

– Pick blinding factors α, γ ∈ Z∗q and compute W ∶= embed(C1, C2) = (C2/C1)α ⋅
Ench(1, γ) and apply signing key to compute B ∶= (N ⋅W)s with:

π1 ← NIZK{(h1, h, n, N), (t) ∶ N = Ench(n; t)}
π2 ← NIZK{(C1, C2, W), (α, γ) ∶W = (C2/C1)α ⋅Ench(1; γ)}
π3 ← NIZK{(h, k, N, W , B), (s) ∶ B = (N ⋅W)s AND k = gs

1}

– Set β ∶= (((n, N, W , B), y2), π1, π2, π3) and send β to the U .

U executes the OSPACBS.Unblind Algorithm on input (prms,pkS, m, β, u1, u2, x∗, e∗):

– Verify π1, π2, π3;

– Unblind by computing σ1 ∶= B ⋅Ench(ku1) and σ2 ∶= y2 + u2.

– Set σ ∶= (x∗, e∗, σ1, σ2) and output (m, σ).

FiguRe 3.4: OSPACBS.Sign Protocol

3.6. Okamoto-Schnorr PACBS construction 81

π2 = NIZK{(C1, C2, W), (α, γ) ∶W = (C2/C1)α ⋅Ench(1; γ)}

Prover Verifier
α′, γ′ ←$ Zq

W ′ ∶= (C2/C1)α
′
Ench(1, γ′)

W ′

c←$ Zq

or in the random oracle model
c ∶=H(C1, C2, W , W ′)

c

α′′ ∶= αc + α′

γ′′ ∶= γc + γ′

α′′, γ′′

Accept if:
α′ ≠ α′′ AND
γ′ ≠ γ′′ AND

W cW ′ = (C2/C1)α
′′
Ench(1, γ′′)

FiguRe 3.5: The proof π2 in OSPACBS.Sign

[CDS94]) of a Schnorr proof [Sch91] for the relation k = gs
1 and Chaum-Pedersen

proof for knowledge and equality of discrete log s for the relation B = (N ⋅W)s. The
techniques to construct them are detailed in section 2.4.1.

The proof π2 is generated as detailed in Figure 3.5 (cf. [Gro05]).

Theorem 3.5: Properties of π2

The protocol described for proof of knowledge π2 is a Σ-protocol.

Proof. Completeness is straightforward.

For special soundness, assume two valid interactions (W ′, c, α′′, γ′′) and (W ′, c̃, α̃′′, γ̃′′),
with c ≠ c̃:

The witness (α, γ) can be extracted by setting: α = (α′′ − α̃′′)(c − c̃)−1 and γ = (γ′′ −
γ̃′′)(c − c̃)−1.

82 Chapter 3. Publicly Auditable Conditional Blind Signatures

Indeed:

(C2/C1)(α
′′−α̃′′)(c−c̃)−1

⋅Ench(1; (γ′′ − γ̃′′)(c − c̃)−1) =

(C2/C1)(αc+α′−αc̃−α′)(c−c̃)−1
⋅Ench(1; (γc +γ′ −γc̃ −γ′))(c − c̃)−1) =

(C2/C1)α ⋅Ench(1; γ) =W

For honest verifier zero-knowledge it is easy to see that the distributions (W ′, c, α′′, γ′′)
where W ′ = (C2/C1)α

′
Ench(1; γ′) for uniformly distributed α′, γ′, c from Zq and

α′′ = αc + α′, γ′′ = γc + γ′ and ((C2/C1)α
′′
Ench(1; γ′′)W−c, c, α′′, γ′′) for uniformly

distributed α′′, γ′′, c from Z∗q are identical. ∎

The proofs π1, π2, π3 can be AND combined into a single proof, detailed in sec-
tion 3.6.3.

OSPACBS auditing for signing The PACBS.AuditSign process (Algorithm 3.12) is
straightforward for the Okamoto-Schnorr instantiation. The auditor needs to verify
the proofs issued by the signer.

Algorithm 3.12: OSPACBS.AuditSign Algorithm
Input : prms,pk, Trans = ((C1, C2), n, B, N, W , y2, π1, π2, π3)
Output: d ∈ {0, 1}
if n ≠ H1(C1, C2)g

−y2
2 v−e then

return 0
end
if π1, π2, π3 are valid then

return 1
else

return 0
end

3.6.3 OSPACBS verification

TheOSPACBS verification procedure is given in Algorithm 3.13. The verifier V, given
a message, a signature, and a secret key, outputs whether the signature is valid or
not and provides NIZK proofs that the verification operations were done correctly. In
more detail, the verifier computes the verification equation and checks if it matches
the first part of the signature, by blindingly dividing them. If the signature is valid,
the result will decrypt to 1. In any other case the result will be random.

The proofs π1, π2, π3, π4 standard Chaum - Pedersen [CP92]. Their construction is
detailed in section 2.4.1. Efficiency improvements can also be achieved from their
AND combination detailed in section 3.6.3.

3.6. Okamoto-Schnorr PACBS construction 83

Algorithm 3.13: OSPACBS.VerifyAlgorithm
Input : prms,pk, sk, m, σ = (x∗, e∗, σ1, σ2)
Output: d ∈ {0, 1}, πVerify

if H2(m, x∗) ≠ e∗ then
return �

end
γ←$ Zq

validity ∶= x∗ ⋅ g−σ2
2 ⋅ v−e∗

M ∶= Ench(validity; r1)
V ∶= Ms

R ∶= (V
σ1
)

γ

result ∶= Decz(R)

π1 ← NIZK{(h1, h, M,validity), (r1) ∶ M = Ench(validity; r1)}
π2 ← NIZK{(V , M), (s) ∶ V = Ms}

π3 ← NIZK{(V , σ1, R), (γ) ∶ R = (V
σ1
)

γ
}

π4 ← NIZK{(h1, h, result, R), (z) ∶ result = Decz(R)}

d ∶= (result = 1)
πVerify ∶= (validity, M, V , R, result, π1, π2, π3, π4)
return (d, πVerify)

OSPACBS auditing for verification Finally the PACBS.AuditVrfy procedure is
presented in Algorithm 3.14.

Algorithm 3.14: OSPACBS.AuditVrfy Algorithm
Input : prms,pk, m, σ = (x∗, e∗, σ1, σ2),

πVerify = (validity, M, V , R, result, π1, π2, π3, π4)
Output: d ∈ {0, 1}
if H2(m, x∗) ≠ e∗ORvalidity ≠ x∗ ⋅ g−σ2

2 ⋅ v−e∗ then
return 0

end
if π1, π2, π3, π4 are valid then

return 1
else

return 0
end

Note that the scheme is auditable by everyone, meaning that everyone can check
the actions of the verifier. However, if the auditor has knowledge of the conditional
information, then she can also check that the predicate was correctly computed and
checked. This is the key property that will utilized in the design of protocols around
this primitive.

84 Chapter 3. Publicly Auditable Conditional Blind Signatures

AND Combination of OSPACBS.Sign proofs π1, π2, π3

Prover Verifier
t, t′ ←$ Zq

T1 ∶= ht
1, T2 ∶= ht

W ′ ∶= (C2/C1)t ⋅Ench(1, t′)
T3 ∶= (N ⋅W)t, T4 ∶= gt

1

T1, T2, T3, T4, W ′

c←$ Zq

or in the random oracle model:
c ∶=H(h1, h, k, n, N, B, C1, C2, W , W ′,{Ti}4

i=1)

c

a1 ∶= t + cr
a2 ∶= t + αc
a3 ∶= t′ + γc
a4 ∶= t + cs

a1, a2, a3, a4

Accept if all the following relations hold:
ha1

1 = T1Xc

ha1 = T2(Yn−1)c

W cW ′ = (C2/C1)a2 ⋅Ench(1, a3)
(N ⋅W)a4 = T3 ⋅ Bc

g1
a4 = T4kc

FiguRe 3.6: AND(π1, π2, π3) in OSPACBS.Sign

Performance The performance requirements of PACBS are more extensive due
to the increased security guarantees it provides, both on the back end as well as
on the front end (user). Signing (OSPACBS.Sign) requires in total 15 exponentia-
tions - 8 for the main operation and 7 for the generation of π1, π2, π3. Verifica-
tion(OSPACBS.Verify) requires in total 15 exponentiations - 7 for the main operation
and 8 for the generation of π1, π2, π3, π4. The auditing of the signature generation
costs 12 exponentiations, while the auditing of the signature verification costs 18 ex-
ponentiations. Minor performance improvements can be achieved from the AND
compositions of the proofs.

AND composition for proofs in OSPACBS.Sign and OSPACBS.Verify

The AND composition of π1, π2, π3 from Figure 3.4 is described in Figure 3.6 where:

π1 = NIZK{(h1, h, n, N), (r) ∶ N = Ench(n; r) = (X, Y) = (hr
1, nhr)}

π2 = NIZK{(C1, C2, W), (α, γ) ∶W = (C2/C1)α ⋅Ench(1; γ)}

π3 = NIZK{(h, k, N, W , B), (s) ∶ B = (N ⋅W)s AND k = gs
1}

3.7. PACBS Security analysis 85

The AND combination of π1, π2, π3, π4 from Algorithm 3.13 is straightforward (Fig-
ure 3.7). Efficiency improvements can be gained by reusing T1 from π1 in π4. Recall
that:

π1 = NIZK{(h1, h, M,validity), (r1) ∶ M = Ench(validity; r1) = (A1, B1)}

π2 = NIZK{(V , M), (s) ∶ V = Ms}

π3 = NIZK{(V , σ1, R), (γ) ∶ R = (V
σ1
)

γ
}

π4 = NIZK{(h1, h, result, R = (A4, B4)), (z) ∶ result = Decz(R)}

AND Combination of OSPACBS.Verify proofs π1, π2, π3, π4

Prover Verifier
t←$ Zq

T1 ∶= ht
1, T2 ∶= ht

T3 ∶= Mt

T4 ∶= (
V
σ1
)t

T5 ∶= At
4

T1, T2, T3, T4, T5

c←$ Zq

or in the random oracle model:
c ∶=H(h1, h, M,validity, V , σ1, R, result,{Ti}5

i=1)

c

a1 ∶= t + cr1

a2 ∶= t + cs
a3 ∶= t + cγ

a4 ∶= t + cz

a1, a2, a3, a4

Accept if all the following relations hold:
ha1

1 = T1Ac
1

ha1 = T2(B1 ⋅ validity−1)c

Ma2 = T3V c

(V
σ1
)a3 = T4 ⋅Rc

ha4
1 = T1hc

Aa4
4 = T5(B4 ⋅ result−1)c

FiguRe 3.7: AND(π1, π2, π3, π4) in OSPACBS.Verify

3.7 PACBS Security analysis

3.7.1 Correctness

The predicate is invariant in the algorithms that comprise the PACBS scheme.

86 Chapter 3. Publicly Auditable Conditional Blind Signatures

Lemma 3.2

Let β = (((n, B, N, W), y2), π1, π2, π3) and x = H1(C1, C2) be the output of
OSPACBS.BlindSign algorithm executed by S in the OSPACBS.Sign protocol.
Then:

Decz(B) = xsg−y2s
2 v−es⇔ pred(C1, C2) = 1

Proof. The result follows from straightforward computations and the homomorphic
properties of the underlying encryption scheme:

Decz(B) = xsg−y2s
2 v−es⇔

Decz((NW)s) = xsg−y2s
2 v−es⇔

Decz(Ns)Decz(W)s = xsg−y2s
2 v−es⇔

nsDecz(W)s = xsg−y2s
2 v−es⇔

xsg−y2s
2 v−esDecz(W)s = xsg−y2s

2 v−es⇔

Decz(W)s = 1⇔

Decz(C2/C1)as = 1

Now since a ≠ 0, Decz(C2/C1)as = 1⇔ Decz(C2/C1) = 1⇔ Decz(C2) = Decz(C1)
which gives the result. ∎

Lemma 3.3

Let (x∗, e∗, σ1, σ2) be U ’s output of the OSPACBS.Sign protocol on message m
and on predicate input (C1, C2). Then it holds that

Decz(σ1) = x∗sg−σ2s
2 v−e∗s⇔ pred(C1, C2) = 1

Proof. Following the protocol description in Figure 3.4:

Decz(σ1) = x∗sg−σ2s
2 v−e∗s⇔

Decz(BEnch(ku
1)) = xsgu1s

1 gu2s
2 vdsg−y2s−u2s

2 v−es−ds⇔

Decz(B)ku
1 = xsku1 g−y2s

2 v−es⇔

Decz(B) = xsg−y2s
2 v−es

and from Lemma 3.2 it holds that Decz(B) = xsg−y2s
2 v−es⇔ pred(C1, C2) = 1. ∎

Using Lemma 3.3 correctness can be proved.

3.7. PACBS Security analysis 87

Theorem 3.6: OSPACBS correctness

The Okamoto-Schnorr PACBS scheme has correctness.

Proof. It always holds that H2(m, x∗) = e∗. Following Lemma 3.3 the PACBS.Verify
algorithm outputs 1 if and only if Decz(R) = 1 and since the blinding factor γ ≠ 0:

Decz(R) = 1 ⇔ Decz(V/σ1) = 1

⇔ Decz(Ms) = Decz(σ1)

⇔ Decz(Ench(validity)s) = Decz(σ1)

⇔ validitys = Decz(σ1)

⇔ x∗sg−σ2s
2 v−e∗s = Decz(σ1)

⇔ pred(C1, C2) = 1

which concludes the proof. ∎

3.7.2 Blindness

The proof follows [Sch01]. Note that πVerify in Algorithm 3.13 depends solely on the
signature.

Lemma 3.4

Let β = (((n, B, N, W),y2), π1, π2, π3) be an output of the OSPACBS.Sign
protocol with public transcript (e, β, σ) and public input x = H1(C1, C2)where
σ = (x∗, e∗, σ1, σ2) is a valid signature onmessage m. Then there exist a unique
tuple (u1, u2, d, r) such that Unblind(β, u1, u2, d, r) = σ where Unblind is the
algorithm issued as the last step of the OSPACBS.Sign protocol, u1, u2, d are
the blinding factors and r is the randomness used to encrypt ku1 .

Proof. Since σ is valid, Figure 3.4 yields about B:

B = Ench(xsg−y2s
2 v−es ⋅ 1)⇒ Decz(B) = xsg−y2s

2 v−es (3.4)

Furthermore, the validity of σ means that in OSPACBS.Verify (Algorithm 3.13):

σ1 = Ms = Ench(x∗sg−σ2s
2 v−e∗s) (3.5)

88 Chapter 3. Publicly Auditable Conditional Blind Signatures

It is immediate from the Blind and Unblind algorithms in Figure 3.4 that the only
possible tuple (u1, u2, d, r) for a valid signature must satisfy:

u1 = logk(Decz(σ1) ⋅Decz(B−1)) (3.6)

and u2 = σ2 − y2, d = e∗ − e, r = rσ1 − rB, where rB is the encryption randomness of
B and rσ1 the randomness in σ1.

The value x̃∗ computed when unblinding with these values equals x∗. From Equa-
tion 3.4 and Equation 3.6:

gu1
1 = ku1s−1

= Decz(σ1)s
−1
Decz(B−1)s

−1
= Decz(σ1)s

−1
x−1gy2

2 ve

From Equation 3.5:
x̃∗ = xgu1

1 gu2
2 vd = x(Decz(σ1)s

−1
x−1gy2

2 ve)gσ2−y2
2 ve∗−e = Decz(σ1)s

−1
gσ2

2 ve∗ = x∗ ∎

As a result:

Theorem 3.7: OSPACBS Blindness

The Okamoto-Schnorr PACBS scheme satisfies perfect blindness.

Proof. Let S∗ be the unbounded adversary in the blindness game in Algorithm 3.6
and viewi = (ei, βi) for i ∈ {0, 1} be his view in each case. From Lemma 3.4 it follows
that there exists a unique tuple (u1, u2, d, r) that maps viewi to σj for both cases of
i, j ∈ {0, 1} and the unbounded adversary can always compute it. This means that the
view of the adversary and the produced signatures are statistically independent. As
a result, in the blindness game (Algorithm 3.6) both signatures σb, σ1−b are perfectly
indistinguishable for S∗ and his advantage in the PACBS-BlindExp is zero. ∎

3.7.3 Unforgeability

Theorem 3.8: OSPACBS Unforgeability

If the OSCBS scheme is l one-more unforgeable then the OSPACBS scheme
is l one-more unforgeable under the assumption that no signatures with the
same input C to the predicate are requested.

Proof. It will be shown that if there exists an A that wins the PACBS-OneMoreForge
game with non-negligible probability, an algorithm B can be constructed that wins
the CBS-OneMoreForge game with non-negligible probability.

3.7. PACBS Security analysis 89

The role of B will be to simulate a PACBS signer for A, by responding to his requests
for signatures without having the signing key s.

If the conversation between A and B is indistinguishable from a conversation be-
tween A and a real OSPACBS signer then A will issue a forgery with non-negligible
probability (by assumption). Then B can utilize it to issue an OSCBS forgery when
interacting with the OSCBS signer S .

FiguRe 3.8: Forging OSPACBS by using OSCBS

An overview of the reduction is presented in Figure 3.8.

The input of B will be the public input of OSCBS namely G, g1, g2, v, k. The CBS
signing oracle S is initialized with s by the challenger in order to be able to answer
signing requests. In order to simulate a PACBS Signer, B generates a random w ∈Zq

and computes h1 = gw
1 ∈ G. Moreover, he selects z ∈ Zq and computes h = hz

1 ∈ G. B
must know the decryption key z in order to be able to check the value of the predicate
and properly derive the validity of the signature generated byA. B initializesAwith
G, g1, g2, v, k, h1, h. A can query the two random oracles H1,H2 and B with C =
(C1, C2) of his choice. As a PACBS-signer, B should be able to answer these requests
indistinguishably from a real execution of the experiment. To do so, B utilizes the
random oracle H and the signing interactions with S .

For the H2 queries thatAmakes, B queries the random oracle H on the same message
and forwards the response.

90 Chapter 3. Publicly Auditable Conditional Blind Signatures

For the H1 queries that Amakes on input C, if H1(C) is not yet defined, B can check
the validity of the predicate since he can decrypt C = (C1, C2) by utilizing z and
check if pred(C) = 1 or equivalently if Decz(C1) = Decz(C2). After the decryption
B proceeds as follows:

– If pred(C) = 1, B begins an interaction (which he might continue or abort later)
with the valid OSCBS signer S and receives the first message x. He setsH1(C) =
x and responds to A with x.

– If pred(C) = 0, B responds with a uniformly selected element of G.

Without loss of generality, it can be assumed that whenever A queries B with C he
has queried H1(C).

To answer the signing queries of A, B proceeds as follows:

When receiving C, e from A, if pred(C) = 1, B continues the interaction started with
S when answering H1(C) by forwarding e.

B receives anOSCBS signature β = (β1, β2) fromS where β2←$ Zq and β1 = Ench((xg−β2
2 v−e)s).

Then B must compute n, N, W , B as specified in Figure 3.4. B proceeds as follows:

– n is computed as specified by the protocol: n = xg−β2
2 v−e. This is straightforward

since all values are known. Indeed, v was provided by the challenger, x, β2 were
provided by S and e by A.

– B can also compute ns = Decz(β1). Note that β1 = Ench(ns) (cf. section 3.4 and
Figure 3.4). Since B knows the decryption key, decryption is straightforward.

– N is computed normally as N = Ench(n, r1) = (hr1
1 , nhr1) = (hr1

1 , nhzr1
1). B also

generates the proof π1 in the normal manner, as he knows the randomness used
in the encryption.

– W is computed as an encryption of 1 since the signature will be valid. B selects
r, (α, γ) and computes r2 = αr +γ and W = Ench(1, r2) = (hr2

1 , hr2) = (hr2
1 , hzr2

1)
which is a valid reencryption of C2

C1
= Ench(1). B simulates the proof π2.

3.7. PACBS Security analysis 91

– To compute B as (NW)s, B must use s, which he does not possess. But he can
compute B using k, ns, r1 and r2 as follows:

(kwr1+wr2 , k(wr1+wr2)zns) =

(gs(wr1+wr2)
1 , gs(wr1+wr2)z

1 ns) =

(gs(wr1)
1 , gs(wr1)z

1 ns)(gs(wr2)
1 , gs(wr2)z

1) =

(hsr1
1 , hsr1z

1 ns)(hsr2
1 , hsr2

1 z) =

(hsr1
1 , hsr1ns)(hsr2

1 , hsr2) =

Ench(n; r1)sEnch(1; r2)s = (NW)s

The proof π3 is simulated as B does not possess s, but the equation holds.

If pred(C) = 0, B does not use S and must construct an invalid signature for A on its
own. This can be done in the following manner:

– B randomly selects β2 ∈Zq.

– B computes n = xg−β2
2 v−e.

– N is computed normally as N = Ench(n, r1) = (hr1
1 , nhr1) = (hr1

1 , nhzr1
1). π1 is

generated as before.

– W must contain the encryption of a random group element. B chooses r3 ∈Zq

and computes gr3
1 n−1 for this reason and setsW = Ench(g

r3
1 n−1, r2) = (hr2

1 , gr3
1 n−1hr2).

– B is computed using k as: (kwr1+wr2 , k(wr1+wr2)zkr3). It is easy to see that B =
(NW)s.

– Proofs π2, π3 are simulated by B.

Assuming that no signing requests with the same predicate input C are issued by
A, all the interactions are indistinguishable from interactions with a real OSPACBS
signer. Using Lemma 3.3 it follows that every valid message-signature outputted by
A is also a valid signature for the OSCBS scheme. Furthermore, if A queries for l
valid signatures then B completes exactly l interactions with S . So:

Pr[PACBS-OneMoreForgeA,OSPACBS = 1] = Pr[CBS-OneMoreForgeB,OSCBS = 1]

which concludes the proof. ∎

Note that the security guarantees for this instantiation hold against adversaries who
cannot ask for a signature with the same challenge more than once. A larger protocol

92 Chapter 3. Publicly Auditable Conditional Blind Signatures

that utilizes this scheme should make sure this restriction holds and deny issuing
signatures on challenges that are already used.

3.7.4 Conditional Verifiability

A malicious user, without any access to either the verification key or the encryption
key, not knowing the decryptions of C1, C2 cannot decide the value of the predicate
to determine whether a received signature is valid or not. This can be proved by a
reduction to the indistinguishability of the underlying encryption scheme.

Theorem 3.9: OSPACBS Conditional Verifiability

The OSPACBS scheme has conditional verifiability.

Proof. Suppose there exists a PPT algorithmA that breaks the conditional verifiability
of the OSPACBS scheme, by winning the game in Algorithm 3.8. Then, there exists
a PPT algorithm B that breaks the indistinguishability of the underlying encryption
scheme.

FiguRe 3.9: Breaking the IND-CPA by utilizing a break in Conditional Verifi-
ability

The interactions of B are:

3.7. PACBS Security analysis 93

– B gets as input the parameters and public key of the underlying encryption
scheme G, h1, h where h = hz

1 for some z.

– B creates keys and parameters for the PACBS scheme. In particular B chooses
random g1, g2, v ∈ G and s ∈ Zq and sets k = gs

1. He hands the parameters
G, g1, g2, v, k, h1, h to A.

– B computes the signatures requested byA by using the OSPACBS.Sign protocol
from Figure 3.4. Note that for signing only the private key s is required. So B
can create signatures without knowing the secret encryption key z.

– When A asks to be challenged on a signature, B selects two group elements
m1, m2 and hands (Ench(m1),Ench(m2)) to the challenger of the IND-CPAprop-
erty of the encryption scheme as his own challenge. He receives C as a response.
B hands the pair (C,Ench(m1)) as the public input for the challenge predi-
cate pred(C,Ench(m1)) and receives e as a response. He computes a signature
(((n, B, N, W), y2), π1, π2, π3) with public input (C,Ench(m1)) and hands it
to A.

– A responds with 0 (valid) or 1 (invalid). In the first case B outputs 1 and in the
second 0.

First, the signatures A receives are identically distributed as real ones since they are
computed in the exact same way. In the case C = Ench(m1) the view ofA is identical
to a real interaction for a valid signature request and in the case C = Ench(m2) it is
identical to an invalid request. It is clear that the advantage ofA in distinguishing be-
tween the two cases is identical to the advantage of B against the indistinguishability
of the underlying encryption scheme. ∎

3.7.5 Public Auditability for signing and verifying

Using the correctness of the protocol, it can be seen that if the statements of the
proofs presented hold, a signature is valid if and only if pred = 1. This means that
for a Signer/Verifier to win one of the two Public Auditability experiments one of the
proofs presented must not hold and he must convince the auditor that it does. Thus,
at least for one proof soundness must not hold, which is a contradiction.

3.7.6 Performance

We now calculate the performance of our scheme. During the signing phase, the
user performs 3 exponentiations for signing and 3 exponentiations for unblinding.

94 Chapter 3. Publicly Auditable Conditional Blind Signatures

The signer performs 10 exponentiations to compute the functionality and 8 exponen-
tiations for the proofs. For the auditing of πSign 18 exponentiations or 12t + 6 are
required.

To verify the signature, if the verifier consists of a single entity 9 proofs are required
for the functionality and 8 to generate the proofs. If the verifier consists of t members,
5t + 4 exponentiations are required to implement the functionality and 4t + 1 for the
proofs. To audit the proof 16 exponentiations are required for 1 member and 8(t+ 1)
for t members.

The results are summarized in Table 3.1. PACBS is quite performance-intensive, but
this justified from the increased security guarantees.

Functionality Entity Exponentiations
PACBS.Sign U 6

PACBS.Sign 1 member S 18
PACBS.Sign t members S 12t + 6

PACBS.AuditSign U 18
PACBS.AuditSign t members U 12t + 6

PACBS.Verify 1 member V 17
PACBS.Verify t members V 9t + 8

PACBS.AuditVrfy 1 member U 16
PACBS.AuditVrfy t members U 8(t + 1)

Table 3.1: Performance of PACBS in exponentiations

3.8 Alternative OSPACBS instantiation

An alternative PACBS instantiation is provided, OSPACBS2, where the signer and the
verifier do not share a key. The key generation algorithm is the same as in Algo-
rithm 3.4 along with h, h1 from Algorithm 3.11. The function embed is defined as in
Equation 3.2. The predicate pred is defined as in Equation 3.3.

The signing protocol is presented in Figure 3.10. The proofs π1, π2, π4 are standard
Okamoto [Oka92] proofs. The proof π3 is similar to the one in Figure 3.5.

The verification algorithm is presented in Algorithm 3.15. The proofs π1, π2, π3 are
similar to the ones from Algorithm 3.13.

The algorithms for OSPACBS.AuditSign, OSPACBS.AuditVrfy are similar to Algo-
rithm 3.12 and Algorithm 3.14 respectively.

Theorem 3.10: OSPACBS Correctness

The protocol OSPACBS2 is correct.

3.8. Alternative OSPACBS instantiation 95

Common input: prms, (C1, C2),pk
U ’s private input: m ∈M

S’s private input : skS = (s1, s2) ∈Zq ×Zq such that v = g−s1
1 g−s2

2
Commitment Phase. The Signer:

– Picks r1, r2 ←$ Zq;

– Computes x ∶= gr1
1 gr2

2 ;

– Sends x to the user.

Blinding Phase. The User:

– Selects blinding factors u1, u2, d←$ Zq;

– Computes x∗ ∶= xgu1
1 gu2

2 vd, e∗ ∶= H(m, x∗), e ∶= e∗ − d;

– Sends e, C1, C2 to the signer.

Signing Phase. The Signer:

– Computes y1 ∶= r1 + es1, y2 ∶= r2 + es2;

– Computes β1 ∶= embed(C2, C1) ⋅Ench(ky1) and β2 ∶= y2;

– Computes:

π1 ← NIZK{(g1, g2, x), (r1, r2) ∶ x = gr1
1 gr2

2 }
π2 ← NIZK{(g1, g2, v), (s1, s2) ∶ v = g−s1

1 g−s2
2 }

π3 ← NIZK{(C1, C2, k, β1), (y1, α, γ) ∶ β1 = embed(C2, C1)Ench(ky1)}
π4 ← NIZK{(g1, g2, x, v, e), (y1, y2) ∶ g

y1
1 gy2

2 = xv−e}

– Outputs β ∶= (x, e, β1, β2, (π1, π2, π3, π4)).

Unblinding Phase. The User:

– Verifies π1, π2, π3, π4;

– Unblinds by computing σ1 ∶= β1 ⋅Ench(ku1) and σ2 ∶= β2 + u2;

– Outputs σ ∶= (x∗, e∗, σ1, σ2).

FiguRe 3.10: The protocolOSPACBS.Sign2⟨S(s1, s2),U(m), prms, (C1, C2),pk⟩

96 Chapter 3. Publicly Auditable Conditional Blind Signatures

Algorithm 3.15: OSPACBS.Verify2(prms,pk, skV, m, σ)
Input : prms,pk = (v, k), skV = (s, z), m, σ = (x∗, e∗, σ1, σ2)
Output: {0, 1}
γ←$ Zq

M ∶= Ench(x∗ ⋅ (g
σ2
2 ve∗)−1)

V ∶= Ms

R ∶= (σ1
V)

γ

result ∶= Decz(R)

π1 ← NIZK{(V , M), (s) ∶ V = Ms}

π2 ← NIZK{(V , σ1, R), (γ) ∶ R = (σ1
V)

γ
}

π3 ← NIZK{(h1, h, result, R), (z) ∶ result = Decz(R)}

d ∶= (result = 1)
πVerify ∶= (M, V , R, result, π1, π2, π3)
return (d, πVerify)

Proof. Starting from Decz(V) straightforward calculations yield:

x∗s ⋅ (gσ2
2 ve∗)−s = (xgu1

1 gu2
2 vd)s ⋅ (gy2

2 ⋅ g
u2
2)
−s ⋅ v−s(e+d) =

xs ⋅ ku1 ⋅ g−sy2
2 ⋅ v−se = gsr1

1 gsr2
2 ⋅ k

u1 ⋅ g−s(r2+es2)
2 ⋅ (g−s1

1 g−s2
2)

−se =

gsr1
1 ⋅ k

u1 ⋅ (g−s1
1)

−se = gs(r1+es1)
1 ⋅ ku1 = ky1+u1

Then: Decz(R) = (k−(y1+u1) ⋅ (embed(C2, C1) ⋅ ky1 ⋅ ku1))γ = (embed(C2, C1))γ.

From there it is evident that Decz(R) = 1⇔ Decz(C1) = Decz(C2). ∎

The security analysis of this alternative instantiation is similar to section 3.7.

3.9 A note on the ROS attack

In [Sch01], Schnorr proposed a new attack against interactive blind signature schemes
([Sch91; Oka92]) and a new problem to characterize their security. Recently, [FPS20;
Ben+20], this attack became practical. Since our scheme indirectly builds onOkamoto
- Schnorr blind signatures, we analyze the effects of this attack on our scheme.

The variation of this attack on the Okamoto - Schnorr blind signatures (cf. Figure 2.8)
with sk = (s1, s2) and pk = v = g−s1

1 g−s2
2 is as following:

– A begins l parallel signing sessions with S.

– S selects {ri1, ri2}l
i=1 ∈Zq and computes {xi ∶= gri1

1 gri2
2 }

l
i=1.

– A selects t≫ l and messages {mj}t
j=1.

3.9. A note on the ROS attack 97

– A selects {aji ∈Zq}t,l
j=1,i=1 and computes {x∗j ∶=∏

l
i=1 x

aji
i }

t
j=1 and {e

∗
j ∶= H(mj, x∗j)}

t
j=1.

– A selects l + 1 out of t equations from the system ∑l
i=1 ajiei = e∗j and produces l

solutions {ei}l
i=1.

– A sends the solutions {ei}l
i=1 as challenges to the S.

– S sends the responses yi1 ∶= ri1 + eis1, yi2 ∶= ri2 + eis2.

– From the solutions A computes a new signature:

σj = (mj, e∗j =
l
∑
i=1

ajiei, σk1 =
l
∑
i=1

ajiyi1, σk2 =
l
∑
i=1

ajiyi2)}

– The forgery is valid since:

gσk1
1 gσk2

2 ve∗j =g∑
l
i=1 ajiyi1

1 g∑
l
i=1 ajiyi2

2 v∑
l
i=1 ajiei

= g∑
l
i=1 aji(ri1+eis1)

1 g∑
l
i=1 aji(ri2+eis2)

2 g
−s1∑l

i=1 ajiei
1 g

−s2∑l
i=1 ajiei

1

= g∑
l
i=1 ajiri1

1 g∑
l
i=1 ajiri2

2 =
l
∏
i=1

x
aji
i = x∗j

The difficulty of the attack is abstracted in the intractability of the following Random
inhomogenities Overdetermined Solvable system of linear equations modulo q - ROS
problem proposed by Schnorr:

Definition 3.10: ROSl problem from [Sch01]

Given an oracle random function H ∶ Zl
q → Zq find coefficients akl ∈ Zq and a

solvable system of l + 1 distinct equations with unknowns e1, ..., el ∈Zq:

l
∑
i=1

ajiei = H(aj1,⋯, ajl), j ∈ [t], t≫ l

The ROS problem does not reduce the unforgeability of a blind signature scheme to
one of the assumptions of subsection 2.1.1, but only on the length of the (prime) group
order.

In [FPS20] it is proved that the blind Schnorr scheme is unforgeable if the One-More
Discrete Log problem [Bel+03] is hard assumption holds and the ROS problem is hard.
However, the second assumption, was found to be weak by [Wag02] and a practical
attack was given while this thesis was being written [Ben+20]. This attack is polyno-
mial in time when l > log2q and subexponential when l is O(log2q).

98 Chapter 3. Publicly Auditable Conditional Blind Signatures

This attack applies to all the schemes we presented in chapter 3. First, in OSCBS
since β1 = ky1 , the forger must select:

σj1 =
l
∏
i=1

kajiyji and σj2 =
l
∑
i=1

ajiβi2 and e∗j =
l
∑
i=1

ajiei (3.7)

to produce a forgery for a valid signature (b = 1) (Figure 3.1) for a specified verifier
with public verification key k. In the reduced round OSCBS, where β1 = (x ⋅ g

−β2
2 ⋅

v−e)s the forger computes again ∏l
i=1 β

aji
i1 and σj2, e∗j as in Equation 3.7. In the en-

crypted reduced round OSCBS, where the signer computes β1 = (gr, β1hr) the forger
must employ the homomorphic properties of the ElGamal cryptosystem and produce:

σj1 = (
l
∏
i=1

griaji ,
l
∏
i=1

β
aji
i1 hriaji) = g∑

l
i=1 riaji ,

l
∏
i=1

β
aji
i1 ⋅ h

∑l
i=1 riaji (3.8)

In both previous cases, the forger must also select random group elements {xi}l
i=1

and make the signer apply them to the protocol.

Finally, in OSPACBS, the forger must issue a signing request with predicate input
(C1, ReEnc(C1)) so as to force the signer to compute a valid signature. As a result,
W will now contain an encryption of 1. Then σj1 is computed exactly as Equation 3.8.

While this attack is applicable to our primitives it does not contradict our unforgeabil-
ity analysis of Theorem 3.3 and Theorem 3.8, where we proved that our proposals are
unforgeable for O(polylog(λ)) parallel sessions, while the attack of [Ben+20] uses
Ω(λ) such sessions to solve the ROS problem. 5

Additionally, since our primitives are part of larger protocols we can employ mech-
anisms at a higher level to compensate for the lack of efficiency that the bound on l
entails. For instance, in the case of forgery, the number of blind signature requests,
will be less than the number of signatures, which can be detected. This check can
be accompanied by further ones to detect duplicates. Finally, in order not to allow
the adversary to take advantage of existing requests, a proof of knowledge of the
plaintext encrypted by C1, C2 must be also provided.

Finally, note that this attack does not apply to Clause blind Schnorr signatures pro-
posed in [FPS20]. For each requested signature by the user, the signer creates two
parallel sessions with commitments x0, x1. The user computes two challenges e0, e1.
But at the last step, the signer flips a coin b←${0, 1} and if b = 0 aborts the signing
session, while if b = 1 generates the signature and concludes the session. Neither the
attack of [Wag02] nor the attack of [Ben+20] are practical now since A must guess

5To be exact, for our schemes to be secure we require l < logQq < log2q parallel sessions where Q is the
number of queries to the random oracle (according to the analysis of [PS00]).

3.9. A note on the ROS attack 99

which session will lead to a valid signature. This is impractical since for l sessions
there are 2l possible selections. The coin used, resembles the conditionality bit of
our signatures. As such, the latter could be used to create a more realistic version of
Clause blind Schnorr signatures, where the signer produces a single commitment and
the user computes a single challenge. Instead of aborting, though, the signer could
generate both a valid and an invalid signature and return them both, in random order,
to the forger. The conditional verifiability property, would hide which one is valid
and which is not, so the forger would have to select one at random in order to pro-
duce the forgery. However, this change would entail modifications to the rest of the
protocols as the user would have to submit both signatures to the signer. We leave
this for future work.

101

4 Electronic Voting Systems and
Models

All models are wrong, but some are
useful

George Box

In section 1.2 we informally described the most important security requirements of
electronic voting systems. In this chapter, we present a more rigorous analysis of the
sought properties, by using game-based formal models. To do so, we investigate the
relevant literature. We accompany these definitions of security by example voting
systems that are of interest in our thesis such as Helios [Adi08], the FOO [FOO92]
and [JCJ05] along with their many variations. In the end, we propose our novel game-
based definitions of everlasting privacy and explore the relations between the security
requirements as made evident by the formal models.

4.1 Voting System Syntax

We begin by describing the components of an abstract voting scheme VS that incor-
porates functionalities from many proposals in the literature. The aim is for it to be
as generic as possible. The formalization is built, by having in mind, election schemes
that are initialized once and reused in many elections. As a result, many functionali-
ties and parameters involved are not present in the analyzed voting schemes. In our
syntax we denote optionality with ?.

VS is associated with three parameters, the security parameter λ, the number of vot-
ers n and the number of possible candidates m. The voters are collectively denoted
by V and express their preferences by possibly using voter supporting devices (VSD),
i.e. software-hardware combinations that allow them to interact with the election
system. The scheme is controlled by an Election Authority EA, which is stateful and
its state is updated in every step of the protocols. In all algorithms we omit the state
update for simplicity. The EA consists of 3 sub-entities the registration authorities
RA, the tallying authority TA and the bulletin board BB. The latter two are always

102 Chapter 4. Electronic Voting Systems and Models

part of VS, while the former appears only in schemes that explicitly deal with inter-
nal registration options. The alternative is that a scheme uses an external registration
service. The BB denotes the public transcript of all executed protocols. It contains
all the election-related data (ballots, parameters, proofs etc.) As we described in sub-
section 2.1.2 it is append-only. Therefore, whenever it is used, it contains all the data
already written to it. Thus, the BB would suffice as the public input in the definitions
of the functionalities of VS. However, when we wish to emphasize the use of such
parameters, we also include specific public data. When we would like to refer to the
bulletin board as functionality and not as a data store we use amethod invocation-like
syntax and we write BB().

Definition 4.1: Voting scheme

A voting scheme

VS =(Setup, Register, SetupElection, Authorize,

Vote, Valid, VerifyBallot, Tally, Verify)

is a tuple of algorithms and protocols executed by the election authority EA =
(RA, TA), the bulletin board BB and the set of voters V = {V1, . . . , Vn} param-
eterized by λ, n, m ∈N such that:

– (prms, skEA,pkEA, πSetup) ∶= VS.Setup(1λ)
– (pki?, (ski,pki)?) ∶= VS.Register?⟨RA(skRA?), Vi()⟩
– (VEl, CS) ∶= VS.SetupElection?(skEA, n, m, prms, L)
– (⊥, (bi, πbi

, ri?)) ∶= VS.Vote⟨EA?(skEA?), Vi(vti, ski?), prms,pkTA,pki?, VEl, CS⟩
– BB⇐ VS.Cast?⟨BB(), Vi(bi, πbi

)⟩
– {0, 1} = VS.Valid(BB, b)
– {0, 1} = VS.VerifyBallot(ri, bi, BB, prms,pkEA, L)
– (T, πT) ∶= VS.Tally(skTA?, CS, BB)
– {0, 1} = VS.Verify(T, πT, prms,pkEA, BB, CS, VEl)

We now detail the various functionalities found in Definition 4.1:

– (prms, skEA,pkEA, πSetup) ∶= VS.Setup(1λ)

Setup is an algorithm executed by the EA which on input 1λ outputs public
parameters of the VS and a key pair of the EA (skEA,pkEA). The bulletin board
transcript BB is appended with (prms,pkEA). Note, that if the scheme consists
of both RA, TA then distinct key pairs (skTA,pkTA), (skRA,pkRA) are generated.

– (pki?, (ski,pki)?) ∶= VS.Register?⟨RA(skRA?), Vi()⟩

4.1. Voting System Syntax 103

Register is a protocol executed between a voter Vi and the RA. We assume that
the voter id, is public i ∈ [n]. The output is a voter public key pki (available to
both parties) and a secret key ski as a private output of the voter, which takes
the role of a voter credential. The values (i,pki) are appended to the BB. We
must stress here, that Register is optional, as the voters could be identified by
an external service or by non-electronic means (in-person). Furthermore, even
if it is used, it is not obligatory for voters to have a key pair. The RA might use
its secret key as a signing key and sign each voter credential, or it might use it
to ensure the authenticity of the election roll when it posts the public list in the
BB. Registration is an important part of remote voting schemes, however, and
as such it is included in our model. In such protocols the registration phase is
meant to be executed once and used for multiple elections.

– (VEl, CS) ∶= VS.SetupElection?(skEA?, n, m, prms, L)

The EA creates a new election using as input its secret key skEA, the number of
voters n, the number of candidates m and additional election information (e.g.
start and end times). The SetupElection functionality outputs the set of identities
of eligible voters for the particular election VEl ⊆ [n], along with their public
keys and the candidate slate CS which contains encodings of the choices. The
tuple of lists (VEl, CS) is posted to the BB. Note that if there is no need for the
EA to sign the output of this functionality, its secret key is not required.

– (⊥, (bi, πbi
, ri?)) ∶= VS.Vote⟨EA?(skEA?), Vi(vti, i, ski?), prms,pkTA,pki?, VEl, CS⟩

Vote is a protocol executed between the EA and a voter Vi which aims to cre-
ate and authorize the ballot. The voter’s private input is her choice of candidate
ci ∈ CS and the public voter identity i which could be the legal name of a voter or
an email address. Optionally, in systems like [JCJ05] that require private creden-
tials for voter authentication, her secret key ski. The EA can play an active role
in the protocol, by authorizing ballots created by the voter. This is typically done
by signing ballots as in [FOO92]. The EA checks voter identification informa-
tion and creates a signature. Everybody can verify it for the scheme to provide
eligibility verifiability. In that case, the EA requires a private input like a secret
key skEA. The public input consists of the system parameters, the correspond-
ing public keys pkTA,pki, the set of eligible voters VEl and the candidate slate
CS. The protocol outputs the ballot bi, which is a transformation (encryption
or commitment) of vti and a proof πbi

of the correctness of this transforma-
tion, usually a NIZK (cf. section 2.4.1). Optionally, it outputs a receipt, so that
the voter can check if her vote will be later counted or not. In voting systems,
where the ballot is created by encryption of the voter choice, the receipt could

104 Chapter 4. Electronic Voting Systems and Models

be the randomness used to encrypt the vote. The election authority receives no
output from this functionality. We again assume that the protocol transcript is
appended to the BB. Coercion resistant voting schemes, also use an extra func-
tionality that allows the voter to evade coercion. In some systems, this func-
tionality is a simple repetition of VS.Vote, while in others it is combined with
fakekey - a credential generation mechanism. Finally in vote-and-go schemes
the VS.Vote protocol can be replaced by an algorithm VS.Vote(vti, i, ski?).

– BB⇐ VS.Cast?⟨BB(), Vi(bi, πbi
)⟩

Cast is a protocol executed between the voter Vi and the bulletin board BB.
The voter Vi essentially appends a transformation of the authorized ballot bi to
the election transcript. The transformation must not render the authorization
information obsolete. One such possible transformation is the unblinding of
a signature as in [FOO92], but other might be applicable too. In most voting
schemes the Vote and Cast functionalities are merged into a single functionality.

– {0, 1} = VS.Valid(BB, b)

Valid is an algorithm executed by the BB when the ballot b is to be appended.
It performs various checks in order to make sure that the ballot conforms to
the specifications set by the EA. For instance, it verifies the proofs of correct
ballot formation. Additionally, to avoid some attacks, it might check that there
are no exact copies of the encrypted contents of the ballot inside the BB. This
functionality is sometimes executed by the EA, but it can also be embedded into
the BB.

– {0, 1} = VS.VerifyBallot(ri, bi, BB, prms,pkEA, L)

VerifyBallot is an algorithm executed by the voter with input the receipt ri re-
ceived during voting, her ballot bi, the contents of the BB. It is meant to support
individual verifiability, where a voter verifies that her ballot will be counted.

– (T, πT) ∶= VS.Tally(skTA?, BB)

Tally is an algorithm executed by the election authority with input the parame-
ters of the scheme prms and the transcript BB of the bulletin board which con-
tains the ballot and outputs the election tally T and a proof πT. The output is
appended to the bulletin board BB. In case, the ballots are decrypted the TA
provides proof of correct decryption. If the ballots are not decrypted, then ev-
eryone can perform this function.

– {0, 1} = VS.Verify(T, πT, prms,pkEA, BB, CS, VEl)

4.2. Helios Case Study 105

Verify is an algorithm executed by any interested party (voters or public interest
organizations) with input the election tally T, the proof of correct computation
πbi

the parameters of the scheme prms, the public key of the pkTA, the contents
of the bulletin board BB, the candidate slate CS and the set of eligible voters
for the election VEl. The output is a bit representing the result of the election
verification. Verify can be executed by any interested party using all the ballots,
for universal verifiability purposes, since all inputs can be found in the BB.

Every voting protocol is associated with a function result that computes the tally
based on the plaintext of the ballots, i.e. result ∶ CS→ Rwhere R is the set of all possi-
ble results. The purpose of this function is to present the ‘correct’ tally of the election
in order to compare it with the output of the Tally algorithm. In some schemes, the
voter identity might play some part in the result function. For instance, if it repre-
sents a credential, only votes with correct credentials will be counted. Consequently,
a more general representation of the result function would be result ∶ V ×CS→ R.

A voting scheme is intrinsically correct if result({vti}n
i=1) = Tally(⋅, BB) where BB =

{bi}n
i=1.

4.2 Helios Case Study

Helios [Adi08] can be considered a reference voting system. Much of its workflow
is used in other election systems. It also serves as a model for the property of ver-
ifiability, as it provides this property without the need to trust the members of the
TA. Its initial version is very closely based on a well-known voting protocol from
[CGS97]. The main addition concerns mechanisms to capture voter intent. It works
in the unsupervised setting allowing remote voting through the internet. However,
as it is designed for low coercion environments the only way to defeat a coercer is
by re-voting. Initially it supported both tallying using mixnets and homomorphic en-
cryption. However, currently only the homomorphic tallying is maintained. A fork
of Helios, Zeus [Tso+13] enables tallying using mixnets. It has been used in many
binding elections as described in [MPQ09] and it has been widely analyzed both for
verifiability and privacy leading to many variations [BPW12; Cor+14; CGG19].

Main workflow

The entities comprising the system consist of voters, election administrators EA and
tellers TA. The BB is a centralized database controlled by the EA. Both the EA and
the BB do not participate in the cryptographic protocol but perform helper functions.

106 Chapter 4. Electronic Voting Systems and Models

Helios does not support all functionalities from section 4.1. In fact, in the basic ver-
sion:

VSHELIOS = (Setup, Vote, VerifyBallot, Tally, Verify)

Newer variations have added a registration authority RA and the relevant function-
alities.

Setup. The EA selects the members of the TA and generates the cryptographic pa-
rameters prms = (G, g, q) of the election as well as the keys of the TA (pkTA, skTA).
The skTA is shared among the tellers, by using the scheme of section 2.2. Each teller
must also post a proof πSetup of correct share construction, i.e. a proofNIZK{(G, g,pki), ski ∶
pki = gski}i∈TA which is a Schnorr proof πS (cf. section 2.4.1).

The cryptographic parameters, the election public key and its shares are posted in the
BB joined with πSetup. The EA creates the candidate list CS. This setup is repeated
for each election. As a result, there is no SetupElection functionality. A list of eligible
voters VEl is selected by the authorities. Similarly, in the most used version, there is
no registration authority. It is assumed that the eligible voters are authenticated using
external services. The EA inputs all these parameters to a hash function to create the
election fingerprint and post it to the BB.

Vote. Voting takes place through a web browser, which connects to the BB and
downloads the election public data and recomputes the fingerprint for validation. All
computations are performed locally on the client browser, which can be considered
the voter VSD. When the voter wants to cast her vote, the Helios client software
simulates a voting booth, by disabling all network connectivity. The voter creates her
ballot by encrypting her candidate choice using exponential ElGamal (section 2.2).
When there are multiple candidate choices each voter must input either 0 or 1 to
indicate that she prefers the particular voter. If homomorphic tallying is to be used,
then the voter must prove that her vote is valid, i.e. that each candidate received
a preference that consisted either of 0 or of 1, and that each voter voted for only
one candidate (that is the sum of the preferences equals to 1). This is performed
through a disjunction of Σ-protocols from [CGS97] that a voter has produced a correct
encryption of a message from a known set (cf. section 2.4.1).

Then the voter decides whether she will cast or audit the vote. In the latter case,
the randomness used to encrypt the vote is revealed and the voter can re-compute
the ballot using a tool of her choice to check if it matches with the encryption per-
formed by the system. An audited vote cannot be cast. After all voters have cast their
ballots, they are posted to the BB together with the voter identities, by the Helios
server, in order for the voter to check if the ballot will be counted. Note that the

4.2. Helios Case Study 107

auditing protocol does not use the voter identity. As a result, the ballot consists of:
b = (i,vt, πEnc, πb), where vt contains an encryption of m ∈ {0, 1} for each candi-
date, πEnc contains the non interactive PoK for the correctness of each encryption
and πb is the proof of correctness for the entire ballot.

Alternatively, in [MPQ09] voter aliases are provided by a registration authority RA.
One of the reasons for this variation, is that if a ballot is accompanied with the voter
ID, then it leaks which voters abstained, which might be illegal in some jurisdictions.
A further variation is to post the ballots to the BB without names or aliases. As a
minor coercion countermeasure, the voters can re-vote. Only the last ballot is counted
per voter.

VerifyBallot. The EA provides as a receipt for voters to check their votes, the ran-
domness used to create the encryptions posted on the BB. For individual verifiability
the voter can create encryptions of their choices using third-party tools and pinpoint
the exact bits on the BB (under their names or by using a search algorithm).

Tally. In the original mixnet-based version, when the voting phase has concluded,
the ballots are run through a verifiable shuffle and then jointly decrypted by themem-
bers of the TA, who then produces the result. In the homomorphic version, all the
ballots are multiplied, and the result is decrypted, are partially decrypted. All de-
cryptions are accompanied with a proof of correct decryption πDec from [CGS97] (cf.
section 2.4.1). The EA combines the partial decryptions to create the decryption of
the complete tally.

Verify. In order to verify the election every interested participant can check the
proofs generated by the various authorities πSetup,{(πEnc, πb)}VR, πDec.

This main workflow described in this section is included in Helios 2.0. The currently
deployed Helios 3.0 expands this functionality with practical additions that make reg-
istration of the system easier.

Attacks and Variations

There have been numerous attacks on Helios’ verifiability, both concerning the im-
plementation details and the general security model. The former can take advantage
of programming errors and oversights as well as the difficulty of implementing se-
cure functionality over an insecure medium. Furthermore, they can be caused by the
selection of cryptographic parameters, such as groups and candidate encodings. They
have been studied in detail in [ED10; CE16]. While they are by no means of negligible
importance, here we focus on attacks on the model of the Helios voting scheme.

108 Chapter 4. Electronic Voting Systems and Models

Clash attacks Clash attacks were discovered by [KTV12b]. The corrupted EA pro-
vides voters with identical ballots. When they try to verify their receipts the verifica-
tion is successful, however they are verifying the same ballot and not their individual
ones. As a result, the BB is free to modify the rest of the ballots, to candidates of
its liking. In the original Helios variant, this attack cannot be mounted, because of
the unique ciphertext produced by the ElGamal encryption. So, if two distinct voters
discover next to their names an identical random string, it means that the EA has
performed the clash attack.

In the Helios variant with aliases [MPQ09] this attack can be performed if the cor-
rupted VSD colludes with the RA issuing the pseudonyms. The RA issues the same
alias to some voters that will choose the same candidate with very high probability
(e.g. members of the same party). The VSD always uses the same random coins for
these voters (in all audits). As a result, when the voter verifies their vote, all the
voters with the same alias will successfully pass the verification. The BB can now
replace the identical ballots with the ones of its liking. According to [KTV12b], the
clash attack will not be detected in the audits, as the audit procedure checks that the
encryption of the candidate using the specified randomness always produces the au-
dited ciphertext. This attack will not work, if the random coins used in successive
audits are revealed to the voter.

To perform the clash attack on the variation of Helios where only the ballot contents
are posted on the BB, exactly the same sequence of random coins must be used by
the VSD. This means that all the voters that perform a single audit will be provided
with randomness r1, all the voters that perform two audits will be provided with
randomness r2 etc., resulting in a series of identical ballots. The malicious BB can
intercept the identical ballots in constant time, using a hash table, and inject ballots
of its own.

Both attacks of [KTV12b] can be deterred if the ballot is posted on theBB immediately
after voting and not when the voting period has expired. Another solution is to let
voter contribute their own randomness.

Weak Fiat-Shamir transform (Helios-BPW) Amore serious attack was noted in
[BPW12] and was briefly mentioned in section 2.4.1. The [CGS97] protocol on which
homomorphic Helios is based, employs several Σ-protocols for the voter to prove that
she cast a correct vote, for the members of the TA to prove that the public key shares
have been correctly computed and for the TA to prove that the result is correctly
decrypted for the homomorphic product of the votes. These Σ-protocols have been
turned non-interactive, by using the weak version of the Fiat-Shamir heuristic [FS86],
where the random oracle is applied to the commitment message only.

4.2. Helios Case Study 109

The voters and the TA can exploit this weakness and adaptively change the NIZK of
correct vote encryption, by altering the public key to construct a proof that their vote
encodes vt ∈ {0, 1}, when in fact they encode a vote vt ∉ {0, 1}. This will mean that
an arbitrary number of votes will be added to the tally, in an undetected manner. The
proof will verify correctly, as the real public key is not an input to the random oracle
call.

The same technique can be used by a malicious member of the TA to create a proof
of correctness of its public key share, even though that it does not correspond to
the correctly assigned private key. As a result, when the shares are combined from
the decryption of the result, the malicious teller will contribute a random private key
share, whichwill make the result decrypt to a random element ofZq. If left unchecked
(e.g. against the maximum number of voters) this will result in a brute force search
for a large discrete logarithm, causing a Denial of Service attack.

A simple fix for these attacks, is to use the strong Fiat-Shamir transform as proposed
by [BPW12] and include the complete statement to be proved into the random oracle
call. Similar attacks have beenmade against the privacy of the Helios system, and will
be discussed in the next section. The variation of Helios with the strong Fiat-Shamir
heuristic is referred to the bibliography as Helios-BPW.

Helios with credentials A takeaway from the clash attack is that a corrupted BB
can alter votes. In the original variant of Helios, this was not applicable as the cor-
rupted BB should indicate to which (real-world) voter identities these votes corre-
spond. As a result, if a voter saw a vote under her name, when in fact she was ab-
sent during the election, she would probably complain. However, as mentioned in
[Cor+14], posting the real-world identities of voters is not always legal and many
voters that abstain have no interest in the election anyway (although many of their
acquaintances might). In order to control the BB ability to stuff ballots [Cor+14] pro-
pose to use a registration authority RA, that issues credentials, i.e. voter pseudonyms
that allow voter authentication and are disassociated from real-world voter identities.
This variation of Helios is called Helios with credentials or Helios-C. The credentials
for Helios-C consist of a public and private counterpart. The voters receive their pri-
vate counterpart (through an offline phase) and use it to sign their ballots (encrypted
votes) in the Vote functionality. The public keys are made available in a list and can
be used to validate the signature ballots. This functionality can be executed indepen-
dently from voters for individual verifiability, during tallying from the members of
the TA and during the auditing for universal verifiability. The existence of an inde-
pendent RA changes the trust assumptions and leads to two variations of verifiability

110 Chapter 4. Electronic Voting Systems and Models

which will be explored in the following sections. A system that bears many similar-
ities to Helios with credentials is Belenios [CGG19]. Another variation of Helios to
add eligibility verifiability is proposed in [Sri+14].

Lack of ballot independence and ballot weeding Ballot independence is a prop-
erty that does not allow a voter to replay another voter’s interaction with the voting
system either exactly or in a related manner. For instance, a violation of ballot inde-
pendence would be for a voter to cast an exact replica of a ballot on the BB. Helios
does not provide ballot independence and this fact has been employed in [CS13] to
break ballot secrecy.

For instance, in an election with 3 voters, assume that V1 and V2 have already cast
their ballots. The BB will contain the following tuples:

(ID1, b1) = (vt1, πEnc,1, πb,1)

(ID2, b2) = (vt2, πEnc,2, πb,2)

Assume that A controls V3 and wants to learn how V1 voted. He can replay an ex-
act copy of b1, which is a valid ballot. When the votes are decrypted then whoever
candidate receives 2 votes, will be revealed to be the option preferred by V1. While
this attack, is artificial in nature as it is targeted only to elections with 3 candidates,
[CS13], show how it can be used to break privacy in precinct-based elections where
the adversary can learn with the help of a few corrupted voter and with great confi-
dence how a particular voter voted in small precincts, that publish their partial tallies.

Other variations of this attack, exploit the malleability of the cryptosystem and the
NIZK proofs in order not to post an exact copy of a ballot contained in the BB [CS13]:

– Adding multiples of the group order to the response s of the NIZK.

– Permuting the elements of the vectors

– Reencrypting (homomorphically changing) all elements of the ballots and the
respective proofs

In order to thwart these attacks, [CS13] propose that the Helios BB must be changed
in order to accept unique ciphertexts, make the NIZK proofs non-malleable and only
allow ciphertexts that encrypt proper elements of G. Additionally, the random oracle
call in the Fiat-Shamir heuristic must include the voter identity in order to bind each
NIZK to a unique voter and prevent ballot copying. These changes are collectively
called ballot weeding.

As a result, the secure version of Helios that attends to all the attacks in the literature
is Helios-C-BPW with ballot weeding.

4.3. Election Verifiability 111

KTV-Helios An extension of Helios-C, that uses many techniques inspired from
coercion resistant schemes, that are of interest to our case was proposed in [KTV15;
BKV17] and will be referred to as Helios-KTV. The target property that this variation
aims to satisfy is participation privacy, that is to hide who voted in order to protect
the identities of those who abstained. Systems with credentials violate it, as a simple
search for a vote corresponding to a public credential, can reveal if the relevant voter
participated in the election.

The basic method to achieve participation privacy is to add dummy votes for all vot-
ers. These dummy votes are null, i.e. they do not affect the result, as they are encryp-
tions of 0. They can be added by the EA and other interested parties. This idea was
first proposed in [JCJ05] and is also used in our scheme in chapter 5. The IND-CPA
property of the underlying cryptosystem prevents anyone from distinguishing real
from dummy ballots. In particular, Helios-C is extended with a new functionality
VoteDummy(i) that invokes VS.Vote with voting option vt = 0 for the voter. The re-
sulting encrypted ballot is added to the BB for the voter and is accompanied by πEnc

of correct encryption. Before tallying begins, the TA multiplies all the entries for a
particular voter to receive the final ballot and anonymizes. Subsequently, a PET is
performed between a deterministic encryption of each vote and the final output, to
check vote validity.

Another interesting aspect of KTV-Helios is that it provides a form of receipt-freeness,
by using a form of deniable vote updating, detailed in section 4.4.1.

4.3 Election Verifiability

A short informal introduction to verifiability was given in section 1.2. Election ver-
ifiability is the property that allows the voters to regain the trust endangered by the
volatile nature of computer systems that implement e-voting functionalities. This
lack of trust is made worse when combined with the motivation for malice inherent
in all types of elections due to the enormous gains of the winners. In this section, we
will focus on formal definitions of verifiability, that can be used to model our voting
scheme presented in chapter 5.

Recall that verifiability is not a monolithic concept. It comprises many sub notions
that capture specific parts of voting systems and processes. Definitions given for
these sub notions are often incomplete and tailored to specific systems. There are
two encompassing notions that holistically embody them.

End-To-End verifiability, now a folklore term, was initially proposed in a series of
works by Chaum, Adida and Neff [Cha04; Nef04; AN06; Ben06]. It is an umbrella

112 Chapter 4. Electronic Voting Systems and Models

term for the properties we mentioned in section 1.2 cast as intended, recorded as cast
and tallied as recorded. Its main emphasis is on accurately and securely conveying
voter intent to the election system. The predominant solution to achieve it, aka the
cast-or-audit mechanism (Benaloh challenge) [Ben06], especially in the manner used
in the most successful remote voting scheme Helios [Adi08], can be made compatible
with any remote voting scheme, as the one presented in this thesis. Consequently,
we do not deal at all with cast-as-intended verifiability, despite its huge importance.
In what follows, we will use the alternative notion of Election verifiability as it is
proposed by [SFC15] formalized in the computational setting. It comprises 3 notions:
Individual, Universal and Eligibility verifiability. The first two correspond to recorded
as cast and tallied as recorded verifiability, respectively. Eligibility verifiability is often
considered as contained within universal verifiability in some definitions, while other
treat it as a separate concept. We discuss both possibilities.

Trust assumptions Since the essence of verifiability is to protect against systemic
errors or malice, it makes sense to consider the election authorities that control the
system as adversarial. As a result, in formal models, the EA either as a whole or
in part (RA, TA, BB) is considered to be completely corrupt by A. This means, that
even if they consist of many members (with conflicting interests), we must assume
that they collude in order to attack the system. Consequently, schemes that rely on
at least one honest participant, are not verifiable [MPT20].

In systems, where the components of the EA handle different functionalities, there
are nuances of verifiability that differ in their trust assumptions. For instance, for uni-
versal verifiability the TA must be completely corrupt as it handles vote tallying. For
eligibility verifiability the same applies to the RA. An open question is whether the
BB is considered corrupt or not. In many implementations, it is completely controlled
by the EA and as a result, it this question makes no sense. Theoretically however is an
independent component subsection 2.1.2, and if treated as such then some interesting
attacks can come up, leading to variations that fix them.

Regarding voters, the A can either statically corrupt some of them at the beginning
of the protocol, or dynamically during its execution. These are denoted by VCorr. The
rest of the voters are assumed to be honest and denoted by VHon.

A real-world problem with honest voters is that they do not always perform the veri-
fication procedure. This has various effects in the verifiability guarantees, but surpris-
ingly even in privacy guarantees [CL18] as wewill see in section 4.5. Some definitions
of verifiability [Cor+14; KZZ15b; Cor+16] take this into account concluding that for
a voting system to be verifiable, the following guarantees can be provided:

– All the votes of the voters who check are included in the tally.

4.3. Election Verifiability 113

– Some of the votes of the voters who do not check are included in the tally.

– There is no ballot stuffing or equivalently the number of adversary-cast votes
do not exceed the number of corrupted voters.

4.3.1 Individual verifiability

Individual verifiability, also called traceability according to [JMP13], was first used in
the context of mixnet-based anonymous channels, where it indicated the capacity of
senders to verify that their message reached the intended recipients [SK95]. In the
context of electronic voting, it refers to voters verifying that their vote was included
in the tally. The architecture of most voting systems proposed in the literature makes
this equivalent to votes being present in the BB, assuming that all such ballots will be
counted. As a result, for a voting system to be individually verifiable, the voter must
be able to locate her ballot in the BB.

This does not apply to voting systems, mostly aiming for coercion resistance, where
the vote might indeed reside in the BB, but this does not automatically mean that it
will be counted, since this depends on the validity of credentials. This is the case with
our voting system, as well(cf.section 5.2). When we refer to the ballot we mean the
version of it that will be counted, and not some intermediary version.

A necessary condition for individual verifiability is that the ballots are unique. This
is formally defined using the game Algorithm 4.1, first proposed in [SFC15]. There
are two variations for this game. The first applies to systems without any registration
phase, that use some external mechanism to authenticate the voters, like the original
version Helios. The adversary generates the public parameters of the election system
and selects two different choices from the adversary generated CS to dictate to the
voter. The adversarywins the game if it canmanage to create a clash, i.e. two identical
ballots.

Algorithm 4.1: IndVerExtA,VS from [SFC15]
Input : security parameter λ
Output: {0, 1}
(prms,pkTA, CS)← A(1λ)
(vt0,vt1)← A()
b0 ∶= VS.Vote⟨EA(), Vi(vt0), prms,pkTA, VEl, CS, BB⟩
b1 ∶= VS.Vote⟨EA(), Vi(vt1), prms,pkTA, VEl, CS, BB⟩
if b0 = b1 AND b1 ≠ � then

return 1
else

return 0
end

114 Chapter 4. Electronic Voting Systems and Models

From this definition it is evident, that a voting system that casts the votes in plaintext,
cannot possess individual verifiability. In this respect, traditional voting systems do
not possess individual verifiability. A simple way to achieve this property in elec-
tronic voting is to use a probabilistic encryption scheme like ElGamal [Gam85].

A similar game can be used in the case of a voting scheme that supports internal
authentication, by a registration authority that creates and distributes credentials to
voters. Again, the adversary generates the parameters for the voting system and
simulates the RA in registering the voters and generating their private and public
credentials. A sanity check is performed that all voters have different private keys,
since two voters with the same private key are essentially the same. Subsequently the
adversary selects two honest voters and two voting options for them. The adversary
simulates the RA in executing the vote-authorization and casting protocol with the
voter to produce the ballots. Even though the adversary participates in the protocol,
its input partly originates from the honest voters. As a result, at least these parts will
be unique and therefore distinguishable.

Algorithm 4.2: IndVerintA,VS from [SFC15]
Input : security parameter λ
Output: {0, 1}
(prms,pkRA, skRA,pkTA, CS)← A(1λ)
{(pki, ski)← VS.Register⟨A(skRA), Vi()⟩}

n
i=1

if ∃(i, j) ∶ ski = skj AND i ≠ j then
return 0

end
VR ∶= {pki}n

i=1
VCorr ← A(corrupt)
(vt0,vt1, i, j)← A()
if i, j ∈ VCorr OR i = j then

return 0
end
bi ∶= VS.Vote⟨A(skRA), Vi(vt0, ski), prms,pkTA, VEl, CS, BB⟩
bj ∶= VS.Vote⟨A(skRA), Vj(vt1, sk j), prms,pkTA, VEl, CS, BB⟩
if bi = bj AND bi ≠ � then

return 1
else

return 0
end

4.3. Election Verifiability 115

Definition 4.2: Individual verifiability

A voting system VS with external (internal) authentication satisfies individual
verifiability, if for all adversaries A there exists a negligible function negl(λ)
such that: Pr[IndVerext(int)A,VS (λ) = 1] ≤ negl(λ)

4.3.2 Universal verifiability

Universal verifiability is a concept first explored in [SK95] to contrast individual veri-
fiability in mixnet-based anonymous channels. While individual verifiability guaran-
teed delivery for a single message, or, in the case of voting, information that a single
vote was included in the tally, universal verifiability allows every interested party, in-
ternal or external, to verify that all messages were processed correctly or that all the
votes were tallied. Universal verifiability is the most studied property of electronic
voting systems with many definitions present in the literature (e.g. [Ben87; JCJ05;
KTV12b; KZZ15a; Cor+14; SFC15]) and many more, surveyed in [Cor+16].

The essence of universal verifiability is that the adversary cannot come up with a tally
TA that is different from the correct tally of the election, along with fabricated ad-
versarial evidence BB, πTA that cause the incorrect tally to pass verification. In order
to express the correct result of the election, we make use of a function correct− tally
that retrieves the ballot contents from each ballot in the BB and provides them to
the result function in order to calculate the fair objective outcome of the election, re-
gardless of the influence of corrupted parties. It serves as a baseline to compare the
output of the tally function which is fed from the contents of the BB. The various
definitions in the literature define many ways to compute this result function in an
ideal way; actually, only the corrupted voters are of interest. In [KZZ15a], there must
exist an extractor algorithm that on input the election transcript can extract the votes
and compute the result. In other definitions [KTV10; Cor+14], only the existence of
such votes is required, not their exact specification. In [JCJ05] a game-based defi-
nition of correctness is given, and assuming the tally is correct then verifiability is
defined against it. For the correct− tally function we use the definition from [SFC15],
which states that a candidate component of a tally is l, if and only if there are exactly
l ballots in the BB cast for the specific candidate. The game in Algorithm 4.3 from
[SFC15] captures the essence of of universal verifiability.

In the case of voting with credentials, the definition must be adapted. This is the
point of the game in Algorithm 4.3. The result function changes though to support
only valid votes and not all cast votes, since some of the votes cast will not be counted.

Based on these games the definition of universal verifiability can be provided:

116 Chapter 4. Electronic Voting Systems and Models

Algorithm 4.3: UniVerExtA,VS from [SFC15]
Input : security parameter λ
Output: {0, 1}
(prms,pkTA, CS, BB,TA, πTA)← A(1λ)
T← correct− tally(BB)
if TA ≠ T AND VS.Verify(TA, πTA , prms,pkEA, BB, CS, VEl) = 1 then

return 1
else

return 0
end

Algorithm 4.4: UniVerextA,VS from [SFC15]
Input : security parameter λ
Output: {0, 1}
(prms,pkRA, skRA,pkTA, skTA, CS)← A(1λ)
{(pki, ski)← VS.Register⟨A(skRA), Vi()⟩}

n
i=1

if ∃(i, j) ∶ ski = skj AND i ≠ j then
return 0

end
VR ∶= {pki}n

i=1
(prms,pkTA, CS, BB,TA, πTA)← A({ski}n

i=1, VR, 1λ)
T← correct− tally(BB)
if TA ≠ T AND VS.Verify(TA, πTA , prms,pkEA, BB, CS, VEl) = 1 then

return 1
else

return 0
end

4.3. Election Verifiability 117

Definition 4.3: Universal verifiability

A voting system VS with external (internal) authentication satisfies universal
verifiability, if for all adversaries A there exists a negligible function negl(λ)
such that: Pr[UniVerext(int)A,VS (λ) = 1] ≤ negl(λ)

Beyond these essential universal verifiability definitions there are other things that
must be considered. [Cor+16] highlights the following points:

– Behavior of honest voters toward verification of their ballots. Early definitions of
universal verifiability [Ben87], expect all the voters to perform the verification
process (either for ballot casting or for tallying). However, this not what hap-
pens in reality. Most voters do not verify that their votes are present in the BB
nor that the system took them into account. As a result, an adversary can drop
or alter votes without being detected. The latter is of course more serious. A
verifiability definition should have a bound on the number of honest voters that
do not perform the verification process.

– Existence of a registration authority. Although universal verifiability is mainly
concerned with the tallying process, the latter can depend on the eligibility of
voters. Identification, authentication and eligibility is usually performed by a
registration authority and represented by handling tokens to the voters that
function as credentials. A corrupt registration authority can handle the same
credential to many voters or handle invalid credentials to some others leading
to not counted votes. Furthermore, it can create credentials for non-existent
voters or many credentials for one voter leading to ballot stuffing. All these
must be taken into account during tallying.

– Behavior of the BB. In many voting systems (such as the initial version of He-
lios [Adi08] and the JCJ scheme [JCJ05]), the BB plays only a passive role, as a
datastore of votes. ‘Smarter’ BB can validate proofs of correct ballot formation
or perform duplicate weeding (i.e. check that there is no identical copy of the
ballot ciphertext). In voting systems with RAs, such as Helios-C [Cor+14] or
Belenios [CGG19], it can additionally validate the credentials of the voters. In
these cases. a corrupt BB can drop votes claiming an invalid credential or stuff
ballots for voters that did not cast any.

Although the last two observations are related to eligibility verifiability, they also
affect the outcome of the elections. As a result, they are part of universal verifiability
as well. In fact, in systems with a RA, [Cor+14] two types of universal verifiability
can be defined:

118 Chapter 4. Electronic Voting Systems and Models

– Weak universal verifiability assumes that both the BB and the RA are honest.
The TA is corrupt as always.

– Strong universal verifiability assumes that the BB and the RA are not concur-
rently dishonest. As a result, in order to be verifiable, a voting system must
withstand attacks by an adversary that controls both the TA and the BB, while
the RA is honest and attacks by an adversary that controls both the TA and the
RA but not the BB.

Weak universal verifiability can be defined using the game in Algorithm 4.5 from
[Cor+14]. In this game, the adversary generates the keying material of the TA that
is under his control. Since the RA and the BB are assumed honest, he can access
them only through the respective oracles Register, Cast, which create the voter cre-
dentials and cast the ballots respectively to avoid ballot stuffing. The oracle Vote
represents the votes of the honest voters, which are maintained as tuples in the list
Hon. The corruption of voters by the adversary occurs through calls to the Corrupt
oracle, which reveal the voter credentials maintained in the list Corr. TheA produces
a tally after he has invoked the oracles at will. The adversary loses the game if it can-
not cast more ballots than the maximum number of corrupt voters and all the votes
of the honest voters are taken into account, assuming that the tallying function ad-
mits partial tallying i.e. result(A ∪ B) = result(A)⊕ result(B) for some commutative
operation ⊕.

Strong universal verifiability can be defined using the games in Algorithm 4.6 and
Algorithm 4.7 from [Cor+14] where the BB or the RA are respectively corrupted. In
Algorithm 4.6 the adversary controls the casting and in Algorithm 4.6 he controls the
registration, therefore the relative oracles are not omitted.

In both games the objective of the adversary is to cause a tally to be accepted if the
number of duplicate or stuffed votes exceeds the number of corrupted voters or (some
of) the votes of the honest voters that did not check are not taken into account.

4.3.3 Eligibility Verifiability

Eligibility verifiability was first defined in [KRS10] as the property that allows anyone
to verify that each tallied ballot was cast by a voter with the right to vote and that no
voter cast more than two counted ballots. In the game in Algorithm 4.8, the adversary
must produce a valid ballot for a credential that it does not possess i.e. not belonging
to a corrupt voter. Note, that even though A executes the registration phase with
the voter, he cannot know the private part of the voter’s credential as it is completed
with the help of input submitted by the voter. Furthermore, it is assumed following

4.3. Election Verifiability 119

Algorithm 4.5: Weak universal verifiability game UniVerWeak
A,VS from [Cor+14]

Input : security parameter λ
Output: {0, 1}
Oracle Register(i)
(pki, (ski,pki)) ∶= VS.Register⟨RA(skRA), Vi()⟩
VEl⇐ (i,pki)
V′El⇐ (i,pki, ski)

Oracle Corrupt(i)
if i ∈ VEl then

VCorr⇐ (i,pki, ski)
else

return �
end

Oracle Vote(i,vt)
if i ∈ VEl AND i ∉ VCorr then

if ∃(i, ⋅, ⋅) ∈ VHon then
VHon ∶= VHon ∖ {(i, ⋅, ⋅)}

end
b ∶= VS.Vote⟨⋅, Vi(vtVHon

i , ski), ⋅⟩
VHon⇐ (i,vtVHon

i , b)
else

return �
end

Oracle Cast(i, b)
BB⇐ (i, b)

(prms,pkTA, skTA)← A(1λ)
(TA, πTA)← ARegister,Corrupt,Vote,Cast()
if VS.Verify(TA, πTA , ⋅) = 0 OR TA = � then

return 0
end
if ∃nVCorr

∶ 0 ≤ nVCorr
≤ ∣VCorr∣ AND ∃{vtVCorr

i ∈ CS}nVCorr
i=1 ∶

TA = result(vtVCorr

i)⊕ result(vtVHon

i) then
return 0

else
return 1

end

120 Chapter 4. Electronic Voting Systems and Models

Algorithm 4.6: Strong universal verifiability game UniVerWeak
A,VS with malicious BB from

[Cor+14]
Input : security parameter λ
Output: {0, 1}
Oracle Register(i)

/* Same as in Algorithm 4.5 */
Oracle Corrupt(i)

/* Same as in Algorithm 4.5 */
Oracle Vote(i,vt)

/* Same as in Algorithm 4.5 */
(prms,pkTA, skTA)← A(1λ)
(TA, πTA , BB)← ARegister,Corrupt,Vote()
if VS.Verify(TA, πTA , ⋅) = 0 OR TA = � then

return 0
end
VChck = {(VChck

i ,vtVChck

i , bVChck

i)}∣VChck∣
i=1

if ∃nVCorr
∶ 0 ≤ nVCorr

≤ ∣VCorr∣ AND ∃{vtVCorr

i }nVCorr
i=1

∃n′ ∶ 0 ≤ n′ ≤ ∣VHon∣− ∣VChck∣ AND ∃{vt′i}
n′
i=1 // Honest voters that did not

check
TA = result(vtVCorr

i)⊕ result(vtVChck

i)⊕ result(vt′i) thenreturn 0
else

return 1
end

4.3. Election Verifiability 121

Algorithm4.7: Strong universal verifiability gameUniVerWeak
A,VS withmaliciousRA from

[Cor+14]
Input : security parameter λ
Output: {0, 1}
Oracle Corrupt(i)

/* Same as in Algorithm 4.5 */
Oracle Vote(i,vt)

/* Same as in Algorithm 4.5 */
Oracle Cast(i, b)

/* Same as in Algorithm 4.5 */

(prms,pkTA, skTA)← A(1λ)
(TA, πTA)← ACorrupt,Vote,Cast()
if VS.Verify(TA, πTA , ⋅) = 0 OR TA = � then

return 0
end
VChck = {(idVChck

i ,vtVChck

i , bVChck

i)}∣VChck∣
i=1

if ∃nVCorr
∶ 0 ≤ nVCorr

≤ ∣VCorr∣ AND ∃{vtVCorr

i ∈ CS}nVCorr
i=1

∃n′ ∶ 0 ≤ n′ ≤ ∣Hon∣− ∣Chck∣ AND ∃{vt′i}
n′
i=1 // Honest voters that did not

check
TA = result(vtVCorr

i)⊕ result(vtVChck

i)⊕ result(vt′i) thenreturn 0
else

return 1
end

122 Chapter 4. Electronic Voting Systems and Models

[SFC15], that A learns some credentials during the voting process, from voters that
cast their ballots, by the means of coercion. They are assumed to be part of a set VCoer.

Algorithm 4.8: EliVerextA,VS from [SFC15]
Input : security parameter λ
Output: {0, 1}
(prms,pkRA, skRA,pkTA, CS)← A(1λ)
{(pki, ski)← VS.Register⟨A(skRA), Vi()⟩}

n
i=1

if ∃(i, j) ∶ ski = skj AND i ≠ j then
return 0

end
VR ∶= {pki}n

i=1
VCorr ← A(corrupt)
(vt, j, bj)← A({ski}i∈∪VCoer

, VR, 1λ)
if ∃j ∶ bj ∶= VS.Vote⟨A(skRA), Vj(vt, sk j), prms,pkTA, CS, BB⟩ then

return 1
else

return 0
end

Definition 4.4: Eligibility verifiability

A voting system VS with external authentication satisfies eligibility verifiabil-
ity, if for all adversaries A there exists a negligible function negl(λ) such that:
Pr[EliVerextA,VS(λ) = 1] ≤ negl(λ)

Definition 4.5: Election verifiability

A voting scheme with external authentication provides election verifiability if
it provides individual and universal verifiability.
A voting scheme with internal authentication provides election verifiability if
it provides individual, universal and eligibility verifiability.

As we saw earlier, revealing if a voter participated in an election is illegal in some
jurisdictions. A relevant variation, private eligibility verifiability, was proposed in
[KTV15].

4.4 Coercion resistance

Coercion resistance or incoercibility is one of themost important goals for the realiza-
tion of remote electronic voting. Its absence means that there is no way to make sure
whether a voter is expressing her own will or is following the commands of a coercer
standing over her shoulder. However, it can also be a valid concern for supervised

4.4. Coercion resistance 123

voting as well, as the short ballot assumption and the relevant real-world attacks of
section 1.2 reveal. In the literature there are models for the supervised setting, the
remote setting as well general models.

Coercion resistance is treated as an extended form of ballot secrecy; while the latter
protects honest voters only from passive adversaries, incoercibility protects from the
combination of dishonest voters (receipt-freeness) that want to sell their votes and
active adversaries that want to dictate a voting strategy on the voter. These gradi-
ent notions of privacy are well known in the voting literature and are respectively
referred to as IO coercion, semi-honest coercion and active coercion, in [Alw+15]. We
begin by reviewing the respective notions and models.

4.4.1 Receipt-Freeness

Ballot secrecy is not an optional security property of voting systems. The ballot con-
tents must stay secret, whether the voter wishes it or not. At first glance, this is at
odds with receipts generated for the purposes of individual verifiability [BT94]. The
Vote functionality, in the model in section 4.1, generates a receipt, that the voter can
input to the VerifyBallot functionality to check that her vote will be counted. As we
saw in section 4.2, this receipt can simply be the randomness used to encrypt the voter
choice in the ballot. The voter can use this receipt to recreate the ballot and compare
it with the one that resides in the BB. However, the same sequence of actions, can
be performed by a malicious voter wanting to sell her vote or by an honest voter that
is coerced to vote in a specific way. To thwart this attack a voting system must emu-
late the ‘plausible deniability’ offered by physical voting booths [BT94]. This can be
simply achieved by not generating receipts as in traditional elections. But that, albeit
the fact that it is impossible with probabilistic encryption schemes, would not satisfy
individual verifiability. The challenge is on how to combine the two.

The first definition of receipt-freeness and the first such protocol was given in [BT94].
Informally, a voting protocol is receipt-free if it can there exist no other protocol that
provides the same inputs and provides a receipt. The main way proposed to imple-
ment this property is that the voter does not produce the encrypted ballots herself, but
instead they are produced by the EA, which also generates a public proof to convince
about their well-formedness. The voter enters a voting booth (cf. subsection 2.1.2)
where he is given private data in a deniable manner, to be convinced about the plain-
text encrypted, so that he can choose her vote. If the voter is forced to reveal these
private data, she can provide a ‘forgery’ that is equally convincing to the coercer. The
problem with [BT94] is a convincing realization of the voting booth. Later, in [SK95],
the voting booth requirement is relaxed, by using a one-way untappable channel from
the EA to the voter.

124 Chapter 4. Electronic Voting Systems and Models

Another formal definition of receipt freeness was given in [Oka97]. According to it, a
voting system is receipt-free, if a voter V exists such that for any adversary A, V can
cast a vote vt different from the vote required byA, such that the TA counts this vote
andA accepts the public view of the protocol (BB). They also propose a modification
of the [FOO92] voting scheme, which makes use of the anonymous channel already
present and an untappable channel from the voter to the EA.

Later, the construction of [HS00] provide a generic way to implement the voting
booth, only requiring an untappable channel (one-way voting booth from the EA to
the voter). The EA again constructs deterministic encryptions of ballots, using some
predetermined randomness. The ballot list is shuffled i.e. permuted and reencrypted.
Each voter is presented with the shuffled list and is given the designated verifier proof
of correct reencryption of subsection 2.5.2 through the untappable channel. As a re-
sult, the voter learns to which candidates the transformed ballots correspond. For
this proof to be constructed each voter is assumed to hold a private key. To cast the
ballot, the voter does not perform any computation, but simply points to her selec-
tion. If coerced, she can simulate the received proof to show that she complied with
the coercer demands. Since the coercer cannot be sure of what is received, she can-
not sell her vote. Note that a different shuffle must be performed for each voter. In a
different case if the coercer was a voter (or if she controls some corrupted voters), he
could learn the permutation and deduce, how her target voted.

Game-based definitions of receipt-freeness These first schemes, claimed receipt-
freeness intuitively, without providing formal definitions or proofs. According to
[FQS19], the formal analysis of receipt-freeness was in the symbolic setting (e.g.
[JV06]) until DEMOS [KZZ15a], which was the first game-based receipt-freeness def-
inition. Their definition is a side-effect of their privacy definition. The relevant part
in their privacy/receipt-freeness game is that the adversary presents two voting op-
tions to the challenger who plays the role of an honest voter as input to the Vote
functionality. The challenger flips a coin b and posts one of them to the BB. The
challenger returns the ballot and if b = 0 the real transcript of the interaction, or a
simulated view otherwise. This ability to simulate is according to [KZZ15a] the rea-
son the DEMOS has receipt-freeness. [FQS19] mentions several problems with this
first game-based definition. Firstly, it inherits the problem of the respective privacy
definitions that it does not apply to all voting rules (cf. section 4.5). Secondly, it is in-
complete as it excludes schemes were receipt-freeness is achieved through re-voting.
More importantly, it is focused on supervised voting schemes, where it is difficult for
the adversary to obtain credentials, before or during vote-casting.

Another game-based definition of receipt-freeness was defined for the BeleniosRF

4.4. Coercion resistance 125

voting scheme [Cha+16]. This recent scheme adds receipt-freeness to the Belenios
voting scheme [CGG19], a variation of Helios-C [Cor+14], where each voter is as-
sumed to have a private key to sign the ballot. BeleniosRF uses the cryptographic
primitive of signatures on rerandomizable ciphertexts proposed in [Bla+11]. This
primitive consists of an encryption scheme Enc that allows reencryption and a digital
signature scheme DS , such that when a ciphertext created by Enc is rerandomized,
the signature is adapted to verify on the new ciphertext. These functionalities can
be performed without any access to secret keys. BeleniosRF utilizes signatures on
rerandomizable ciphertexts to alter the randomness of an encrypted ballot. When
the voter casts the ballot, a rerandomizing server reencrypts the ciphertext and the
accompanying signature, before posting it to the BB. As a result, the randomness
used to encrypt the plaintext, cannot be used as a receipt, since it has been altered as
well. The rerandomizing server is part of the EA and adapts the proofs of validity that
accompany the ballot. Note that this does not break individual or eligibility verifiabil-
ity as the rerandomized signatures are still publicly verifiable. However, BeleniosRF
is not universally verifiable as a collusion of the RA and the rerandomizing server can
alter votes.

More interestingly, the authors of [Cha+16] propose the first game-based definition
of receipt-freeness. Their definition is an extension of BPRIVof [Ber+15] (cf. Defi-
nition 4.7). It uses two BBs, where A has access to only one according to the value
of b. Tallying occurs always on BB0 and if A views BB1 the correctness proof is
simulated. There are also the same oracles as in the game in Algorithm 4.10, where
Vote(i,vt0,vt1) casts a ballot for vt0 in BB0 and a ballot for vt1 in BB1 (for the
same Vi), Cast(i, b) which casts the same ballot b in both and Tally(b) which per-
forms the tally always on BB0. For the definition of coercion resistance, a new oracle
Receipt(i, b0, b1) is defined which posts b0 in BB0 and b1 in BB1. Note that Receipt
differs from Vote as it operates on ballots and not on plain votes.

A voting scheme is receipt-free if the adversary cannot distinguish which board he is
viewing, except with negligible probability.

Definition 4.6: Strong Receipt-Freeness from [Cha+16]

Avoting schemeVS provides strong receipt-freeness if for every PPT algorithm
A there exists a negligible function negl(λ) and an efficient algorithm Sim such
that:

Pr[sRF0
A,VS(λ) = 1]−Pr[sRF1

A,VS(λ) = 1] ≤ negl(λ)

The intuition of why the inclusion of Receipt is enough to model receipt-freeness is
that even if the A encodes some data (that can serve as a receipt) into b0 ∈ BB0 and

126 Chapter 4. Electronic Voting Systems and Models

Algorithm 4.9: sRFb
A,VS from [Cha+16]

Input : security parameter λ
Output: {0, 1}
Oracle Receipt(i, b0, b1)

if Valid(b0, BB0) AND Valid(b1, BB1) then
BB0⇐ b0
BB1⇐ b1

else
return �

Oracle Vote(i,vt0,vt1)
/* Same as in BPRIV Algorithm 4.10 */

Oracle Cast(i, b)
/* Same as in BPRIV Algorithm 4.10 */

Oracle Tally(b)
/* Same as in BPRIV Algorithm 4.10 */

(prms,pkTA, skTA)← VS.Setup(1λ)
CS← A()
b′ ← AReceipt,Vote,Cast,Tally(prms,pk)
return b = b′

different data in b1 ∈ BB1 so that he can distinguish the two BBs he will not be able
to do so. It is especially important, to take into account that receipt-freeness exten-
sion of BPRIV only applies to voting schemes where ballot casting is not interactive
and where the voter casts a single ballot. As a result, it cannot capture coercion-
resistant schemes, which by definition, are receipt-free and are based on re-voting,
or other techniques. A valid critique made by [FQS19] is that it requires that the bal-
lot is changed before being posted to the BB. All in all, it is focused on a particular
protocol and is not generic enough. A generic receipt-freeness definition still eludes
researchers.

Deniable vote updating Another strategy for receipt-freeness was used in sys-
tems of [LHK16; BKV17; Ach+15; LQAT20]. These systems use deniable re-voting or
deniable vote updating. The adversary forces the voter to cast a ballot bA. The voter
obeys but can later update the ballot to bV without the adversary noticing this. There
are two variations of this technique; the second vote either cancels the first or updates
it to match the option that is really preferred by the voter. The latter option is usu-
ally found in homomorphic voting systems and depends on the candidate encoding.
Additionally, the voter must be aware that of the value of the ballot being canceled
to successfully update it. In fact, this technique can be generalized to more than two
votes: The voter can cast as many votes as she likes - the vote to be counted in the

4.4. Coercion resistance 127

end will be the homomorphic sum of all the ballots that belong to her. The idea is that
the voter can provide as many receipts as the adversary requests, but A we will not
be sure he has seen them all. For this reason, the votes must not be visibly linked to
each other; in [LHK16] this is achieved by using a verifiable shuffle. In [BKV17] this
is achieved by casting dummy null votes - however trust is required to the posting
agents. Of course, the greatest disadvantage of re-voting based techniques is that if
theA always watches the voter then he can block the voter from updating their vote.

4.4.2 The JCJ coercion resistance framework

The first comprehensive framework for coercion resistance was proposed in [JCJ05].
The goal of voting schemes that provide coercion resistance is not to allow the ad-
versary to perform the coercion attack. This is achieved in a game-theoretic way; the
adversary will not bemotivated to coerce if he cannot check that his attack succeeded.
The JCJ proposal accomplishes this through a combination of two defense techniques:
Multiple votes per voter and authentication using anonymous credentials. Each vote
is authenticated by an anonymous token. During the registration phase the voter
receives a genuine credential. This is meant to be used when the voter is not under
coercion and will authenticate the intended vote. Under coercion, she supplies an
indistinguishable but fake credential to accompany the vote. The TA must count only
the votes that correspond to authentic credentials. This must take place in a verifiable
manner for the voter, but without publicly disclosing which votes are discarded so
that the coercer cannot verify compliance.

Adversarial model The adversary can be a vote buyer and additionally perform
the following attacks:

– Randomization attack: The voter is forced to cast a specific random vote, which
is handed by the adversary. His goal in such an attack might be to diminish a
known advantage one candidate might have (in a specific precinct).

– Forced abstention attack: The voter is forced not to vote. This attack could be
considered a variation of the randomization attack if we consider that there is an
extra null candidate representing abstention. However, it is slightly stronger, as
even a null vote has a side effect; a message is transmitted. On the other hand,
abstention means that the voter does not send a single message. While this
attack is quite simple in nature, it is very difficult to defend against, as we will
see later.

– Simulation attack: The adversary can force the voter to reveal her private key
and then vote on her behalf. This attack is stronger than the randomization and

128 Chapter 4. Electronic Voting Systems and Models

forced abstention attacks since an attacker knowing private keys, can perform
both.

The fake credential mechanism can thwart all these attacks. If the voter is requested
to vote randomly, then the voter does, so using the fake credential. If the voter is
forced to give up her credential in a simulation attack, then the voter gives up her
fake credential. If the voter is ordered to abstain, then she casts no vote with the fake
credential. In all cases the real vote is cast using the authentic credential.

Assumptions In order to provide coercion resistance the JCJ framework makes the
following assumptions:

– Moment of privacy: It is assumed that the voter is not controlled by the coercer
at all times. This is a minimal assumption; a totally controlled voter cannot
deceive the adversary.

– Untappable registration: If the adversary can obtain the registration credentials
then he can easily mount a simulation attack. While the general use of un-
tappable channels hinders the scalability of the voting system, the registration
phase can occur only once and the credentials obtained can be used for many
elections. Furthermore, this untappability is permanent; the registration tran-
script cannot leak. For this, three possibilities are offered:

∗ The majority of the RA is honest and there is a mechanism for the secure
erasure of the registration transcript.

∗ No corruption of the RA is allowed, and the registration transcript can be
simulated.

∗ The minority of the RA is corrupted, and the voter knows their identities
so that he can simulate their transcripts.

– Anonymous casting: An adversary that can map ballots to voter identities can
at least find out if a forced abstention attack has been successful. As a result,
casting through a channel that leaks identities is incompatible with coercion
resistant.

– Corruptions: The adversary controls a minority of the members of the EA and
a minority of all voters. The corruption of voters is static, while the corruption
of authorities is adaptive.

– Coercer uncertainty: The attacker must be unaware of how honest voters vote.
Otherwise, the tally could leak information on a vote contents, in the manner

4.4. Coercion resistance 129

we described in section 4.5. This can be achieved if there are voters (e.g. pro-
democracy organizations) that cast dummy votes, that should be counted, with-
out this fact being conferred to the coercer.

Model In order to formalize the coercion deception strategy of the voters a function
fakekey is assumed that produces an anonymous credential indistinguishable from the
real one. While few details are given in [JCJ05], it is assumed that the fakekey has hid-
den randomness from the adversary while it allows him to verify that the credential
presented has been generated in a normal manner by the registration authorities,
without allowing him to guess if it is authentic or not.

To reason about coercion resistance, the JCJ framework defines two games between
the adversary (coercer) and a challenger (voter). In the real game, the challenger
setups the election and A statically chooses which voters to corrupt. The latter yield
their private credentials. The coercer chooses a single (uncorrupted) voter to coerce.
Now the challenger flips a coin b. If b = 0, the challenger will evade coercion. For this
reason fakekey is invoked and its result is handed to A. Subsequently, the voter casts
her real ballot. To make the attack stronger the preference of the voter is selected by
A. If b = 1, the voter allows to be simulated by providing its credential to A. The
challenger then proceeds to tally the election and provides to the adversary the result
with a proof of correctness. The coercer must guess b i.e. check if the voter followed
his instructions.

The probability of success of the adversary in correctly guessing b is compared to the
corresponding probability of winning an idealized version of the above game, where
he cannot use the private credentials of the corrupt voters. The rationale behind this
game is to exactly measure the effect of the cryptographic primitives and the voting
protocol to the probability of the adversary discovering if his attack succeeded or
not. For instance, the adversary could win the real game by instructing the coerced
voter to cast a ballot for a candidate that is expected to receive no votes. If tallying
indicates that this candidate still does not receive any vote, then A will know that
the coerced cheated. This, however, can happen in any voting scheme, regardless of
the primitives and the workflow used to stop coercion attacks. The ideal game will
exhibit such a behavior as well, so the comparison with the real game will is meant
to nullify its effect. More specifically in the ideal game, A merely enumerates the
preferences of the corrupt voters to the challenger. The coerced voter does not use
fakekey but always hands the real credential to A. If b = 0 the coerced voter simply
casts the real ballot using the real credential. For this game to work, the real tally
function cannot be used. As a result, an ideal tally is defined. This version handles
the honest voter ballots as in the real case. The corrupt voter’s choices are simply

130 Chapter 4. Electronic Voting Systems and Models

added to the result. For the coerced voter, if b = 0 then it adds only her real vote and
not the one cast by the adversary, so as not to exhibit one more ballot in the result
which will differentiate it from the real tally and the case of b = 1. The ideal tally
function also checks for valid credentials and duplicate ballots.

Still, however, the adversary could bypass the cryptographic primitives of the voting
scheme to discover if the voter followed his instructions. For instance, in a forced
abstention attack where no other honest voters vote, the coercer can simply check if
the total number of ballots is greater than the number of ballots cast by the coerced
voters. This attack is thwarted by the assumption about the coercer uncertainty.

JCJ Implementation

Additionally, [JCJ05] proposed a protocol that implements this framework, while pro-
ceeds in the following steps:

1. Setup Phase: Key pairs are created for registration RA and tallying authorities
TA with keys (pkRA, skRA) and (pkTA, skTA), respectively. Corruption of a mi-
nority of members of both authorities can be tolerated for coercion resistance.

2. Registration Phase: During this phase, the voter identity is validated, and
the voter credentials are generated. They comprise a public and private pair
derived from a random anonymous token θi which can be as simple as a random
number (or more elaborate as is the case in later refinements). The anonymous
token is encrypted with the public key of the talliers and placed on the BB Ci1 =
EncpkTA

(θi). This is the public component, while the token itself is the private
component, which is transmitted using the untappable channel. The voter roll is
built from the public encryptions VR = {(i, Ci1)}n

i=1. To avoid corruption during
this phase, the assumptions of section 4.4.2 apply.

3. Voting Phase:

– Ballots are cast to the BB as usual.

– The ballot is a modified ElGamal encryption of both the candidate choice
and the credential. This modified version, proved in [JCJ05] to have the
IND-CPA property, accommodates the needs of the proof of coercion re-
sistance. More specifically, the ballot has the following form:

b = (EncpkTA
(vti),EncpkTA

(θi)) = ((g
r1
1 , gr1

2 ,vti ⋅ hr1), (gr2
1 , gr2

2 , θi ⋅ hr2))

where r1, r2 are random values.

4.4. Coercion resistance 131

– Theballot is completed by proofs of knowledge of vote and credential, proof
of vote validity, namely that the candidate index is valid, and proof that the
first two components of the encryptions use the same randomness. These
proofs are essential to achieving coercion resistance, by the following ra-
tionale:

∗ Since the voter roll is public, an attacker against verifiability might
spoof a credential by reencrypting a voter roll entry. A legitimate voter
must prove that he knows the credential.

∗ An invalid vote might indicate a forced abstention or a randomization
attack.

– The voting phase takes place using an anonymous channel. This is partic-
ularly important as to thwart the forced abstention attack and to make the
coercer unaware of the actual vote position in the BB.

4. Tallying Phase: The authorities collect the ballots from the BB and compute
the election result. Because there are more ballots than voters, on account of
coercion evasion, there must some preprocessing, in order to distinguish the
votes that must be counted. This pre-tallying phase was aptly named vote au-
thorization by [Sch+11] and consists of the following sub-phases:

– Invalid Ballot Removal: Before counting begins, the proofs of correct-
ness are extracted and verified. Ballots with invalid proofs are discarded.

– Duplicate Ballot Removal: If multiple ballots correspond to the same
credential, they are filtered and a single ballot per credential is kept. To
this end:

∗ From ballots with valid proofs, two lists A1, B1 are created. A1 contains
the encrypted votes and B1 the encrypted credentials.

∗ Encrypted credentials from B1 are compared with each other using
PET and if the result is 1, then it means that there are votes with
duplicate credentials. Only one item per credential is kept according to
some rule. The changes are cascaded to A1.

– Fake Ballot Removal: Votes with fake credentials are eliminated, with
the following procedure:

∗ The lists A1, B1 as well as the voter roll VR are forwarded to a verifiable
Shuffle to anonymize their contents. Let A2, B2, VR′ be the new lists.

132 Chapter 4. Electronic Voting Systems and Models

∗ Each encrypted credential in B2 is compared to each item in VR′ using
PET . If the result indicates 0, then the entry in B2 and the corre-
sponding one in A2 are discarded. A new list of encrypted votes A3 is
returned from this process. Because of the use of the Shuffle the co-
ercer loses track of the credential index in the voter roll and the vote
index in the BB. If this vote corresponds to a fake credential it will be
removed from BB before counting without raising any suspicion.

– The resulting list of encrypted votes A3 is decrypted and the votes are
counted to create the tally T. Proof of correct computation is also provided
πT.

This protocol is proved in [JCJ05] to be coercion resistant by comparing two games.
In the real coercion resistance game, the A executes the voting protocol while also
controlling a set of corrupted voters VCorr. The goal of the game is to tell if a targeted
voter cr has followed his instruction. To this end a coin is tossed and if b = 1 the voter
allows to be impersonated, while if b = 0 the voter invokes the fakekey functionality,
provides its output to A and then uses her valid credential to cast the real vote. A
simplistic model would declare the scheme to be coercion resistant if the coercer could
not successfully distinguish the coin result after viewing the BB contents, the tally,
and the proof of correct computation. However, this is not the case, as the tally could
leak information to the coercer, in a manner like the one we saw in the case of privacy.
As a result, the advantage of the coercer should be calculated in relation to an ideal
voting system that ideally tallies the votes. This comparison will reveal how much
the actual voting system impacts coercion. To this end, an ideal voting experiment is
defined where the coercer does not have access to the contents of the BB, but only to
the outputs of the tally, i.e. the results and the number of canceled votes. Additionally,
A does not have access to the private credentials of the voters. The authors of [JCJ05]
prove that their protocol is coercion resistant if the DDH assumption holds.

The main problem of the [JCJ05] protocol is its time complexity. Assuming that there
are n eligible voters in VR and ν votes cast, then the total number of PET performed
in B1 are O(ν2) and the total number of PET performed in B2 is O(nν). Note that
ν > n because of multiple votes. Thismakes the JCJ framework inefficient for practical
usage, considering both running time and space required. Ideally, such a scheme
should operate using O(n + ν) steps.

JCJ variations

Various efforts in the literature have tried to overcome the performance bottleneck of
the JCJ scheme. In this section, we review themost important ones, where importance
is defined in relation to our proposed protocol in section 5.2.

4.4. Coercion resistance 133

A first line of relevant proposals are due to [Smi05; WAB07]. They achieve by blinding
the credentials and then stripping off the encryption randomization. As a result, they
efficiently compare by using a hash table. More specifically, if (a, b) = (gr, θhr) is an
ElGamal encryption of credential θ, where s is the shared private key and h = gs is
the public key and r the randomness employed, then the randomness can be removed
as follows:

– The authorities select a second private key z which should be generated in a
distributed fashion.

– They blind the ciphertext by computing (asz, bz) = (grsz, θzgrsz).

– Subsequently they divide the components which leave only the plaintext cre-
dential θz in a blinded form.

– The ciphertext is transformed to a deterministic fingerprint.

– Duplicates can be discovered by using a hash table in linear time.

[Smi05] proposes, with efficiency in mind, to split the blinded credential to two pieces
and use the first half as a key to the hash table. This approach is problematic since it
will imply an increase in hashing collisions. This side-effect is particularly problem-
atic during fake detection and removal, since a valid credential might collide with a
fake one, and be wrongly removed, thus altering the election results, and violating
fairness. [WAB07] skips this problem by using the complete blinded credential and
appropriately adjusting the system parameters, such that θz is unique.

Both these approaches suffer from a variant of the Pfitzmann tagging attack [Pfi94]
initially observed in [Ara+10]: The coercer obtains the voter fake credential θ (in an
impersonation attack or by forcing the voter to reveal it). Then it casts two votes: one
accompanied with an encryption of θ and one with an encryption of θ2. Since both
θ and θ2 are fake, the blind hash table method will output both θz and θ2z as invalid.
The coercer can square every item found in the rejected list and if a match is found,
then he will know for a fact that the voter supplied him with a fake credential.

[Spy+12] noticed that the tagging attack is irrelevant during duplicate removal. As a
result, the blind hash tables can be used there thus achieving efficiency, as this phase
can be performed in time O(ν). In order to achieve removal of ballots with fake cre-
dentials in O(n) steps, the authors of [Spy+12] propose that during vote casting the
voter encrypts the index of the VR where his credential is stored. During the tallying
phase the index will be decrypted, and the encrypted credential will be retrieved from
the initial version of the voting roll. Now a single PET suffices to check the two cre-
dentials and decide if the vote should be counted or not. For this scheme to work the
system must make sure that a uniform distribution of fake indices appears. To this

134 Chapter 4. Electronic Voting Systems and Models

end it is proposed that the tallying authorities themselves append fake votes. This
has also the effect that a coercer that monitors the bulletin board cannot tell whether
a target voter made use of his moment of privacy. In our proposed protocol we borrow
many ideas from [Spy+12].

CIVITAS In [CCM08], the first detailed implementation of [JCJ05] is provided.
First of all, a concrete specification of the credential generation and distribution is
given, and the faking mechanism is discussed. Our proposal in section 5.2 supports
both mechanisms, so the details are given there. The general idea is that the members
of the RA generate the credential in a distributed manner and provide the voter with
designated verifier proofs. In order to fake the credential, a coerced voter can simply
select a fake credential share ŝj, which is assumed belongs to a teller not controlled by
A. To solve the scalability problem, Civitas employs parallelism. The voters are parti-
tioned in virtual precincts, called blocks. Vote authorization and tallying happens in-
dependently in each block, and the results are aggregated. As a result, the complexity
of the scheme isO(Bn2

Bmax)+O(BnBmaxnBmin) where nBmax is the maximum num-
ber of votes per block, B is the number of blocks and nBmin is the minimum number
of voters per block.

Anonymity Sets Another option to make tallying more efficient in the JCJ scheme,
rests on the voter posting except for her credential a set of other credentials selected
randomly from the voter roll. These credentials, function as an anonymity set to hide
its real credential and to constrain the checks.

In [CH11] the voter presents the real credential accompanied by η − 1 credentials
from the voter roll. More specifically in Selections:

– The voter encrypts the credential θ using exponential ElGamal. This is done to
enable rerandomization for use in multiple elections and more importantly to
remove fake votes.

– During vote casting the voter commits to gθ and rerandomizes her entry from
the voter roll. Also, she randomly picks η − 1 encrypted credentials from the
voter roll and embeds them into the ballot. Along with the standard [JCJ05]
proofs she proves that her credential is indeed a rerandomization of one of the
η credentials, without of course revealing which one (ala [CDS94]).

– During the vote authorization phase the deduplication process occurs in linear
time as the same value gθ is present in all of them. The last vote per gθ is kept.

– For fake credential removal, the commitment is treated as a deterministic en-
cryption of the credential. As such it is randomized from the standard [JCJ05]

4.4. Coercion resistance 135

mixnet and is ’PETted’ with the rerandomized voter roll entry. A real vote is
determined by a successful such test.

A practical aspect of the coercion resistance schemes that were presented above, re-
lates to how does the voter creates fake credentials when under coercion. This issue
is quite vague in the literature reviewed. The [CH11] scheme tackles this problem
using the notion of panic passwords. During registration, the voter selects a password
to be used during vote casting. In reality, the system partitions the space of possible
passwords into three categories:

– The actual password to authenticate the voter and submit the real credential.

– Thepanic passwords which indicate that the user is under coercion and generate
fake credentials. The interaction however is indistinguishable from the one that
takes place with the actual password.

– The inadmissible passwords that indicate authentication failure and do not allow
vote casting.

Ideally panic passwords should be a sparse subset of inadmissible passwords and the
actual password is a pre-selected panic password. To illustrate the concept, better, we
refer to the 5-Dictionary introduced in [CH08] and used in Selections. The password
space consists of any combination of five words. The valid passwords are any com-
bination of five words from an agreed-upon dictionary. A particular combination is
selected as the actual password during registration. Any other combination from the
dictionary is a panic password. Any other five-word combination from the password
space is invalid.

A similar protocol is proposed in [Sch+11] that can be seen as a combination of
Selections and [Spy+12]. The voter instead of posting only the index of the VR
where the claimed credential is stored, it posts a set of η − 1 more indices in clear-
text, where η←$ [n − 1]. As a result, the ballot posted from the voter has the form
b = (EncpkTA

(vi),EncpkTA
(θi), I) where I ⊂ VR AND i ∈ I. The EA posts replicate

the ballot for all j ∈ I. As a result, for Vi the set {EncpkTA
(vti),EncpkTA

(θi), VRj}. In
order for the vote to be authorized a PET is performed between and EncpkTA

(θi) and
VRj. The advantage of this approach against Selections is that no zero knowledge
proofs are required for the credentials.

Structured credentials A different approach to the duplicate and fake credential
detection, tries to avoid the blind comparisons inherent in all the proposals so far, and
results in a new line of research [AFT07; Ara+10; AT13], the defining characteristic
of which is that structure is added to the credentials. As a result, a credential is not
merely a group element or an alphanumeric string, but a tuple of elements some items

136 Chapter 4. Electronic Voting Systems and Models

of which are used for the identification of voters, and other for duplicate detection
and invalid credential removal.

For instance, in [AFT07], the credential for Vi is a tuple (ri, ai, bi, ci) where ri is a
random index, ai is a random group element, bi = ask1

i and ci = ask1RA+risk1RAsk2RA
i

where sk1RA, sk2RA are secret keys of the RA. (ai, bi, ci) can be made public, while
ri must be kept secret. This tuple is created during registration for each voter and is
transmitted to the voter according to the assumptions set by the [JCJ05] framework
(untappable channel, trust in a particular member of the RA). The fakekey functional-
ity is made possible by the following observation: if (ri, ai, bi, ci) is a valid credential
then (ri, aψ

i , bψ
i , cψ

i) is also a valid credential. So, the voter can pick a random index
and produce a new credential by raising the known credential to a random power.
The same observation allows for a single registration phase to be reused for many
elections.

The ballot in [AFT07] consists of an encryption of the vote vt and the elements of the
tuple using the public key of the TA:

bi = (EncpkTA
(vti), ai,EncpkTA

(ai
ri),EncpkTA

(bi
ri),EncpkTA

(ci), ori , π)

where o is a random group element and π is a set of proofs of ballot well-formedness.
The value ori is used for duplicate detection and removal through a hashtable. The
casting phase requires an anonymous channel. Counting is performed jointly by the
registration and tallying authorities. RA checks that the credentials are unique and
valid using its secret keys, and TA decrypts and counts the corresponding valid votes.
The same approach is used in a follow-up work [Ara+10], with the difference that the
credentials are shorter and different security assumptions is used for the security of
the scheme.

A major possible weakness in both cases is that the existence of ori could be used as a
receipt for vote selling or to break coercion resistance. Indeed, if the ballot (that con-
tains the value ori) is posted to the BB as is then the coercer could demand that the
voter present an ri such that an exponentiation could yield the posted value. How-
ever, in [AFT07] it is not exactly specified which parts of the ballot are stored in the
BB. Another weakness of this line of work is that the authorities can easily generate
fake credentials that are identical to valid ones and insert ballots. This weakness is
addressed in [AT13].

Board Flooding The [JCJ05] framework has another problem. The BB contains
many fake votes that will not be counted, but are used only to fool the coercer. This

4.4. Coercion resistance 137

design choice could yield another attack vector as first pointed in [KHF11]: An adver-
sary could disrupt an election by causing a denial of service attack, through deliber-
ately injecting fake votes. In the original version this has a quadratic effect, however
in the linear version this is not so important. A solution first proposed in [KHF11]
combines dummy credentials together with a smart BB. The former replace JCJ fake
credentials and are the mechanism to evade coercion. They are given to the voter
during registration. In particular each Vi is granted a (different) number di of fake
credentials. As a result, not every group element is a potential credential but only the
ones that are received during registration. This implies that everything else is rejected
from the BB automatically upon submission. As a result, there will be a bound on
the items present in the BB, which consists only of votes accompanies with real and
dummy credentials. The downside of this proposal is that a portion of the voters (the
ones that receive the minimum number credentials) are more vulnerable to coercion
as the adversary will demand that they provide exactly so many and they will not be
able to present fake ones.

Our proposal (chapter 5) combines aspects of all these variations of [JCJ05]. To for-
mally prove coercion resistance we adapt the model and game-based definitions of
the JCJ framework. While other more rigorousmodels do exist, we find the JCJ frame-
work the best compromise between theory and practice. To illustrate the reason be-
hind our preferencewe compare ourmodel with the notion of universally composable
incoercibility [Alw+15]. The latter applies not only to voting schemes but to any pro-
tocol for secure multi-party computation. A complete analysis of [Alw+15] is beyond
the scope of this thesis, as it assumes knowledge of the universal composability (UC)
framework of [Can01]. This framework aims to guarantee that the security guar-
antees of a protocol are maintained when they are combined with other (insecure)
protocols. This guarantee does not apply to [JCJ05] and by extension to our work.

Nevertheless, both works have some things in common: They both assume that there
is some ‘space of doubt’ or coercer uncertainty, so that the election tally does not leak
if the voter submitted to the attack. Both assume local coercion and corruption, in the
sense that the voters do not need to know who else is corrupted or coerced in order
to fool both adversaries. The latter can communicate through the UC environment
or the game adversary. They also both assume a trusted hardware token, at least in
principle since later instantiations of JCJ [UH12] provide mental coercion resistance,
as well.

The UC incoercibility definition expects the security properties to emanate solely
from the cryptographic primitive used in the protocol. Intuitively this means that
the coercer will be present when the voter tries to cheat. This is a very strong se-
curity property. On the other hand the JCJ framework ‘cheats’ by using out-of-band

138 Chapter 4. Electronic Voting Systems and Models

capabilities: revoting and a moment of privacy (since when the voter is before the
coercer she will simply do as she is told) As a result, the voter is not confined only to
cryptographic countermeasures but can also use real-world means. This makes the
resulting protocols more practical, also leads to less rigorous definitions and analysis.
On the flip side, insofar as our understanding of [Alw+15] permits, the UC inco-
ercibility definition cannot deal with the forced abstention attack as even in the case
of active coercion, the adversary does not seem to block communications. The JCJ
framework deals with this attack at the expense of an anonymous channel.

4.5 Ballot secrecy

Voter privacy is a tricky property to formulate. As we saw in section 1.2 there are
many levels of privacy protection. None of them are absolute, as the result, combined
with the tallying rules, leaks information. For instance:

– In a unanimous result, everyone knows how everyone voted.

– If all voters except for one, have voted for the same choice, then the one that
differs knows how everyone else voted.

– In the general case, every voter knows the probability that a random voter
picked a specific candidate from the percentage of the total votes this candi-
date received.

As a result, a definition for all types of privacy is limited by what is leaked by the
election result. However, this is independent of the voting system used and not lim-
ited to electronic voting systems. We are interested in the effect of the electronic
voting system, in particular, the cryptographic protocol used, on vote privacy. In the
current section, we begin our discourse on election privacy, starting with ballot se-
crecy. In the following section, we will deal with stronger notions of privacy such as
receipt-freeness and coercion resistance.

According to [CS13] ballot secrecy concerns the protection of a ballot’s contents from
a passive adversary, i.e. an adversary that simply monitors but does not try to affect
a target voter or the voting protocol.

4.5.1 Trust assumptions

The adversary is as we saw passive, in its interactions with the target voter. However,
he can corrupt other voters adaptively and use them by dictating their behavior in or-
der to learn how the target voter voted. The talliers are considered honest for privacy,
but the adversary can partly corrupt them. This corruption is extremely important

4.5. Ballot secrecy 139

in the case of homomorphic voting systems such as Helios, where the talliers must
decrypt the vote output. As only a minority of corrupted talliers is tolerated, a trust
assumption is that the adversary should not corrupt beyond this threshold. However,
it is an open problem to study how this is perceived by voters, as some might object
to the fact that they must trust the talliers for their vote not to be revealed.

4.5.2 Security games for ballot secrecy

We use the BPRIV definition of [Ber+15] to model privacy for our proposed voting
scheme in chapter 5. This definition combines the best elements of the literature (up
to that point) and has been used to model the privacy of the Helios voting system.

First approaches to ballot secrecy

Before, we describe the BPRIV definition, we summarize the characteristics of other
definitions up to BPRIV by following the excellent review found in [Ber+15]. The
most common approach to modeling ballot secrecy, adapts the indistinguishability
games that express cryptographic secrecy in the setting of voting systems. The ad-
versary, instead of distinguishing the encryption of two messages, tries to distinguish
between twoBBs (BB0, BB1) that contain different variations of voting scenarios. The
general description of the indistinguishability games is the following:

– The challenger setups the voting protocol. Both BB0, BB1 are initially empty.

– The adversary can cast as many ballots as he wishes, representing the corrupted
voters. These ballots are posted to both BBs.

– The challenger posts a different variation of some behavior in each BB, by pre-
senting two voting choices to an honest voter. The honest voter executes the
voting/casting protocol and casts a ballot for each choice in each BB.

– The adversary may continue to post items to both BBs.

– The challenger flips a coin and presents the respective BB.

– The adversary must guess which BB he is viewing.

– Ballot secrecy holds ifA cannot distinguish which BB he is viewing except with
negligible probability.

In some first privacy definitions [BT94], the variation in behavior for the challenger is
to post different permutations of votes for two honest voters, i.e. {(V0,vt0), (V1,vt1)} ∈
BB0 and {(V0,vt1), (V1,vt0)} ∈ BB1. A variation of this definition [Ben87] consid-
ers the fact that the tally must remain the same for the honest voters. For this reason,
it employs the result function that we saw in the respective verifiability definitions.

140 Chapter 4. Electronic Voting Systems and Models

The challenger, except for BB0, BB1 maintains two lists LHon0 ,LHon1 where the votes of
the honest voters are kept. The adversary casts ballots to both BB. For the challenge,
C posts a vote vt0 in BB0,LHon0 and a different vt1 in BB1,LHon1 . If the results for the
honest voters in LHon0 ,LHon1 are different, the experiment aborts. The problem with
these definitions is that in certain cases and tallying rules, both tallies for the honest
voters are equal, but the adversary can tell the BBs apart by taking advantage of the
voters he controls.

To overcome this limitation, [Ber+11] propose a variation of this experiment. The
first bulletin board, BB0 always contains the votes of the honest voters. The second
BB1, replaces the honest votes with null, fake votes. Counting takes place always on
BB0. When the adversary requests to see the tally, he is presented with the tally and
one BB0, BB1. He must guess which board he has been given.

This definition has a problem again that illustrates the conflict of ballot secrecy and
verifiability. If A can examine proofs of correct ballot formation and tallying, he can
immediately reject the ballot box with the fake votes, as these proofs will not validate.
This situation is remedied by the variation presented in [BPW12]. When the adver-
sary is presented with the real BB the real tally and actual proofs are given to him.
When the adversary is presented with the fake BB the real tally is given to him but
the proofs are simulated to match the contents of the presented BB. Unfortunately,
this definition is not sound as it can characterize as private, protocols that are not
[Ber+15]. The definitions of [Ben87] and [BPW12] can be combined so that when the
tallies for the honest voters are equal then the real tally is given to A. If not, then A
is presented with one BB.

Ballot secrecy with trusted talliers - BPRIV

We now turn to BPRIV, which is an indistinguishability game as well. The adversary
must distinguish between two ballot boxes: BB0 contains the votes of the honest
voters as well as the ballots posted by A and BB1 that contains fake ballots that will
not be counted. The result is always computed from BB0, but when the adversary is
viewing BB1 the proofs must be simulated from the data available in BB1 for the tally
of BB0. The BPRIV definition is displayed in Algorithm 4.10, where the adversary
has access to 3 oracles. The oracle Vote represents the honest voters - the adversary
specifies two options vt0,vt1 and the challenger casts them to the respective BB.
The oracle Cast allows the adversary to cast any ballot to both BBs. The oracle Tally
performs the tally according to the described rules.

4.5. Ballot secrecy 141

Algorithm 4.10: BPRIVb
A,VS from [Ber+15]

Input : security parameter λ
Output: {0, 1}
Oracle Vote(i,vt0,vt1)

b0 ∶= Vote(i,vt0)
b1 ∶= Vote(i,vt1)
if Valid(b0, BB0) AND Valid(b1, BB1) then

BB0⇐ b0
BB1⇐ b1

else
return �

Oracle Cast(i, b)
if Valid(b, BBb) then

BB0⇐ b
BB1⇐ b

else
return �

Oracle Tally(b)
if b = 0 then
(T, πT) ∶= Tally(skTA, prms, CS, BBb)
return (T, πT)

else
(T, πT) ∶= Tally(skTA, prms, CS, BB0)
π′T ∶= Sim(skTA, prms, CS, BB0, BB1,T)
return (T, π′T)

(prms,pkTA, skTA)← VS.Setup(1λ)
CS← A()
b′ ← AVote,Cast,Tally(prms,pk)
return b = b′

142 Chapter 4. Electronic Voting Systems and Models

Definition 4.7: BPRIV ballot secrecy

A voting scheme VS is private according to BPRIV if for every PPT algorithm
A there exists a negligible function negl(λ) and an efficient algorithm Sim such
that:

Pr[BPRIV0
A,VS(λ) = 1]−Pr[BPRIV1

A,VS(λ) = 1] ≤ negl(λ)

The BPRIV definition deals with leakage from the contents of the BB and the proof of
correct tally. However, the operations of the tally phase itself might also leak enough
data for the adversary to be able to distinguish between the BBs, e.g. from the filter-
ing of the duplicate ballots found in voting schemes that allow revoting for coercion
resistance. To deal with this problem, [Ber+15] accompany the ballot privacy defini-
tion with two extra properties, that apply to voting schemes that allow for revoting
in particular:

– Strong consistency: The result of the election T as obtained by the application
of the tally phase is the same as the result of the election obtained directly from
decrypting the ballots. As a result the tally algorithm does not leak anything.

– Strong correctness: Ballots that originate from honest voters are accepted re-
gardless of the contents of the BB at the time they are posted.

More formally:

4.5. Ballot secrecy 143

Definition 4.8: BPRIV strong consistency

A voting scheme VS has strong consistency relative to a result function result
if there exist:

– An extraction algorithm Extract that receives the election secret key and
a ballot and outputs the identity of the voter that cast it and the ballot
contents. More formally:

∀(i,vt) ∈ V×CS ∶ Pr[Extract(skTA, VS.Vote(i,vt)) = (i,vt)] = 1− negl(λ)

– An independent ballot validation algorithm ValidInd that receives the
tallying public key and a ballot and outputs if the ballot is valid, such
that

∀(BB, b)← A() ∶ VS.Valid(BB, b) = 1⇒ ValidInd(pkTA, b) = 1

for which:

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

(pkTA, skTA) = VS.Setup(λ)
BB← A()
(T, πT)← VS.Tally(skTA, BB)
return (T = result({(i,vti)}n

i=1))

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1− negl(λ)

where BB = {bi ∶ ValidInd(bi) = 1}i∈V

Definition 4.9: BPRIV strong correctness

A voting scheme VS satisfies strong correctness if

Pr

⎡⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(BB, i,vti)← A()
bi ← VS.Vote(i,vti)
return VS.Valid(BB, bi)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

= 0

⎤⎥⎥⎥⎥⎥⎥⎦

= 1− negl(λ)

Ballot secrecy with untrusted talliers and anonymous channels

We now present a variation of BPRIV to express ballot secrecy in voting schemes
that do not require trust in talliers for ballot secrecy and use anonymous channels.
This variation is named U-BPRIV and is presented in Algorithm 4.11. Its design fol-
lows the rationale of BPRIV of [Ber+15] as expanded in [Cha+16] for voting schemes
with registration (cf. Algorithm 4.9). The elections are recorded into two bulletin
boards BB0, BB1, and the objective of the adversary, denoted by A and computa-
tionally bounded for this model, is to distinguish them. A can actively participate in

144 Chapter 4. Electronic Voting Systems and Models

the elections, corrupt voters (VCorr) and collect all data generated by VS and honest
voters (VHon). The honest RA is modeled as a call to the Register oracle. Honest and
adversarial vote casting is represented by the Vote, Cast oracles respectively. All the
oracle calls execute the respective functionalities and return their outputs along with
the protocol transcript Trans and leaked data Aux (e.g. communication addresses and
timing information). These form the view of the adversary, denoted as viewA. Tally-
ing is performed by A and therefore there is no respective oracle as in BPRIV. In the
end, A is presented with one of the two bulletin’ boards BBb and their objective is to
distinguish which one they are seeing.

Inmore detail, the challenger C takes the role of the RA, the BB, and the honest voters.
Initially, it executes a Setup functionality to create the registration parameters. The
adversary generates the voter roll, the candidate slate CS, and the tallying parameters.
The voters complete the registration process and receive the credentials in physical or
electronic form. They are not restricted only to public and private key pairs but they
can also be encrypted group elements as in [JCJ05]. This process is denoted with the
call to the Register oracle. The communication with the selected BB (according to
b) has a transcript Transb and leaks some information denoted as Auxb,Register. This,
along with the public result of Register is provided to the A via its view.

The core of the game is the ballot casting phase, which is represented by the Vote and
Cast for honest and corrupted voters respectively. If Vi is corrupted, then C hands
the private credentials ski giving full control to A.

The challenger retains control of the honest voters. The adversary schedules con-
current executions of the Vote and Cast functionalities for all voters, in the most
favorable manner to them. If a voter is honest, then C plays her role, receives 2 selec-
tions vt0,vt1 ∈ CS picked by A and provides in return the results of Vote, namely a
ballot b, proofs of validity and leaked data due to the use of the communication chan-
nels. The challenger flips a random coin to decide which BB to use to cast their vote.
This models the anonymous channel and prevents A from winning trivially. In all
cases, the view of the adversary as well as the auxiliary information is updated after
the execution of a functionality. All ballots are checked for validity for their respec-
tive BB. When all voters have finished executions of their protocols, the adversary is
presented with one of the bulletin boards and performs tallying on it. Finally, A tries
to guess which board he was presented with.

Based on this game, we provide our variation of BPRIV privacywith untrusted talliers
for secrecy and anonymous channel:

4.5. Ballot secrecy 145

Algorithm 4.11: U-BPRIVb
A,VS with anonymous casting

Input : security parameter λ, election information L, corruption tolerance t
Output: {0, 1}
Oracle Register(i, L)

if i ∈ L then
(ski,pki)← VS.Register(skRA), i)
BBβ ⇐ pki for β ∈ {0, 1}
return (pki, Transβ,Register, Auxβ,Register) for β ∈ {0, 1}

else
return �

Oracle Vote(i,vt0,vt1)
β←${0, 1}
bβ ∶= VS.Vote(i,vtβ)
b1−β ∶= VS.Vote(i,vt1−β)
if VS.Valid(bβ, BBβ)AND VS.Valid(b1−β, BB1−β) then

BBβ ⇐ bβ

BB1−β ⇐ b1−β

return (Transβ,Vote, Auxβ,Vote) for β ∈ {0, 1}
else

return �
Oracle Cast(b)

if VS.Valid(b, BBβ) for β ∈ {0, 1}) then
BBβ ⇐ b for β ∈ {0, 1}
return (Transβ,Cast, Auxβ,Cast) for β ∈ {0, 1}

else
return �

(prms,pkRA, skRA)← VS.Setup(1λ)
(VR, CS,pkTA, skTA)← A(1λ)
VCorr ← A(L, corrupt)
if ∣VCorr∣ > t then

return �
VHon ← I/VCorr

viewb,A ← ARegister,Vote,Cast(BBb) where

viewb,A =(Transb,Register, Auxb,Register, Transb,Vote,
Auxb,Vote, Transb,Cast, Auxb,Cast)

T← A(BBb, tally)
b′ ← A(viewb,A,guess)
return b = b′

146 Chapter 4. Electronic Voting Systems and Models

Definition 4.10: U-BPRIV ballot secrecy

A voting scheme VS is private if for every PPT algorithm A there exists a neg-
ligible function negl such that for every L:

Pr[U-BPRIV0
A,VS,t(1λ, L) = 1]−Pr[U-BPRIV1

A,VS,t(1λ, L) = 1] ≤ negl(λ)

To model voting schemes that allow revoting with U-BPRIV we also define strong
consistency and strong correctness as in Definition 4.8 and Definition 4.9. For brevity,
we do not repeat them here.

4.5.3 Privacy based on blind signatures

Theapproach towards privacy inHelios-related schemes is based on trust. TheTAwill
decrypt nothing but the aggregate of the votes in the homomorphic version and only
the individual votes after anonymization in the mixnet based version. In practice, this
trust assumption is enforced only using threshold cryptosystems, where the power to
decrypt via the secret key is split to many shareholders assuming to have conflicting
interests.

Another line of work towards privacy-oriented voting schemes, utilizes the unlink-
ability property of blind signatures. In fact, voting was a proposed application from
their inception [Cha83]. Indeed, the scheme proposed there combines privacy and
individual verifiability (using modern terms). It utilized a registration authority RA
to handles eligibility checks and requires and anonymous channel: The general work-
flow is as follows 1:

– Vi blinds the ballot and submits it along with election identifying information
to the RA.

– The RA validates the voter data, and if Vi has the right to vote, signs the blinded
ballot and returns it.

– Vi validates the signature of theRA, unblinds the signatures and posts the signed
ballot anonymously.

– The RA receives the signed ballots, validates the RA’s signature, and posts them
to BB for verification.

– Each voter can individually verify her ballot through a random pattern embed-
ded to it, known only to him.

1A large part of the material in subsection 4.5.3 is based on [Gro14]

4.5. Ballot secrecy 147

The unlinkability of blind signatures, prohibits the RA to link signing with verifica-
tion sessions, which intuitively provides privacy to the scheme as the RA cannot use
the voter identification information obtained during the signing request to identify
who cast a particular vote. Individual verifiability is provided by pinpointing a vote
in the BB by using the random pattern embedded into it. The problem with [Cha83]
is twofold. Firstly, it lacks fairness as the RA knows the intermediate voting results.
Also, in the case of a dispute, the voter must show their vote, thus defeating pri-
vacy. While dispute-resolution or accountability is an exceedingly difficult property
to achieve, a solution towards this direction was proposed in [FOO92]. The voting
scheme described there is based on the separation of functions between 2 entities.

– The RA, that knows the voter’s identity but not the actual vote. As a result, it
can efficiently check eligibility and authorize the vote.

– The TA, that knows the vote contents but not the voter identity. As a result, it
can provide the counting. In fact, its role is not essential, as the counting can be
performed by any interested party.

The workflow is depicted in Figure 4.1 and detailed as following:

FiguRe 4.1: Voting with blind signatures [FOO92]

– Setup: An RSA digital signature scheme is initialized by executing DS .KGen.
The RA obtains a key-pair (skRA,pkRA), while no key is required for the TA.

– Register: Each Vi obtains a similar key pair (ski,pki).

– Vote: Let vti be the choice of Vi.

∗ The ballot is created by committing to vti using randomness ri, bi = Commit(vti, ri).
The commitment schememust be binding and ensures that the voter cannot

148 Chapter 4. Electronic Voting Systems and Models

behave differently in the preparation and generation phases. Moreover, it
substitutes the random pattern of [Cha83] that the voter must embed into
her vote in order to verify it in the BB.

∗ The ballot is blinded, using the properties of the RSA scheme: b′i = Blind(bi, r′i)

∗ The blinded ballot is signed using the private key of the voter, producing a
signature σVi .

∗ The voter submits (i, b′i, σVi) to the RA, where i denotes voter identifying
information.

∗ Upon receipt, the RA validates σVi using pki, obtained through the iden-
tity i, the eligibility of Vi and checks for double requests to defend against
double voting.

∗ If all checks turn out ok, it signs the blinded ballot producing βi.

∗ The RA sends βi to Vi.

∗ After all voters have submitted their votes the RA announces the total num-
ber n of eligible voters.

– Cast: The voter executes Unblind and obtains the plain signature σi of the RA.
The signature can be validated with the public key of the authority pkRA. The
tuple (bi, σi) is submitted to the TA through an anonymous channel, to hide the
network identity of the voter from the TA.

– VerifyBallot The voter checks that the commitment is present in the BB.

– Tally:

∗ The TA validates {σi}n
i=1 using pkRA. Note that if the TA cheats and fails

to validate a signature, the affected voter can present the ballot with the
received signature as submitted (bi, σi) and prove that her vote should be
counted without revealing it. All valid ballots are indexed and publicly
announced.

∗ Each voter opens the commitments sent through during the voting phase,
by posting the index and the opening values ri.

– Verify Everybody can verify the result, by computing it on their own.

Many aspects of the security of the scheme depend on the properties provided by the
anonymous channel. Note that the privacy provided from [FOO92] is of a different
nature, as it bears no trust assumptions.

4.5. Ballot secrecy 149

If a perfectly anonymous channel is used, then the system provides everlasting privacy
(cf. section 4.6). While dispute freeness is provided against a corrupted TA, it is not
provided against corrupt voters leaving the system open to Denial-of-Service attacks,
as a corrupt voter might send an invalid opening value and used it to object later or
to cancel the vote of another participant.

The scheme [FOO92] provides individual verifiability if the commitments posted are
binding. It does not provide strong universal verifiability [Cor+14] as a corrupted RA
can stuff ballots. But it provides weak universal verifiability assuming the commit-
ment scheme used is binding.

[FOO92] Variations An important drawback of [FOO92] is that it requires voter
interaction in at least three stages, namely during authorization, voting and opening.
The last of these is the most problematic, as it requires from a voter to wait until ev-
erybody else has cast their votes. This provides inefficiency especially if we contrast
it to the vote-and-go approach of [CGS97]. On the other hand, it is conceptually sim-
ple, efficient and supports many counting functions. As a result, many improvements
have been proposed.

In [Ohk+99], the authors reduce the number of voter interactions by one step. They
achieve this by replacing the commitment schemewith a threshold encryption scheme.
More specifically the TA generates a key pair, where the private part is split. Instead
of committing to her choice, the voter encrypts with the public key of the TA. The
encrypted vote is then blind-signed by the RA and sent with the signature to the BB
during the voting phase. This is the last step of the voter interaction, assuming noth-
ing goes wrong. After everybody has voted, the voter can simply check the BB for
her encrypted vote and object if it is not found by revealing the authority signature.
Instead of the opening phase, the counters collectively decrypt each vote and write
the result to the bulletin board. Subsequently, the votes are aggregated. In order to
protect [Ohk+99] fairness and verifiability attacks, that are now commonplace, but
were not well researched when it was published, the voter must provide a proof πEnc

of correct encryption of her choice and the talliers must provide proof of correct de-
cryption πDec when producing the result. We assume that the proofs use the strong
Fiat-Shamir transform (cf. section 2.4.1).

The augmented [Ohk+99] scheme is presented in Figure 4.2, Figure 4.3,Figure 4.4.

The proposed voting scheme of this thesis extends the scheme in [Ohk+99] for coer-
cion resistance (cf. chapter 3).

We now prove the following, which does not exist in the literature, as far as we are
aware :

150 Chapter 4. Electronic Voting Systems and Models

AugFOO.Setup(1λ)

The RA invokes
prmsBS = BS .Setup(1λ)
(skRA, vkRA)← BS .KGen(1λ)
prmsES ← ES .Setup(1λ)
(skTA,pkTA)← ES .KGen(1λ)
prmsDS ← DS .Setup(1λ)
prmsNIZK ← NIZK.Setup()

AugFOO.Register(1λ, i)

Each Vi

(ski, vki)← DS .KGen(1λ)
BB⇐ (i, vki)

FiguRe 4.2: The functionalities Setup, Register of the AugFOO scheme

AugFOO.Vote⟨RA(skRA), Vi(vti)⟩

Vi RA
bi ← ES .Enc(pkTA,vti)
πVi ← NIZK.Prove(vti ∈ CS)
ri ←$prmsBS
b′i ← BS .Blind(bi, ri)

σi ← DS .Sign(ski, b′i) send over (i,b′i , σi)

Check signature σi

Check eligibility for Vi

βi,RA ← BS .Sign(skRA, b′i)

send over βi,RA

(bi, σi,RA) = BS .Unblind(βi,RA)
BB¢ (bi, πVi , σi,RA)

FiguRe 4.3: The protocol Vote of the AugFOO scheme

AugFOO.Valid(BB, b)

if b /∈ BB
and NIZK.Verify(πVi) = 1
and BS .Verify(σ′i,RA) = 1
then
return 1

else
return 0

AugFOO.Tally(skTA)

The TA
for i = 1 to n do
if BS .Verify(σi,RA) = 1
andNIZK.Verify(πVi) = 1
then
vti = ES .Dec(skTA, bi)
Apply counting rule

end if
end for

FiguRe 4.4: The functionalities Valid, Tally of the AugFOO scheme

4.5. Ballot secrecy 151

Lemma 4.1: AugFOO is U-BPRIV

The AugFOO scheme is private according to U-BPRIV.

Proof. We define a sequence of games beginning from the adversary interacting with
the challenger of U-BPRIV0 and concluding with the adversary interacting with the
challenger of U-BPRIV1. The differences in each game are detected by the adversary
with negligible probability.

For the proof, we also require the technical assumption, that all inputs to the Vote
oracle are equal as multisets.

– Game0 is the U-BPRIV0 game. BB0 is built through a succession of calls to or-
acles Vote, Cast from the challenger and calls Cast from the adversary. This
means that, for each tuple (bi, πVi , σi,RA) posted by the challenger, C can in-
ternally maintain the tuple (i,vt0, b0, πV0 , σ0,vt1, b1, πV1 , σ1) where b0 is the
ballot for vt0 in BB0 and b1 is the ballot for vt1 in BB1. Note that while C
knows in which BB each of the ballots for vt0,vt1 ends up, A cannot track this
information because of the random coin that simulates the anonymous casting
and decides in which BB the ballot will end up. As a result, he cannot trivially
win the game by instructing all ballots that end up in BB0 to have a specific
option vt′0 and all ballots that end up in BB1 another vt′1.

– {Gamei
1}i∈[n]. For each honest voter i, the challenger selects another honest

voter i′ such that vti = vti′ . Then it replaces swaps (bi0, πVi0 , σi0) in for request
i in BBb with (bi′1, πVi′1 , σi′1) from or request i′ BB1−b according to the internal
table of tuples it maintains from the calls to oracle Vote. Recall that if the tuple
originates from a Cast call, then there is no change, as the adversary posts
the same ballot in both boards. In the case where the tuple originates from a
Vote call, the change is indistinguishable from the point of view ofA since both
ciphertexts hide the same votes and the tally does not change. Additionally, the
proofs are swapped as well and the signature is created on the ciphertext.

It is easy to see that Gamen
1 is U-BPRIV1. Since each game in the sequence is indis-

tinguishable to the adversary, the initial and final games are also indistinguishable.
As a result, the AugFOO scheme provides privacy according to U-BPRIV.

The AugFOO scheme also provides strong consistency and strong correctness. To
argue about this we define the following functionalities:

Extract(skTA, (bi, πVi , σi,RA)) =

if BS .Verify(σi,RA)ANDNIZK.Verify(πVi) then ES .DecskTA
(bi) else �

152 Chapter 4. Electronic Voting Systems and Models

and

ValidInd(bi, σi,RA) = (BS .Verify(σi,RA) = 1 ANDNIZK.Verify(πVi) = 1)

Regarding strong consistency, we note that the actual tally is computed by essentially
applying the functionalities Extract and ValidInd, which is the same as AugFOO.Valid
except for the duplicate check. Furthermore, the Extract functionality will recover
the correct voter choice assuming a sound zero-knowledge proof system and correct
encryption and signing schemes.

Strong correctness holds because even an adversarial BB cannot reject an honestly
generated ballot. Since πVi is generated honestly and the RA is assumed honest, the
only ways to invalidate a ballot is to create an exact duplicate of the vote in question.
To do this, however, the adversary must guess the randomness used for encryption,
which can occur with negligible probability.

∎

4.6 Everlasting Privacy

As we saw in section 1.2 ballot secrecy allows voters to express their true preference
without repercussions. In electronic elections, it is usually provided by cryptographic
schemes, that rely on hardness assumptions. These, however, may be broken in the
future. As a result, a computationally powerful, future, oppressive regime might ob-
tain the vote contents and use them to better control their subjects. This constitutes
an indirect coercion attempt [MN06] in the present and it is quite easy to achieve as
secret ballots and election-related data aremadewidely available by e-voting schemes
in order to provide verifiability [Ber+17]. Furthermore, since authoritarian regimes
also control state and infrastructure agencies, their view will be not limited only to
publicly available information but will also contain ‘insider’ data. Everlasting pri-
vacy, a term proposed by [MN06], is the property that protects voting protocols from
such adversaries 2.

Before [MN06], there have been previous works that tackle the same problem, even
if they do not exactly employ the term everlasting privacy. For instance, in [Cra+96]
the voter uses the information-theoretically hiding Pedersen commitment scheme to
commit to the vote. The openings are then secret shared to the authorities using pri-
vate channels and homomorphically combined. To be verifiable, all exchanged data
are stored in a bulletin board, modeled as a public broadcast channel with memory.

2Parts of this section appear in [GPZ20]

4.6. Everlasting Privacy 153

Unfortunately, an adversary that hoards its contents can later use his advanced ca-
pabilities to break the privacy of the encrypted shares and reconstruct the votes. The
older blind signature-based protocol of [FOO92], achieves everlasting privacy goal,
if one assumes a perfectly anonymous channel (as Theorem 3 of [FOO92] points).
It resembles the shuffling of the ballot box contents, which in traditional elections
provides a sense of everlasting privacy to the average voter, who as a human is com-
putationally restricted.

The protocols of Moran and Naor [MN06; MN10] further elaborate on providing ev-
erlasting privacy through perfectly hiding commitment schemes. They propose a
concrete voting system that provides universal verifiability, receipt-freeness and ev-
erlasting privacy. Additionally, they do not require the voter to perform complex cal-
culations which makes their scheme easily usable by humans. In more details, their
proposal consists of two authorities that communicate through a private channel and
cooperate in order to produce the commitments that the voter selects. To tally the
votes, the authorities work together (privately again) to shuffle the commitments and
their openings. The latter are encrypted separately using a homomorphic cryptosys-
tem providing computational secrecy and as a result, there are two ‘parallel’ shuffles.
In the end, the perfectly hiding commitments can be safely opened to produce the
result. Everlasting privacy is achieved under the assumption that the two authorities
do not collude, and the commitment openings are not made public and thus avail-
able to the future adversary. If only a single authority is honest, then the scheme of
Moran and Naor only provides computational privacy, while if both authorities are
corrupted then the system provides only correctness. Despite proving the security of
their protocol in the UC framework, the threat model for everlasting privacy is not
formally captured. It merely rests on the perfect secrecy of the commitment scheme
and an informal description of the adversary’s capabilities. Note that in the future an
attacker, that functions as an insider, can have an equivalent effect as if at least one
of the authorities was corrupted, which means that the system of [MN10] does not
provide everlasting privacy under this stronger threat model.

Subsequent works further elaborate and generalize this technique of splitting voting
data into public and private parts, where the private data are never given to the adver-
sary thus achieving a special version of everlasting privacy - towards the public. For
instance, in [DGA12] the authors apply this procedure to the Helios [Adi08] voting
system, by replacing the exponential ElGamal encryptions with Pedersen commit-
ments that are published to the bulletin board. Their opening values are sent to the
tallier encrypted through private channels. In [CPP13], a relevant primitive - com-
mitment consistent encryption (CCE) is introduced. It allows the voters to derive
commitments from their encrypted votes. These commitments are then posted to a

154 Chapter 4. Electronic Voting Systems and Models

public bulletin board for verifiability purposes. If they are perfectly hiding, then the
voting scheme has everlasting privacy. Tallying takes place in parallel using a private
bulletin board, where the decryption of the result of the homomorphic combination of
the votes takes place. They also provide security definitions for the privacy properties
of their scheme but not for everlasting privacy in general. Furthermore, in [BDV13]
this splitting technique is applied to create two synchronized mixnets that operate in
parallel, mixing public commitments and private decommitment values, respectively.

The central idea in all the works presented so far is that a future adversary might be
more powerful in terms of computing power, but he will lack access to data contem-
porary to the election or private data available to the authorities. This was noted and
formalized in [Ara+13] with the notion of practical everlasting privacy. However,
the formalization used the applied pi-calculus and not the more expressive indistin-
guishability cryptographic games. Using automated tools, the authors of [Ara+13]
proved that the protocols of [MN10] and [DGA12] possess practical everlasting pri-
vacy. However, they did not apply their definition to schemes based on blind signa-
tures and anonymous channels. Moreover, the reliance on private channels assumes
an external adversary, who has a view of the system similar to the view of the voter.
This excludes adversaries that cooperate with the election authorities, who in our
opinion are more powerful and more likely to be the perpetrators of a future attack.

More recent works revisit the idea of an anonymous channel to add everlasting pri-
vacy to voting schemes. As the anonymous channel is a necessary condition for
coercion resistance, these schemes also try to combine these two goals. In [LH15],
the voter casts an unencrypted choice to the bulletin board along with commitments
to their voting credential. The use of an anonymous channel and the fact that the
voting credential consists of two parts, prevents a future adversary from associating
the choice of a voter with her identity. A variation of this protocol was presented in
[LHK16] to offer coercion resistance using deniable vote updating. To achieve coer-
cion resistance, votes can be overwritten and only the last one counts. As a result,
a voter under coercion can save her real vote for the end. This is a much stronger
assumption than a simple moment of privacy required by the JCJ framework; for
example, an adversary who is able to cast a last-minute vote achieves coercion. In
[Iov+17], a version of Selene enhanced for JCJ coercion resistance is equipped with
everlasting privacy towards the public with the use of pseudonyms. However, the
creation process of pseudonyms and their relationship to real voter IDs and creden-
tials requires trust assumptions and private channels between the members of the
registration authority.

In our work [GPZ17; Gro+18; GPZ19; Gro+20], presented in chapter 3 and concluded
in chapter 5 we try to combine everlasting privacy and coercion resistance under

4.6. Everlasting Privacy 155

weaker assumptions. We start with the scheme of [FOO92] (cf. subsection 4.5.3)
and we solve the ballot stuffing problem with the PACBS primitive we described in
chapter 3. The conditional verifiability property of PACBS also assists to achieve
coercion resistance. The architecture of the proposed voting scheme allows tallying
without trusting the authorities. The blindness of the signatures along with the use
of an anonymous channel facilitates everlasting privacy. To reason about the way to
achieve it we introduce the following formalization.

4.6.1 Game based definitions for everlasting privacy

Our model considers an adversary, who can corrupt voters and use them to learn
what the honest voters voted. More specifically, our adversary is assumed to have
the following capabilities:

– They can passively (as there will be no vote casting) examine the public bal-
lot data found in the BB, without any further distinguishing information (e.g.
which ballots belong to honest voters and which to corrupted ones).

– They can cooperate with the contemporary adversary A and utilize the voters
controlled by them. Consequently, they can pinpoint the ballots originating
from adversarial voters.

– They can utilize leaked election and communication data, obtained in the real
world by taking control of state and communication agencies, such as election
authorities and internet service providers.

We incorporate these cases in our definitions, by assuming a pair of algorithms (A, Â)
whereA is a PPT algorithm and Â is computationally unbounded. The former partic-
ipates actively in the election by corrupting voters and the latter looks at the election
transcript. leakage from communication channels denoted Aux and the information
gathered by A.

For the everlasting privacy property, we define three games to capture the differ-
ences in the strategy and knowledge of the future adversary. These games depend
on U-BPRIV defined in Algorithm 4.11. In all of them the adversary Â is unbounded
and invokes the election system that is controlled by the challenger.

In particular, the weaker version of everlasting privacy WE-BPRIV is meant to cap-
ture a strong adversary which views only the publicly available information in the
BB for an election. Based on his computational power he can compute the tally (e.g.
by decrypting) No more data is available to him.

156 Chapter 4. Electronic Voting Systems and Models

Algorithm 4.12: Weak everlasting privacy game WE-BPRIVb
Â,VS

(BBb, T)← ÂVS()
b′ ← Â(BBb, T,guess)
return b = b′

This is formalized in Algorithm 4.12, where the future adversaryA invokes the voting
system. After the execution, the adversary receives the BB picked by the coin b and
the tally and tries to guess β.

Definition 4.11: Weak everlasting privacy

A voting scheme VS has the weak everlasting privacy property, if for every
algorithm Â there exists a negligible function negl such that for every L it holds
that:

Pr[WE-BPRIV0
Â,VS(λ, L) = 1]−Pr[WE-BPRIV1

Â,VS(λ, L) = 1] ≤ negl(λ)

In stronger versions of everlasting privacy, the future adversary remains unlimited
computationally, but gradually has access to increasing data to utilize. In the ‘plain’
everlasting privacy game the future adversary considers the transcripts obtained by
the contemporary adversary during the execution of the protocol. Note that since
corruption information is used the restriction t on the number of corrupted voters
applies as well.

Algorithm 4.13: Everlasting privacy E-BPRIVb
A,Â,VS,t

(vt0,vt1,Corr)← Â()
(BBb, Transb, T)← ÂVS,A()
b′ ← Â(BBb, Transb,guess)
return b = b′ AND ∣VCorr∣ ≤ t

Definition 4.12: Everlasting privacy

A voting scheme VS has the everlasting privacy property, if for every pair of
algorithms (A, Â) there exists a negligible function negl such that for every L
it holds that:

Pr[E-BPRIV0
A,Â,VS,t(λ, L) = 1]−Pr[E-BPRIV1

A,Â,VS,t(λ, L) = 1] ≤ negl(λ)

4.6. Everlasting Privacy 157

Finally, in the strongest version of everlasting privacy SE-BPRIV, the computation-
ally unbounded adversary Â obtains all data generated by the protocol both main and
auxiliary.

Algorithm 4.14: Strong everlasting privacy SE-BPRIVb
Â,VS,t

(vt0,vt1,Corr)← Â()
(BBb,viewA, Transb, Auxb, T)← ÂVS,A()
b′ ← Â(BBb, Transb, Auxb,guess)
return b = b′ AND ∣VCorr∣ ≤ t

Definition 4.13: Strong everlasting privacy

A voting scheme VS has the strong everlasting privacy property, if for every
pair of algorithms (A, Â) there exists a negligible function negl such that for
every L it holds that:

Pr[SE-BPRIV0
A,Â,VS,t(λ, L) = 1]−Pr[SE-BPRIV1

A,Â,VS,t(λ, L) = 1] ≤ negl(λ)

4.6.2 Application of the new everlasting privacy definitions

Wenow apply our definitions to two representative schemes; one for each of the main
approaches to privacy in the literature.

The AugFOO scheme provides strong everlasting privacy

First, we characterize the everlasting privacy provided by the AugFOO scheme (cf.
Figure 4.2, Figure 4.3,Figure 4.4)

Theorem 4.1: AugFOO and strong everlasting privacy

The AugFOO scheme provides strong everlasting privacy.

Proof. The data available to Â for an honest voter are the following:

– All the public keys and parameters.

– The public data posted on the BB in the registration and voting phases (i, b′i, σi),
(bi, πVi , σi,RA).

– The private keys skRA, skTA.

– The private transcript of the corrupt voters that reveal their vote.

158 Chapter 4. Electronic Voting Systems and Models

DGA.Setup(1λ)

The system invokes
prmsCS = CS .Setup(1λ)
ck← CS .KGen(1λ)
prmsES ← ES .Setup(1λ)
(skTA,pkTA)← ES .KGen(1λ)
prmsNIZK ← NIZK.Setup()

DGA.Tally(skTA)

The TA
for i = 1 to n do
vti = ES .Dec(skTA, Auxi)
oki = ES .Dec(skTA, Aux′i)
if CS .Open(bi,vti,oki) = 1 then
Apply counting rule

end if
end for

DGA.Vote(vti)

Vi TA
(bi,oki)← CS .Commit(ck,vti)
Auxi ← ES .Enc(pkTA,vti)
Aux′i ← ES .Enc(pkTA,oki)
BB⇐ bi

send Auxi, Aux′i

FiguRe 4.5: The DGA scheme of [DGA12]

Note that because of anonymous casting the leaked data Trans, Aux are nullified,
which means that A cannot identify the voter. The tuple (i, b′i, σi) is also useless
to the adversary since b′i is blinded with information-theoretic security. While the
challenger consistently places both (i, b′i, σi), (bi, πVi , σi,RA) in the same BB, Â does
not get any advantage because of the unlinkability of blind signatures. From bi, Â
can obtain the choice of the voter. However, like Lemma 4.1, the anonymous channel
used during casting prohibits Â from distinguishing in which BB this choice has been
placed. ∎

The DGA scheme provides everlasting privacy

Informally, in DGA the voters publish a Pedersen commitment of their vote in the
BB, along with a witness indistinguishable proof of correct ballot formation. They
also submit the respective openings to the TA, the Helios server. The system has two
variations; it either homomorphically combines the commitment ballots or it mixes
them. The same operation is performed on the openings in parallel. We describeDGA
more formally in Figure 4.5.

As DGA is a variation of Helios, it can be proved secure using plain BPRIV, by adapt-
ing the proof in [Ber+15]. Concerning everlasting privacy, the authors of DGA admit
in [DGA12] that it only provides everlasting privacy towards the public. Towards the
election authority, DGA provides Helios-level privacy, which means that a corrupted

4.6. Everlasting Privacy 159

or computationally powerful TA can reveal the selections of the voters. We can reach
the same results by applying our model.

Theorem 4.2: DGA and strong everlasting privacy

The DGA scheme does not provide strong everlasting privacy.

Proof. In Algorithm 4.14, Â obtain the auxiliary data:

Aux = {Auxi, Aux′i}n
i=1 = {ES .Enc(pkTA,vti),ES .Enc(pkTA,oki)}n

i=1

Since they are computationally unbounded, they can break the encryption scheme
and obtain both vti,oki for all the voters. They can also obtain Transβ for β ∈ {0, 1}
and the contents of both BB0, BB1 which now contain the commitments fromA. The
former also includes all the choices selected by A for voters in both VCorr and VHon.
Using vti,oki they can validate all commitments in both bulletin boards and deduce
which of BB0, BB1 they are viewing with certainty. ∎

Theorem 4.3: DGA and everlasting privacy

The DGA scheme provides everlasting privacy.

Proof. Firstly, we note thatDGA providesweak everlasting privacy. InAlgorithm 4.12,
Â views only the contents of both BB, having no information about which ballots be-
long to corrupt voters. However, the commitment scheme hides the ballot contents
perfectly and thus Â cannot win Algorithm 4.12.

In Algorithm 4.13, Â obtains additionally the view of A, namely the options of the
corrupt voters and the choices vt0,vt1 fromA used in the calls to Vote. These pieces
of data provide no advantage to Â, as the option of corrupted voters where already
known to them and the options of the honest voters are honestly hidden. ∎

4.6.3 Discussion

Our models and their evaluation indicate that it is not enough to use an information-
theoretically hiding scheme to achieve strong everlasting privacy. To do so, such
schemes need to be accompanied by an anonymous casting phase. Interestingly, this
is the intuition applied to physical on-site voting systems. The voters do not merely
hide the ballot (by concealing it inside an envelope) but they also anonymize it by
mixing it with identical envelopes inside the ballot box.

On the other hand, a critic of the anonymity approach can point out that it trades one
problem for another. Instead of a perfectly hiding system, a perfectly anonymous

160 Chapter 4. Electronic Voting Systems and Models

scheme is required to provide strong everlasting privacy. In our view, however, this
is not the case. An anonymous channel might not be in the (full) control of a future
adversary. It might be distributed, operated (in part) by non-governmental organiza-
tions and it might even transcend national boundaries. In theory, this seems easier to
accomplish, than trusting only the election authorities to keep private or securely de-
stroy sensitive data such as decommitment values even from insiders. Furthermore,
alternative methods of anonymity ‘on the client-side’ can be applied. For instance, it
isn’t hard to imagine a voting scheme where the locally-connected voters of a partic-
ular polling station create small-scale anonymity sets to obfuscate their ballots. As a
result, by keeping at least a single component of the anonymous channel out of the
control of the future adversary, strong everlasting privacy can be attained.

4.7 Relations between properties and models

To conclude this chapter, we review the relations between the various properties we
described in the previous sections.

We begin, with the conflict of verifiability and privacy that is evident in many vot-
ing schemes. [Che+10] prove that universal verifiability and unconditional privacy
cannot exist unless everyone votes. The reasoning for this, is that for universal veri-
fiability there must be a list of eligible voters and corresponding individual votes that
are summed to the tally. An adversary that is not constrained, can find for all sub lists
of voters, that contain one less voter, the corresponding tally. By subtracting it from
the original tally, he can uncover the preference of the voter that is excluded. Further-
more, in the same work it is proved that universal verifiability and receipt-freeness
cannot coexist, unless private channels are present. The intuition behind this proof,
rests on the fact that we accounted for in subsection 4.4.1, where the randomness used
to construct a ballot can serve as a receipt. Since, this randomness, along with the
vote uniquely determines the ballot it must be used to verify the ballot. As a result, if
the receipt is absent, the scheme is not universally verifiable and if it is present it is
not receipt-free.

Some interesting results concern individual verifiability (cf. subsection 4.3.1). It
would seem reasonable to assume that if a voting scheme possesses individual veri-
fiability, it possesses universal verifiability. However, as we saw in subsection 4.4.1,
in BeleniosRF, a voter can verify her ballot, by checking the signature. However, the
RA and the rerandomizing server can collude and undetectably change the contents
of the ballot. Note, that for universal verifiability, every member of the EA must be
regarded as being corrupted. As a result, BeleniosRF provides individual verifiabil-
ity but not universal. [SFC15] reached the same result by constructing a scheme

4.7. Relations between properties and models 161

with in which each voter posts her vote in plain together with a random nonce,
i.e. (�, (vti, ri)) ← VS.Vote⟨EA(), Vi(vti), prms, VEl, CS⟩ where ri ←${0, 1}λ. This
scheme obviously possesses individual verifiability but is amenable to ballot stuffing.
The reverse does not hold either. One can construct a scheme that has universal ver-
ifiability, where each individual voter cannot pinpoint her vote in the BB. In fact, the
original version of the [FOO92] is such a scheme. As a result, universal verifiability
and individual verifiability are orthogonal properties.

[SFC15] prove that if a scheme provides eligibility verifiability, then it will also pro-
vide individual verifiability. The reason is that eligibility verifiability guarantees that
everybody can verify that a ballot is associated to a particular public key. This means
that the holder of the private key, can pinpoint their ballot and thus the scheme is
individually verifiable.

More surprisingly, [CL18] proves that if a scheme provides privacy then it provides
individual verifiability, or for the contrapositive if the scheme does not provide in-
dividual verifiability it does not provide privacy. The reason for this is that if voters
cannot verify that their ballots will be counted, then a corrupt EA can replace all the
ballots except for one and thus learn what a particular voter voted. An interesting
consequence of this result, is that voters who check their ballots, protect the privacy
of other voters.

Ballot secrecy is also implied by receipt-freeness. If a scheme is not private, then
there is no need for a receipt since it is public who everyone voted for. This is also
evident from the BPRIV definitions in Algorithm 4.10 and Algorithm 4.9. It removes
the need for an unbounded adversary. For this reason, everlasting privacy implies
privacy. Regarding the reverse direction, it clearly does not hold. In fact, [KTV11]
show some counter-intuitive results if one tries to quantitatively characterize ballot
secrecy and coercion-resistance for specific voting schemes. Contrary to one’s in-
tuition: increasing privacy by forcing the voters to cast their ballots in a particular
format, reduces coercion resistance. Informally, everlasting privacy is also related to
coercion-resistance, by the observation that if a system reveals to a future adversary
the contents of the vote, then the voter is de-incentivized to cast her true preference.
However, this is not a direct consequence of any model and as a result, we do not
form a logical implication.

A contested relation in the literature, concerns receipt-freeness and coercion resis-
tance. These concepts do not have clear boundaries, as is evident from the fact
that many schemes that are coercion resistant according to some models, are not
receipt-free ([KZZ15a; Cha+16; FQS19]). Receipt-freeness defends against corrupt

162 Chapter 4. Electronic Voting Systems and Models

voters, while coercion resistance defends against active adversaries and assumes anti-
coercion measures from the voter. Since a corrupt voter will not take this anti-
coercion strategy, a scheme that is not receipt-free will not be coercion resistance.
In the [JCJ05] setting, things are clear: since a coercion resistant scheme, must be
receipt-free, coercion-resistance implies receipt-freeness.

These relations are depicted in Figure 4.6.

FiguRe 4.6: Relations between security properties of voting schemes

163

5 Voting with Publicly Auditable
Conditional Blind Signatures

The first principle is that you must not
fool yourself and you are the easiest
person to fool.

Richard Feynman

In this chapter 1, we present a voting scheme that utilizes the PACBS primitive we
analyzed in chapter 3. The main idea of this scheme is that the blind eligibility checks
of [FOO92] are combined with a credential-based coercion resistant check and em-
bedded into the PACB signature. This means that if the credential provided by the
voter during the authorization phase, is the one created during registration, then the
signature will be valid, and the vote will be counted. Otherwise, the signature will be
invalid, and the vote will be discarded because it will be considered a result of coer-
cion. While this is the intuition behind our scheme, there are many more details that
need to be considered. For instance, the designated verifier of the PACBS must indi-
cate that the signature is invalid for verifiability, without informing the coercer about
this fact. Furthermore, the duplicates inherent in [JCJ05], must be weeded out in a
verifiable manner. All these aspects of the scheme are detailed in the current chapter.
The claimed properties are also proved using ideas from the models in chapter 4.

5.1 Overview

One of the disadvantages of the [JCJ05] coercion resistance scheme is the quadratic
number of checks required to weed out coerced and duplicate votes. As we saw in
section 4.4.2, there have been many efforts in the literature, trying to speed up this
process, without sacrificing coercion resistance and verifiability. Our approach was
first detailed in [GPZ17], where we noted a new possibility stemming from the com-
bination of the scheme in [FOO92] with its variations and [JCJ05]-type schemes.

1An extension of [GPZ17; Gro+18; Zac18; Gro+20]

164 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

Recall, that in [FOO92; Ohk+99], the voter sends an authorization request consisting
of identification information and a blinded vote. The RA checks eligibility and then
signs the vote. Our idea is to embed credential weeding into this eligibility verification
performed by the RA. This can improve the complexity of detecting coerced votes,
bringing it down to a linear function of the number of voters (instead of votes as
in [JCJ05]). During this authorization phase, the voter identity is known, so only
the credentials assigned to it should be considered, instead of checking the tokens
of all voters. As a result, the RA would be able to tell if a particular vote should be
counted. For the actual counting, however, this fact should be conveyed to the TA,
which can be done by extending the scope of the RA’s signature. Instead of only
indicating eligibility, it can also signal if the authenticating credential is genuine or
fake, for the vote to be counted by the TA or not. All these must be done verifiably.
Every election stakeholder should be able to audit the process to check that the two
authorities followed the protocol. However, the voters, should also be convinced
that only the vote corresponding to the registered credential was counted. This fact
should not be conveyed to the coercer. Our novel contribution is that all these checks
are embedded the PACBSprimitive. Our voting scheme [Gro+18] uses the OSPACBS
instantiation of PACBS section 3.6.

The general workflow, from the point of view of a single voter Vi, is depicted in Fig-
ure 5.1.

FiguRe 5.1: PACBS voting for an individual voter

The election authority EA consists of two sub-authorities RA, TA that handle the
registration and tallying functionalities respectively. They, in turn, consist of many

5.1. Overview 165

members, with conflicting interests, that share cryptographic keys. Real-world elec-
tions are usually organized by a central entity so it is not uncommon for the function-
alities of the RA, TA to be performed by the same functional election authority. As a
result, the assumption that the authorities can share a cryptographic key (in this case
the PACBS secret key s) is not restricting or unrealistic. Of course, all their members
are considered corrupted to provide for universal verifiability.

The scheme VSPACBS of Figure 5.1 consists of five phases. We detail them below and
match them with the functionalities defined in Definition 4.1:

– Setup comprising the functionalities VSPACBS.Setup, VSPACBS.SetupElection.

– Registration implemented through VSPACBS.Register.

– Voting is split into two sub-phases: authorization and casting realized by the
functionalities VSPACBS.Vote, VSPACBS.Cast. The functionality VSPACBS.Valid
is executed after casting and performs ballot weeding. Helper functionalities
used in this case are VSPACBS.fakekey, VSPACBS.chaffvote, VSPACBS.dupauth to
generate a fake credential, inject fake votes for coercion resistance and to weed
out duplicate authorization requests.

– Tally, which is implemented by VSPACBS.Tally.

– Verification which comprises of VSPACBS.VerifyBallot, VSPACBS.Verify.

In short, the protocol operates as follows (a detailed analysis will be provided in sec-
tion 5.2).

The EA executes the VSPACBS.Setup functionality to create the cryptographic param-
eters of the system. These parameters are to be used across multiple elections. Each
voter Vi participates in the generation of the real credential through an untappable
pre-election registration. This is implemented using the VSPACBS.Register function-
ality, that generates a credential intended for use in many elections. The EA executes
the VSPACBS.SetupElection functionality to create a particular election. When the
registration phase ends, the RA posts a list of pairs consisting of voter identity i and
an encrypted genuine credential to the publicly available BB. Assume that voter Vi

has obtained a credential θi encrypted as Ci1 under the RA public key. Then (i, Ci1)
will be included in the public credential list.

During the voting phase, Vi first performs an authorization request, by executing
VSPACBS.Vote. To this end, she recomputes an encryption of the credential as Ci2 and
computes the encryption vi of her vote vti. If the voter is under coercion, she will use
a fake credential θ′i . Otherwise, shewill use the genuine, making Ci2 encrypt the same
plaintext as Ci1 (i.e. θi). Subsequently, she executes the VSPACBS.Vote functionality,

166 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

by initiating the OSPACBS.Sign protocol with the RA. More specifically, vi is blinded
using the OSPACBS.Blind algorithm. Both encryptions Ci1, Ci2 are attached to the
authorization request. Note that there is no need to encrypt vi with the same public
key as Ci1, Ci2. However, for simplicity, we assume that this is the case. Then Vi

produces the OSPACBS.Blind output ei, and submits the vote authorization request,
which includes voter identification information as in [FOO92]. TheRA uses this infor-
mation to find out if Vi is eligible to vote and uses the OSPACBS.BlindSign function-
ality to compute the blind signature βi, conditional to the predicate pred(Ci1, Ci2) =
1 ⇔ Dec(Ci1) = Dec(Ci2) and verifiable by the TA. OSPACBS.BlindSign also pro-
duces the proof πi,Sign. Vi retrieves βi and invokes the OSPACBS.Unblind function-
ality to obtain the plain signature σi which is then recast with vi, as the ballot for
Vi, using the VSPACBS.Cast functionality. In order to accept the voter ballot the BB
executes the VSPACBS.Valid functionality.

For tallying, the TA invokes the VSPACBS.Tally functionality which must count only
the votes that correspond to uncoerced ballots i.e. ballots for which pred(Ci1, Ci2) = 1
when signed by theRA. This can be determined by the execution of theOSPACBS.Verify
functionality for each ballot - signature pair. However, if the TA is ‘careless’ and
simply executes this functionality, its published result will notify the coercer if his
coercion attempt succeeded, beating the purpose of the fake credentials mechanism.
To avoid this problem, the TA will perform the validation in two steps: Firstly, it will
compute Ri and πi,Verify = (πi1, πi2, πi3) as specified in Algorithm 3.13 and post them
to the BB. Then it will use a verifiable shuffle to disassociate all entries from their
identity and from when they were originally cast. The result of the shuffle will be
verifiably decrypted and counted if and only if Dec(Ri) = 1. The πi4 will be posted
to the BB. By the construction of the PACBS scheme, this means that only the votes
that were not a product of coercion, as indicated by the usage of the correct credential
will be counted.

The VSPACBS.VerifyBallot can to provide individual verifiability. It includes the func-
tionality AuditSign. The VSPACBS.Verify functionality can be invoked by any inter-
ested party and reveals if every participant followed the protocol. To the voter, how-
ever, who has the private input of which credential she used to cast her ballot this
will also signify if the ballot was counted or not. This is not checkable by the coercer
who lacks this secret piece of information and only receives the knowledge of the
public. This means, that the system is receipt-free as well.

5.2. PACBS Voting Scheme Specification 167

5.2 PACBS Voting Scheme Specification

We now detail how the functionalities from Definition 4.1 are instantiated using
PACBS. In the following, all public data are appended to the BB. For readability,
we assume that the BB is split into sections, where the appropriate data from each
functionality are stored. These sections are identified by the use of an appropriate
subscript.

5.2.1 Setup phase

The setup phase contains the VSPACBS.Setup and the VSPACBS.SetupElection func-
tionalities that aim to initialize the underlying cryptosystem and select the election
parameters for each election, respectively.

VSPACBS.Setup functionality

The election authority EA initializes the PACBS scheme by invoking the PACBS.Gen
algorithm (Algorithm 3.11). All the generated private keys are split between the
agents, but we treat them as controlled by a single entity. For simplicity, we will
use the encryption scheme that is employed in PACBS to encrypt credentials, to also
encrypt the vote. However, the latter is not required as any IND-CPA secure cryp-
tosystem could be used for this task. A random group generator g is also selected to
be used to encode the initial voter credentials into group elements. The credentials
are assumed to be mapped to elements of Zq (ultimately). All the public parameters
generated are stored in a special section of the BB in the end.

Algorithm 5.1: The VSPACBS.Setup algorithm executed by the EA for all elections
Input : security parameter λ
Output: prms, sk,pk

(prms, sk,pk)← PACBS.PACBS.Gen(1λ)
/* prms = (q, G, g1, g2, v, pred,H1,H2) */
/* sk = (s, z) */
/* pk = (k, h) */
g←$ G

prms ∶= (q, G, g1, g2, v, pred,H1,H2, g)
skEnc ∶= z
pkEnc ∶= h
skPACBS ∶= s
pkPACBS ∶= k
BBprms⇐ (prms,pkEnc,pkPACBS)

168 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

VSPACBS.SetupElection functionality

At the beginning of each election the EA generates the list of candidates (candidate
slate CS) and the list of eligible voters VEl. For the former, a suitable encoding must
be selected so that the candidates are mapped to the message space of the cryptosys-
tem. This encoding will of course affect the counting function. While our framework
can be adapted to both homomorphic and plain vote counting, in Algorithm 5.2 a ran-
dom group element is selected and assigned to each candidate. When the ballots are
decrypted, the plaintexts are compared to the respective ‘prototypes’ of the CS ∈ BB
and then counted. For the latter, additional external information L is required (e.g.
citizenship or membership records, start time and end time Tstart, Tend). We assume
an external functionality check that given a voter identity and the database L, returns
if the voter in question has the right to vote or not. In the end, both lists are appended
to the BB.

Algorithm 5.2:The VSPACBS.SetupElection algorithm executed by the EA for a partic-
ular election
Input : n, m, prms, L,{Ci1}

n
i=1

Output: CS, VEl

CS ∶= ∅
for j ∈ [m] do

vtj←$ G

CS ∶= CS∪ vtj
end
VEl ∶= ∅
for i ∈ [n] do

if check(i, L) = 1 then
VEl ∶= VEl ∪ (i, Rebase(Ci1))

end
end
BBelection⇐ (CS, VEl)

The VSPACBS.SetupElection functionality assumes that there exists a list of encryp-
tions of the registered voter credentials produced by themulti-electionVSPACBS.Register
functionality. This list is presented as input to VSPACBS.SetupElection. To allow cre-
dential reuse for many elections a Rebase functionality transforms them from their
initial form gθ to their new form gθ

0, where g0 is a random group generator computed
for each new election. The proof πRebase is a conjunction of a Schnorr proof (πS from
Figure 2.1) and Chaum-Pedersen proofs (πCP from Figure 2.2). This functionality can
be performed in a distributed manner, to reduce the trust required to the election
authority.

5.2. PACBS Voting Scheme Specification 169

Algorithm 5.3: The Rebase algorithm for changing credentials between elections
Input : C1 = (gr, gθhr)
Output: C′1
b←$ Zq
g0 ∶= gb

BBelection⇐ g0
C′1 ∶= ((gr)b, (gθhr)b) = (grb, gθ

0 hrb)
πRebase ∶= NIZK{(prms, C1, C′1, g0), (b) ∶ g0 = gb AND C′1 = Cb

1}
return (C′1, πRebase)

5.2.2 Registration phase

VSPACBS.Register functionality

The registration phase aims to create a genuine voter credential. As such, it is overly
sensitive to the goal of coercion resistance, since a possible leak can result in a sim-
ulation attack. As a result, the generated credential must be deniable (cf. the spe-
cific assumptions in section 4.4). We assume that the registration phase takes place
through an untappable channel, that is implemented by physical means i.e. in-person
registration. This might be contrary to the online voting concept, but in our case the
credentials can be reused for many elections, through the Rebase mechanism. Our
system can support both registration methods in the literature:

– Using something the voter ‘knows’, like a password. This approach was used in
Selections [CH11], where the voter registers a password from a panic password
system [CH08]. For instance, the RA could set up a commonly used set of words.
Each password consists of a combination of several words. The voter registers
a particular combination as the normal password. Any other combination is
considered a panic password. In both cases, the user experience is the same,
so that the coercer cannot distinguish the type of password typed by the user.
Note that in such a system, invalid passwords (maybe due to typing errors), are
different from panic passwords and can be treated in the usual way - the user
can simply retry.

– Using something the voter ‘has’, like a tamper-resistant cryptographic token
(e.g. smart-card) that has a cryptographic key embedded and can be used to per-
form cryptographic computations - reencryptions, (designated verifier) proofs
computations etc. This approach was used in CIVITAS [CCM08].

In the former case, [CH11], we assume that there exists a function ϕ ∶ {0, 1}∗ → Zq

that transforms a password to a group index θ. Subsequently, the voter encrypts the
corresponding group element gθ using the public key of theRA and submits it. TheRA

170 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

posts a rerandomization of the encrypted credential to the BB. The proof πi1 proves
knowledge of a lifted ElGamal plaintext (cf. πm in Figure 2.5). The proof π′i1 proves
correct reencryption (cf. πReEnc in section 2.4.1). If the voter is assumed to use an
untrusted computational device to perform the computations then this process must
be repeated for α credentials, with the user selecting a single one using a mechanism
such as Benaloh challenges [CH11; Ben06].

Common input: prms,pkRA, the voter ID i
Assumption: Runs over an untappable channel

Vi creates a credential:

– selects a valid password pwdi from a panic password system

– computes θi ∶= ϕ(pwdi)

– computes Ci1 ∶= Ench(gθi , ri) and πi1 ∶= NIZK{(prms), (θi, ri) ∶ Ci1 = Ench(gθi , ri)}

– submits (Ci1, πi1) to the RA

RA creates the voter roll entry

– computes C′i1 ∶= ReEnc(Ci1)
and π′i1 ∶= NIZK{(prms, Ci1, C′i1), (r

′) ∶ C′i1 = ReEnch(Ci1)}

– BBRegister ⇐ (C′i1, π′i1)

FiguRe 5.2: The VSPACBS.Register protocol executed through an untappable
channel (Selections version)

In the latter case, [CCM08], the RA functionality is split among many members EAj.
The voter creates a credential share with each member and derives the final credential
from their combination. The proof πij proves knowledge of a lifted ElGamal plaintext
(cf. πm in Figure 2.5). We assume that the voter has a key pair (pkVi

, skVi
) that

is going to be used for the designated verifier proof of correct reencryption (δReEnc
from Figure 2.9) that achieves deniability.

5.2.3 Voting phase

Coercion evasion functionality fakekey

To achieve coercion resistance our voting protocol utilizes a function fakekey that
the voter executes when the coercer is present. This function creates a new anony-
mous and indistinguishable credential that the voter will use to cast her coerced vote.
The implementation of this function depends on how the credential was created and
registered.

5.2. PACBS Voting Scheme Specification 171

Common input: prms,pkRA, the voter ID i,pkVi
Private RA input: skRA
Assumption: Runs over an untappable channel

Each member EAj of the RA generates its credential part:

– selects θij ←$ Zq

– computes sij ∶= gθij

– computes Sij ∶= Ench(sij, r), πij ∶= NIZK{(prms), (θij, r) ∶ Sij = Ench(sij, r)}

– appends Sij to the BB

Voter i registers with each EAj

– receives S′ij ∶= ReEnch(Sij) along with a designated verifier proof of correct reencryption
dij ∶= δReEnc = DVP{(prms,pkRA,pkVi

, S′ij, Sij), (skEAj
), S′ij = ReEnch(Sij)}

– verifies the proof

– computes Ci1 ∶=∏j S′ij = Ench(∏j sij)

FiguRe 5.3: The VSPACBS.Register protocol executed through an untappable
channel (CIVITAS version) between Vi and EAj

In case, the system of [CH11] is used, when the voter invokes fakekey a password
is requested. Under coercion the user provides a panic password. The function ϕ

recognizes the case and does not reject the password. However, it encodes it to a
different element θ′ of Zq thus producing a different credential.

Algorithm 5.4: The fakekey functionality for evading coercion assuming [CH11]
Input : A password pwd′i from a panic password system
Output: encrypted credential
while pwd′i is invalid do

pwd′i ∶= RequestPassword()
end
θ′i ∶= ϕ(pwd′i)
Ci2 ∶= Ench(g

θ′i
0 , ri), πi2 ∶= NIZK{(prms), (θ′i , ri) ∶ Ci2 = Ench(g

θ′i
0 , ri)}

return (Ci2, πi2)

The proof πi2 proves knowledge of a lifted ElGamal plaintext (cf. πm in Figure 2.5).

In case, the system of [CCM08] is used the voter must have at least one trusted reg-
istration server, whose credential he can fake. Subsequently, she will also fake the
corresponding designated verifier proof. The process in Algorithm 5.5 can be gener-
alized for many trusted EAj:

The proof πij proves knowledge of a lifted ElGamal plaintext (cf. πm in Figure 2.5).

172 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

Algorithm 5.5: The fakekey functionality for evading coercion assuming [CH11]
Input :

Credential shares obtained during registration sij, Sij, S′ij
Designated verifier proofs obtained during registration dij
Identity of a least one trusted RA: j∗

Output: encrypted credential
θij∗ ←$ Zq

sij∗ ∶= gθij∗

Sij∗ ∶= Ench(sij∗ , rij∗) , πij∗ = NIZK{(prms), (sij∗ , rij∗) ∶ Sij∗ ∶= Ench(θij∗ , rij)}
S′ij∗ ∶= ReEnch(Sij∗)
dij∗ ∶= δReEnc = DVP{(prms,pkRA,pkVi

, S′ij∗ , Sij∗), (skVi
), S′ij∗ = ReEnch(Sij∗)}

Ci2 ∶=∏j S′ij
return Ci2,{dij}j

During the essential moment of privacy, the voter will not use this fakekey but instead
will use her real credential created during the registration phase.

VSPACBS.Vote functionality

The voter selects the preferred candidate vt from CS, encrypts her selection with the
RA’s public key to produce v and provides proof of knowledge and validity of plain-
text πv. Since the candidates are group elements (cf. Algorithm 5.2), the voter proves
that v is an encryption of one of these elements. Such a proof can be constructed
use a disjunction of proofs of correct ElGamal encryption of a known message (sec-
tion 2.4.1).

Then she presents a credential θ′, that might be the original θ or the result of fakekey
if the voter is under coercion. This is encrypted with the RA’s public key to produce
C2 along with a proof of knowledge of plaintext πC2 . This proof is very important
in the analysis of the verifiability of VS.PACBS, as an attacker cooperating with a
corrupted RA could include a reencryption of the credential in the voter roll.

Finally, the voter and the RA invoke the OSPACBS.Sign protocol. During the protocol
execution, the RA makes some additional checks before continuing in issuing the
blind signature. In particular

– The RA checks the validity of the proof of knowledge issued by the voter.

– The RA, using PETs, examines whether there was another message with the
same credential which would mean a duplicate authorization request. The RA
states whether the request is a duplicate or not and if not continues into issuing
the blind signature.

5.2. PACBS Voting Scheme Specification 173

Common input: prms,pkRA, i, BBelection
Vi’s private input: vti
RA’s private input: skRA
Assumption: Runs over an anonymous channel

Vi prepares the ballot and creates the authorization request:

– (vi, πvi) ∶= (Ench(vti; rvti),NIZK{(g1, h, CS, v), (vti, rvti) ∶ vti ∈ CS AND vi =
Ench(vti, rvti)})

– If the voter is under coercion executes the fakekey functionality
(Ci2, πCi2) ∶= fakekey()

– If the voter is not under coercion computes a new encryption of her normal credential
(Ci2, πCi2) ∶= (Ench(gθi

0 , ri),NIZK{(prms), (θi, ri) ∶ Ci2 = Ench(gθi
0 , ri)}

RA and Vi invoke the OSPACBS.Sign protocol with communication through the BB:

1. Vi retrieves Ci1 from BBelection

2. Vi executes the OSPACBS.Blind algorithm

(ei, ui1, ui2, di) ∶= OSPACBS.Blind(prms,pkRA, Ci1, Ci2, vi)

BBvote ⇐ (i, ei, Ci2, πCi2)

where ei is the public output and (ui1, ui2, di) are the blinding values selected from Vi

3. The RA validates the authorization request and provides the blind signature:
– Firstly, it retrieves Ci1 from BBelection

– If πCi2 is invalid the RA ignores the request.
– The RA checks for duplicate requests with the same credential Ci2 and proofs

πi,dup1, πi,dup2 are added in a special section BBdup (cf. Algorithm 5.10).

BBdup ⇐ (i, ei, Ci2, gαiθi
0 , πi,dup1, πi,dup2)

– If no duplicates are found then the RA executes the OSPACBS.BlindSign to produce
the blind signature:

(βi, πi,Sign) ∶= OSPACBS.BlindSign(prms, skRA, Ci1, Ci2, ei)

– The tuple (Ci1, Ci2, βi, πi,Sign) is appended to BBissued along with the duplicate
proofs (cf. Algorithm 5.10).

BBissued ⇐ (i, ei, Ci1, Ci2, βi, πi,Sign, gαθi
0 , πi,dup1, πi,dup2)

4. Vi unblinds the signature: σi ∶= OSPACBS.Unblind(prms,pkRA, ei, βi, (ui1, ui2, di))

5. Vi prepares the ballot: bi ∶= (vi, πvi , σi)

FiguRe 5.4: VSPACBS.Vote Vote authorization protocol using OSPACBS.Sign

174 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

VSPACBS.Cast functionality

The voter Vi constructs her ballot using the encrypted vote, the proof of knowledge
of the selection and the conditional blind signature from the Authorize protocol. Then
she appends her authorized ballot bi and the corresponding proof to the BB. We refer
to this part of the bulletin board as BBcast.

Algorithm 5.6: Vote casting VSPACBS.Cast
Input : bi
Output: BBcast
Assumption: Runs over an anonymous channel
BBcast⇐ (bi, VSPACBS.Valid(bi, BBcast))

For the ballot to be accepted, it must be of the correct format, which means that
it must consist of 3 elements. The ciphertext should be unique to defend against
ballot-copying attacks. Additionally, the second element must be a valid proof. The
signature cannot be checked at this stage since the BB lacks the verification key. The
ballot is marked with the result of the validity test and appended to the BBcast.

Algorithm 5.7: VSPACBS.Valid Vote validation from BB
Input : bi = (vi, πvi , σi), BBcast
Output: {0, 1}
foreach bl ∈ BBcast do

if bl ≠ (v, πv, σ) then
// Incorrect format
return 0

end
if vi is not unique OR πvi is invalid then

return 0
end

end
return 1

Implementing the anonymous channel

[JCJ05] dictates that a necessary condition for coercion resistance is the existence of
an anonymous channel to defend against a forced abstention attack. In VS.PACBS we
require such a channel in the authorization To implement such a channel, a system
such as Tor [DMS04] might be used. Alternatively, voters, third parties and other
interested authorities might cast ‘chaf’ votes on behalf of registered voters in an
effort to increase the anonymity set of vote casting identities.

This is implemented with the chaffvote functionality in Algorithm 5.8.

5.2. PACBS Voting Scheme Specification 175

Algorithm 5.8: The chaffvote functionality to implement an anonymous channel
Input : CS, VEl

Output: BBvote, BBcast

V′El←$ 2VEl

foreach i ∈ V′El do
{ti1, ti2}←$ [Tstart, Tend]

end
foreach i ∈ V′El do

Wait until ti1
θi ←$ Zq
vti ←$ CS
bi = (vi, πvi , σi) ∶= VSPACBS.Vote⟨RA(skRA), Vi(vti, θi), ⋅⟩
Wait until ti2
VSPACBS.Cast(bi)

end

Every interested party that wants to participate in the anonymous channel, sends
a random subset of voters. Fake votes will be sent on their behalf identified by a
randomly sampled credential and a randomly sampled vote. Then it executes the
VSPACBS.Vote, VSPACBS.Cast protocols to update the BB.

Ballots generated by chaffvote, will receive an invalid signature, as the probability that
the credential selected, matches a valid credential for a voter is n

q , which is negligible
in the security parameter.

Removal of duplicate authorization requests

The [JCJ05] coercion resistance scheme does not preclude thatmultiple ballots are cast
with the same credential. As a result, before tallying begins one ballot per credential
must be kept. This phase is of quadratic complexity in [JCJ05] and as we saw in
section 4.4.2 there are many variations trying to improve efficiency.

In our scheme, the duplicate removal functionality is moved to the authorization
phase (along with fake credential detection and marking). Since the ballots are not
yet cast, the RA must remove duplicate authorization requests. The simplest way
to detect them would involve the use of the PET primitive on the credential (cf.
subsection 2.6.2). In more detail, if there are k requests for a particular voter i, the
RA computes {PET (Ci2, Cj2)}k

j=1. If a duplicate credential exists on the j∗ request,
then this will be found and can be presented as proof. In other words: πi,dup ∶=
PET (Ci2, Cj∗2). If no duplicate is found, then the RA can post all the checks per-
formed i.e. {πi,non-dup = PET (Ci2, Cj2)}k

j=1). This procedure, however, is quadratic
in the number of authorization requests, whichmeans that we forego all the efficiency
gains in the literature.

176 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

To our advantage, themethod of [Smi05; WAB07] is safe to use during duplicate detec-
tion since the tagging attack of by [AFT07] does not apply as remarked by [Spy+12].
Indeed, if an attacker tries to tag a credential and check using the tag if this is later
discarded, both credentials will pass duplicate detection. As a result, we can apply
their method here: All encryptions of credentials Ci2 are blinded using a common
random factor α known to all members of the RA. Then they are decrypted to obtain
gαθi

0 , which is sent to a hashtable. If there exists another copy the request is marked
as duplicate. The members of the RA generate proofs of correct blinding πi,dup1 (πCP

from section 2.4.1) and proof of correct decryption πi,dup2 (πDec from section 2.4.1).
These proofs can be checked to verify that a credential is duplicate or that it is not.

However, the duplicate removal phase, still, has a profound effect on the usability
and perceived performance of the scheme. Since the ballots to be counted are unlink-
able to the authorization requests (because of the blindness of OSPACBS), duplicate
removal cannot be performed during tallying. If this were the case, we could apply
any rule to decide which of the duplicate ballots to keep. If we were to do this during
authorization, it would mean that the duplicated removal phase would have to be ex-
ecuted after all authorization requests have been submitted and before the signatures
are generated. This would hurt usability, since each voter would have to wait until all
other voters had cast their authorization requests (typically until a time limit imposed
by the RA was reached). To avoid this situation, we sacrifice this flexibility and pick
the regular (first-come, first-served) definition of duplicate ballots: If a ballot contains
the same credential as a previously submitted ballot, then it is considered a duplicate.

The algorithm to detect requestswith duplicate credentials is described inAlgorithm 5.10.

After the authorization phase has ended, BBdup will contain all duplicate creden-
tials and BBissued will contain requests with a unique credential. In order to verify
this phase, a voter or interested party should recreate the hash table HT by retriev-
ing all authorization requests in the order they arrived, verifying for each the proofs
πi,dup1, πi,dup2 and checking if each blinded credential exists in HT . For each blinded
credential gαθi

0 in BBissued the HT must return false, while for each gαθi
0 in BBdup the

HT must return true and an earlier posted request must exist in BBissued. This pro-
cess is better illustrated in Algorithm 5.10 which will be used in the verification phase
as well.

5.2.4 Tally phase

After the voting period has expired, the TA executes the VSPACBS.Tally functionality
on all the ballots from BBcast. Initially, it checks all the proofs of correct candidate
selection and encryption πv and discards the ballots with invalid proofs and identical

5.2. PACBS Voting Scheme Specification 177

Algorithm 5.9: Duplicate removal using hashtable
Input : BBelection, BBvote cleaned up for valid proofs

cf. Figure 5.4
Output: BBissued, BBdup

HT ∶= ∅
α←$ Zq
foreach (i, ei, Ci2, πCi2) ∈ BBvote do

C′i2 ∶= Cα
i2

gαθi
0 = Decz(C′i2)

πi,dup1 ∶= NIZK{(prms, h, C′i2, Ci2), (α) ∶ C′i2 = Cα
i2}

πi,dup2 ∶= NIZK{(prms, h, C′i2 = (ci21, ci22), gαθi
0), (z) ∶ gz = h AND ci22g−αθi

0 = cz
i21}

if gαθi
0 ∈ HT then
mark request (i, ei, Ci2, πCi2) as duplicate
BBdup⇐ (i, ei, Ci2, gαθi

0 , πi,dup1, πi,dup2)
else

Execute OSPACBS.BlindSign to produce the blind signature (βi, πi,Sign)
HT ∶= HT ∪ gαθi

0
BBissued ⇐ (i, ei, Ci1, Ci2, βi, πi,Sign, gαθi

0 , πi,dup1, πi,dup2)
end

end

Algorithm 5.10: Verification of duplicate removal
Input : BBissued, BBdup
Output: {0, 1}
Sort authorization requests (i, ei, Ci2, πCi2) by time of arrival
HT ∶= ∅
foreach (i, ei, Ci2, πCi2) ∈ BBVote do

if πi,dup1 OR πi,dup2 do not verify then
return 0

end
if (i, ei, ⋅, gαθi

0 , ⋅) ∈ BBissued AND gαθi
0 ∈ HT then

return 0
end
if (i, ei, ⋅, gαθi

0 , ⋅) ∈ BBdup AND gαθi
0 ∉ HT AND

(i, ei, ⋅, gαθi
0 , ⋅) ∉ BBissued) then

return 0
end

end
return 1

178 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

contents. This action can be verified by any interested third party. Then the TA must
act as the verifier in PACBS and count only the votes with a valid signature. For this
reason, it will execute the PACBS.Verify algorithm of Algorithm 3.13 and write the
result to the BB for verifiability. However, this will signal to the coercer that their
vote will not be counted. In order to avoid this, the TA transforms the ballots before
posting the results by sending them through a verifiable Shuffle . This means that
the PACBS.Verify algorithm cannot be used as is, but must be split into a preparation
step PACBS.Verify.Prepare (Algorithm 5.11) and a decryption step PACBS.Verify.Dec
(Algorithm 5.12). In between the ballots are anonymized. The encrypted votes corre-
sponding to ballots with valid signatures are transferred to the BBfinal section of BB
that contains only the votes that should be counted. Subsequently the votes can be
decrypted and counted or homomorphically combined. The former method supports
more elaborate voting rules, but both are supported. This is denoted by the Count

functionality, which computes the tally T and returns it together with a proof of cor-
rect computation πT. For instance, if Count decrypts the votes then πT will contain
the plaintext of each vote along with proof of correct decryption.

Algorithm 5.11: PACBS.Verify preparation - PACBS.Verify.Prepare
Input : prms,pkPACBS, skPACBS, m, σ = (x∗, e∗, σ1, σ2)
Output: R, πR

if H2(m, x∗) ≠ e∗ then
return �

end
γ←$ Zq

validity ∶= x∗ ⋅ g−σ2
2 ⋅ v−e∗

M ∶= Ench(validity; r1)
V ∶= Ms

R ∶= (V
σ1
)

γ

π1 ← NIZK{(h1, h, M,validity), (r1) ∶ M = Ench(validity; r1)}
π2 ← NIZK{(V , M), (s) ∶ V = Ms}

π3 ← NIZK{(V , σ1, R), (γ) ∶ R = (V
σ1
)

γ
}

πR ∶= (M, V , R, π1, π2, π3)
return (R, πR)

5.2.5 Verification phase

The verification phase consists of invoking the functionalities VSPACBS.VerifyBallot
and VSPACBS.Verify to check for individual and universal verifiability.

5.2. PACBS Voting Scheme Specification 179

Algorithm 5.12: PACBS.Verify decryption - PACBS.Verify.Dec
Input : prms,pkEnc, skEnc, R
Output: d ∈ {0, 1}, πDec

result ∶= Decz(R)
πVerify ← NIZK{(h1, h, result, R), (z) ∶ result = Decz(R)}
d ← result
return (d, πVerify)

Algorithm 5.13: VSPACBS.Tally functionality
Input : prms,pkTA, skPACBS, skEnc, BBcast
Output: T, πT

/* Keep unique valid ballots */
foreach bi = (vi, πvi , σi) ∈ BBcast do

if vi is unique and πv,i is valid then
BBcorrect ⇐ (vi, σi)

end
end
/* For each correct ballot execute the first part of Verify */
foreach (vi, σi) ∈ BBcorrect do
(Ri, πRi) ∶= PACBS.Verify.Prepare(prms,pkPACBS, skPACBS, vi, σi)
BBprepare⇐ (vi, Ri, πRi)
BBunshuffled ⇐ (vi, Ri) /* Remove the proof */

end
/* Shuffle list */
(BBShuffle , πShuffle) ∶= Shuffle (BBunshuffled)
/* Execute second part of verify (i.e. decryption) */
foreach (v′l , R′l) ∈ BBshuffle do
(dl, πl,Verify) ∶= PACBS.Verify.Dec(prms,pkEnc, skEnc, R′l)
BBresult⇐ (v′l , dl, πl,Verify)
if dl = 1 then

BBfinal⇐ v′l
end

end
(T, πT) ∶= Count(BBfinal)

180 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

Individual Verifiability. The algorithm for VSPACBS.VerifyBallot is specified in
Algorithm 5.14. The receipt retrieved for the voting protocol consists of the random-
ness ri, rvti used in the encryption of the credential and the vote preference respec-
tively. Each voter has to check if her ballot bi appears in the BBcast list and if both
the credential and the vote have been correctly encrypted. Additionally, each voter
must check if the authorization request has been correctly marked as a duplicate,
by verifying if a similar request has been added to BBissued and the duplicate proofs
πdup1, πdup2. Finally, the voter must invoke the PACBS.AuditSign functionality, to
check that the RA has considered the credentials for the creation of the blind signa-
ture.

These types of individual verifiability checks do not violate coercion resistance as
while bi might appear on the list only the voter knows if it will be counted or not and
this cannot be transferred to the coercer.

Algorithm 5.14: VerifyBallot Algorithm
Input : prms,pkRA, BB, i, (ri, rvti), (bi, ei), (vti, θi)
Output: {0, 1}
/* Parse ballot */
(vi, πvi , σi) = bi
if bi ≠ Ench(vti, rvti) thenreturn 0
end
if bi ∉ BBcast then

return 0
end
/* Locate and verify authorization request */
if (i, ei, ⋅, ⋅) ∉ BBvote then

return 0
else

retrieve Ci2, πCi2
end
if Ci2 ≠ Ench(gθi , ri) then

return 0
end
if πCi2 does not verify then

return 0
end
if ei ≠ OSPACBS.Blind(prms, Ci1, Ci2, vi) then

return 0
end
/* Verify duplicate removal using Algorithm 5.10 */
if duplicate removal does not verify then

return 0
end
return 1

5.2. PACBS Voting Scheme Specification 181

Universal Verifiability. Every interested party must be able to verify that all the
votes present in BBcast will be counted. In our scheme this can be performed in an
indirect manner (similarly to individual verifiability), as the vote will be counted only
if the signature is valid. Everybody can verify the proofs created by the EA during
all phases of the scheme, which means that the EA followed the protocol, without
disclosing which votes were counted. This will only be known to the interested voter.

The verification algorithm is presented in Algorithm 5.15. For a more clear presenta-
tion we split it Auth-Verify and Tally-Verify, both of which must be valid for the result
to be accepted.

Algorithm 5.15: Verify Algorithm
Input : prms,pkRA, BB
Output: {0, 1}
if Auth-Verify(prms,pkRA, BB) = 1∧Tally-Verify(prms,pkRA, BB) = 1 then

return 1
else

return 0
end

Algorithm 5.16 Auth-Verify verifies the actions of the RA during the authorization
phase. Firstly, it checks that invalid (i.e. with an incorrectly encrypted credential)
authorization requests were not signed. Then it proceeds to verify that all valid au-
thorization requests were either characterized as unique or duplicate. For the du-
plicate requests it checks the proofs and that there was another request in BBissued

to justify this characterization. For the unique requests Auth-Verify also invokes the
PACBS.AuditSign functionality of PACBS to check that the authorization signature
was computed based on the actual encrypted credentials and not arbitrarily.

Algorithm 5.17 Tally-Verify verifies the actions of the TA during the tally phase. At
first, it checks that only the ballots with correct proofs are collected for tallying, by
essentially repeating the VSPACBS.Valid functionality. This reduces the required trust
to the BB. Then it checks that all the valid ballots have been inputted correctly to the
Shuffle functionality and thatPACBS.Verify.Prepare has been correctly performed for
each one, by verifying the proof πR. Then the shuffle proof πShuffle is checked, thus
verifying that the anonymization was done according the protocol. Moreover, the
proof πDec to check that the shuffle outputs were correctly decrypted, thus conclud-
ing the PACBS.AuditVrfy functionality of PACBS. Finally, Tally-Verify checks that
only the ballots were the signature was valid (i.e. the ones were d = 1) are present
in BBfinal and recomputes the result of Count from the ones with the correct format.
These steps are dependent on the actual counting method used (i.e. if homomorphic

182 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

Algorithm 5.16: Verification of authorization phase Auth-Verify
Input : prms,pkRA, BBvote, BBdup, BBissued
Output: {0, 1}
/* Check that invalid authorization requests were not answered */
foreach (i, ei, Ci2, πCi2) ∈ BBvote do

if πCi2 is invalid (i, ei, ⋅) ∈ BBdup ∪BBissued then
return 0

else
/* Check that were all valid request were handled */
if (i, ei, ⋅) ∉ BBdup ∪BBissued then

return 0
end

end
end
if ∣{(i, ei, Ci2, πCi2) ∈ BBvote ∶ πCi2 is valid }∣ ≠ ∣BBissued∣+ ∣BBdup∣ then

return 0
end
/* Verify duplicate removal using Algorithm 5.10 */
if duplicate removal does not verify then

return 0
end
/* Check that non-duplicate authorization requests are signed */
foreach (i, ei, Ci1, Ci2, βi, πi,Sign, gαθi

0 , πi,dup1, πi,dup2) ∈ BBissued do
if Ci1 ∉ BBRegister then

return 0
end
if PACBS.AuditSign(prms,pkPACBS, Ci1, Ci2, ei, βi, πi,Sign) = 0 then

return 0
end

end
return 1

5.2. PACBS Voting Scheme Specification 183

counting or decrypted ballots). A check of the lengths of all the outputted lists is also
performed.

Algorithm 5.17: Verification of tally phase Tally-Verify
Input : prms,pkTA, BB
Output: {0, 1}
/* filter out invalid ballots */
foreach (vi, πvi , σi) ∈ BBcast not marked as duplicate do

if πv,i is valid then
check that (vi, σi) ∈ BBcorrect

else
check that (vi, σi) ∉ BBcorrect

end
end
foreach (v, Ri, πRi) ∈ BBprepare do

check that there exists the corresponding entry in BBcorrect
verify πRi

end
check that BBunshuffled is the same as BBprepare without the proofs
verify πShuffle
foreach (v′l , dl, πl,Verify) ∈ BBresult do

check that that there exists the corresponding entry in BBShuffle
verify πl,Verify

end
foreach v′l ∈ BBfinal do

check that there exists the corresponding entry (v′l , dl, πl,Verify) in BBresult and
dl = 1

end
check if ∣BBcorrect∣ = ∣BBprepare∣ = ∣BBunshuffled∣ = ∣BBshuffled∣ = ∣BBresult∣
if all verifications are successful then

return 1
else

return 0
end

5.2.6 Performance

We now compute the performance of our scheme in an election with n voters. We
assume that the EA = (RA, TA) is split into t members and we measure the num-
ber of modular exponentiations. We cover the worst-case scenario, where the ballot
construction proof has a linear number of exponentiations to create or verify in the
number m of candidates. This proof can be improved to a logarithmic number of
steps. The performance of PACBS.Vote is dependent on the performance of PACBS
from Table 3.1.

184 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

In the registration phase, the cost for each voter is 6 exponentiations, 3 for the cre-
dential encryption and 3 for the proof, while the RA performs 4 exponentiations per
voter.

In the voting phase, each voter performs 12t+4(m−1)+17 exponentiations to create
the ballot, provide the proof of correct construction, initiate the PACBS.Sign protocol
and audit πSign. To sign a single authorization request the RA performs (12t + 10)
exponentiations and 9t∣BBVote∣ to check for duplicates.

In the tally phase the TA performs in total ∣BBCast∣(9t + 4m + 6) exponentiations, to
verify the ballots, verify the duplicate proofs and execute PACBS.Verify. Some extra
exponentiations will be performed by the Shuffle functionality that depend on the
algorithm used.

For individual verifiability, each voter performs 8t + 1 exponentiations for her own
ballot and 8t∣BBVote∣ to verify for duplicate elimination. Universal verifiability re-
quires (18+ 12t)∣BBVote∣+ (8t + 4m + 1)∣BBCast∣ exponentiations.

We now compare the performance of relevant functionalities from VS.PACBS with
the schemes of CIVITAS [CCM08] and Selection [UH12]. We use the data of [UH12].
Note that the proof steps for Selections’ ballot correctness need to be scaled by m to
take into account all the candidates. We don’t consider the soundness of the registra-
tion phase for simplicity.

Phase Entity Civitas Selections VS.PACBS
Registration Voter 11 6 6

RA 7 4 4
Casting Voter 10 (2η + 9) 12t + 4(m −

1)+ 17
RA - - ∣BBCast∣(12t +

10) +
9∣BBVote∣

Tally TA 4∣BBVote∣ +
O(t∣BBCast∣2)

20∣BBVote∣ +
(16t +
8)∣BBCast∣

∣BBCast∣(9t +
4m + 6)

Verify TA 4∣BBVote∣ +
O(t∣BBCast∣2))

20∣BBVote∣ +
(16t +
10)∣BBCast∣

(18 +
12t)∣BBVote∣ +
(8t + 4m +
1)∣BBCast∣

Table 5.1: Performance comparison of our scheme with Civitas and Selec-
tions

5.3. Security analysis 185

Clearly, our scheme outperformsCIVITAS since the tallying phase is linear. VS.PACBS
is more demanding for the authorities the Selections, but in the same order of mag-
nitude. Clearly, the existence of the RA in the authorization phase is a bottleneck
for our scheme. However, our scheme can be more efficient for the honest voter. In
Selections the honest voter must create the anonymity set of size η, which can be
computation-intensive for large values. In our case this is taken care of by the chaff
votes, cast by third parties.

5.3 Security analysis

We analyze the PACBS voting protocol for verifiability, privacy, and coercion resis-
tance.

5.3.1 Verifiability

Verifiability protects voters against a corrupted EA - in our case both against a fully
corrupted RA and TA. In our protocol, this is intuitively achieved, because the EA
is forced to provide evidence in the form of NIZK PoK. Everybody can audit these
proofs. Their soundness proves that the EA did not deviate from the protocol. Com-
bined with the private knowledge that the valid credential was used during autho-
rization; each voter can be convinced that her vote was taken into account. More
importantly, this private knowledge cannot be transferred to a coercer, who is con-
fined to a public view.

The PACBS primitive was designed to implement this intuition. The OSPACBS.Sign
and the OSPACBS.AuditSign functionality force the RA to follow the protocol and
embed the predicate in a correct way inside the signature. Furthermore, the proofs
generated by the OSPACBS.Verify functionality can make sure that the signature was
indeed taken into consideration, when deciding which votes to count. PACBS is aug-
mented with a verifiable shuffle and verifiable duplicate removal, to cover the rest of
the protocol.

As a result, our scheme provides individual and universal verifiability and private
eligibility verifiability. The details are provided in the following sections.

Individual Verifiability The voter Vi receives a ‘receipt’ that consists of the ran-
domness rvti used to encrypt the vote and ri used to encrypt the credential. The latter
can be used to check if the authorization request is in BBvote and the former to check
if the ballot is located in BBcast. Contrary to other voting systems such as Helios, the
existence of the ballot in BBcast does not mean that the vote will be counted, since this
depends on the validity of the attached signature. As a result, this receipt alone does

186 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

not immediately provide individual verifiability (and as a result, cannot be used for
vote selling or coercion as we will see in subsection 5.3.4). Combined however with
the mental knowledge of whether the correct credential was used during the autho-
rization request, this receipt will allow the voter to be convinced that a particular vote
will be counted.

To reason about individual verifiability we need to examine two statements:

Firstly, that our voting protocol protects against clash attacks (cf. subsection 4.3.1),
i.e. that each voter can uniquely pinpoint her ballot in the BB. We stress again, that
this would suffice for systems like Helios, where all ballots in the BB are counted. In
our case, the voter must also be convinced that the ballot will be counted. To do this,
it suffices to show that the authorization request was not marked as duplicate and
that the signature is valid.

These statements are proved in Theorem 5.4.

Theorem 5.1: PACBS voting is individually verifiable

Assuming that:
– The registration phase is sound.
– The BB is honest as it does not drop or inject or alter the order of sub-

mitted authorization requests.
– The voters contribute to the generation of the random coins for the en-

cryption of the ballot.
– The PACB signature is publicly auditable.

The PACBS voting scheme provides individual verifiability according to Defi-
nition 4.2.

Proof. First, we adapt the game of Algorithm 4.2 for our scheme in the game in Algo-
rithm 5.18. The adversary generates the cryptographic parameters and the election
candidates. The challenger randomly selects credentials by skipping the ϕ function of
Figure 5.2 and performs the registration phase against theAwho then decides which
voters to corrupt and selects two honest voters and two candidates. The challenger
executes the vote authorization and casts the resulting ballots. The adversary wins if
he can perform a clash attack or if it can render the resulting ballot invalid so as not
to be counted.

Note that since the authorization request will be disassociated from the final bal-
lot that will be sent into the tallying phase, we directly refer to the output of the
VSPACBS.Vote functionality.

5.3. Security analysis 187

Algorithm 5.18: IndVerintA,VSPACBS
adapted for VS.PACBS

Input : security parameter λ
Output: {0, 1}
(prms,pkPACBS, skPACBS, skEnc,pkEnc, CS)← A(1λ)
{θi ←$ Zq}

n
i=1

if ∃(i, j) ∶ θi = θj AND i ≠ j then
return 0

end
{((Ci1, πi1), θi)← VSPACBS.Register⟨A(skPACBS), Vi(θi), ⋅⟩}

n
i=1

VR ∶= {(i, Ci1)}n
i=1

VCorr ← A(corrupt)
(vt0,vt1, i, j)← A()
if i, j ∈ VCorr OR i = j then

return 0
end
bi = (v0i, πi,v0 , σi) ∶= VSPACBS.Vote⟨A(skRA), Vi(vt0, θi), ⋅⟩
bj = (v1 j, πj,v1 , σj) ∶= VSPACBS.Vote⟨A(skRA), Vj(vt1, θj), ⋅⟩()
if (bi = bj AND bi ≠ �) OR bi = � then

return 1
else

return 0
end

Firstly, regarding defense against clash attacks, since the credentials are not created
solely by the RA but the voter takes part as well, the RA cannot assign the same cre-
dential to two distinct voters. As a result, bi = bj. would mean that v0i = v1 j, πi,v0 =
πj,v1 , σi = σj.

v0i = v1 j ⇒ (grvt0 ,vt0 ⋅ hrvt0) = (grvt1 ,vt1 ⋅ hrvt1)⇒ rvt0 = rvt1 AND vt0 = vt1

The assumption that the random coins rvt0 , rvt1 are honestly generated, because of
the contribution of randomness by the voters, makes the probability of the event that
rvt0 = rvt1 equal to ϵEnc = 1

q .

Assume now thatAmanages, as a corrupted RA, to achieve that bi = �, i.e. invalidate
the ballot bi so that it will not be counted. This attack can be performed in two ways:

– By retrieving the voter credential Ci1 from VR, decrypting it to retrieve gθi
0 and

posting an authorization request for the particular voter. To do this, theAmust
either fake the proof of knowledge of θi, πCi2 , or extract it from gθi

0 . This is
achieved with probability ϵNIZK + ϵDL.

– By characterizing the corresponding authorization request as duplicate by post-
ing a duplicate request (i, ei, Ci2, gαθi

0 , πi,dup1, πi,dup2) in BBdup. While this can

188 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

be achieved with probability ϵNIZK, it won’t pass verification as the BB is as-
sumed honest and the HT is reconstructed by the voters.

– Alternatively, the A must provide an invalid σ, even Vi supplied the correct
credential. This can be achieved with probability ϵPACBSaudit .

As a result, the probability of the adversary succeeding in the game in Algorithm 5.18
is ϵDL + ϵEnc + ϵPACBSaudit + ϵNIZK which under the assumption is negligible in the
security parameter, a contradiction.

∎

Universal Verifiability Our scheme is universally verifiable assuming a corrupted
RA and a corrupted TA but an honest BB. Consequently, VS.PACBS satisfies the no-
tion of strong verifiability of Algorithm 4.6. However, our construction is different
from the one presented in [Cor+14] since the voters do not sign their votes them-
selves, but receive signatures from the RA. As a result, the techniques presented
there cannot be used and strong universally verifiability will be proved directly.

Theorem 5.2: PACBS voting is universally verifiable

Assuming that:
– The L provided to SetupElection is authentic - contains only real voters.
– The BB is honest as it does not drop or inject or alter the order of sub-

mitted authorization requests.
– The Shuffle functionality is verifiable.
– The NIZK system used for the proofs is sound.
– The PACB signature is publicly auditable and unforgeable.

The PACBS voting scheme provides universal verifiability according to Defini-
tion 4.3.

Proof. First, we adapt the game of Algorithm 4.7, that is used for the definition of
strong universal verifiability when the RA is corrupted and the BB is honest for our
scheme. In the game in Algorithm 4.7, the A has access to 3 oracles, to control cor-
rupted voters Corrupt and engage in the protocols for voting and casting. The RA is
under the control of the adversary. In [Cor+14], where this game originates, the role
of the RA is different: It solely generates and distributes the credentials on its own
and takes no further action. In our case in Algorithm 5.19, however, the RA takes
part in voting through the authorization phase. The winning condition is the same,
however.

5.3. Security analysis 189

Algorithm 5.19: UniVerStrongA,VS with malicious RA adapted for VS.PACBS
Input : security parameter λ
Output: {0, 1}
Oracle Corrupt(i)

VCorr⇐ (i, θi)
Oracle Vote(i,vt)

bi ∶= VSPACBS.Vote⟨A(skRA), Vi(vt, θi), ⋅⟩
Oracle Cast(i, bi)

BBcast⇐ bi

(prms,pkPACBS, skPACBS,pkEnc, skEnc, CS)← A(1λ)
{θi ←$ Zq}

n
i=1

if ∃(i, j) ∶ θi = θj AND i ≠ j then
return 0

end
{((Ci1, πi1), θi)← VS.Register⟨A(skRA), Vi(θi), ⋅⟩}

n
i=1

VR ∶= {(i, Ci1)}n
i=1

VCorr ← ACorrupt(corrupt)
VHon ∶= V ∖VCorr

(TA, πTA)← ACast()
if VS.Verify(TA, πTA , ⋅) = 0 OR TA = � then

return 0
end
Chck = {(Chcki ,vtChcki , bChcki)}∣Chck∣i=1
if ∃nCorr ∶ 0 ≤ nCorr ≤ ∣VCorr∣ AND ∃{vtCorri ∈ CS}nCorr

i=1
∃n′ ∶ 0 ≤ n′ ≤ ∣Hon∣− ∣Chck∣ AND ∃{vt′i}

n′
i=1 // Honest voters that did not

check
TA = result(vtCorri)⊕ result(vtChcki)⊕ result(vt′i) thenreturn 0
else

return 1
end

190 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

Note, as the challenger controls all the voters in VHon (which includes VChck) it can
internally maintain a list (i,vti, rvti , θi, ri) of their inputs to VSPACBS.Vote function-
ality. As a result, it can produce the choices vt′i of the voters that did not check
and therefore compute result(vtChcki)⊕ result(vt′i) in the winning condition. Con-
sequently, it can track their respective ballots in BBcast. The rest are ballots, that
originate from A. For the challenger to lose the game, it must be proved that A can-
not modify or drop honest ballots and that A cannot add more ballots than ∣VCorr∣.

Assume, now thatAmanages to win the game in Algorithm 5.19 with non-negligible
probability for some or all the following reasons:

– A has modified at least a ballot corresponding to the vote of an honest voter.
This can happen in VSPACBS.Cast and in VSPACBS.Tally, as the A does not have
access to the ballot itself in VSPACBS.Vote. In VSPACBS.Cast changing vt from
v in the tuple (v, πv, σ) without invalidating the proof πv can happen with
probability ϵNIZK. In VSPACBS.Tally this can occur during the call to Shuffle
with probability ϵShuffle .

– A has removed at least a ballot corresponding to an honest voter. Since the BB
is honest and does not drop messages, this can occur in the following ways:

∗ By marking the authorization request as duplicate in VSPACBS.Vote, or by
explicitly issuing an invalid signature for a valid authorization request, by
faking πSign. As we saw in the proof of Theorem 5.4 this can happen with
probability ϵDL + ϵPACBSaudit + ϵNIZK.

∗ By disregarding a ballot during tallying despite having a valid signature.
Again, this can happen with probability ϵPACBSaudit .

∗ By dropping a ballot during shuffling, which can happen with probability
ϵShuffle .

– A has added at least a ballot corresponding to a duplicate of a valid one or to a
user that does not exist in L.

∗ In the former case, the adversary must produce fake proofs πdup1, πdup2

which can happen with probability ϵNIZK. But this attack does not pass
verification.

∗ In both cases, taking into account VR is public, theA can add the duplicated
ballot only in VSPACBS.Cast by forging the signature. This can happen with
ϵPACBSforge .

5.3. Security analysis 191

As a result, the probability of success of the A in the game in Algorithm 5.19 is
ϵDL + ϵNIZK + ϵShuffle + ϵPACBSaudit + ϵPACBSforge which is negligible according to the
assumptions, leading to a contradiction. ∎

Eligibility Verifiability VS.PACBS does not provide eligibility verifiability. As we
saw in subsection 4.3.3, eligibility verifiability requires that anyone can verify that
each tallied ballot was cast by a voter with the right to vote and that no voter cast
more than two counted ballots. While the second part of this statements does indeed
hold for our scheme as we saw in proof of Theorem 5.2 the first part is incompatible
with coercion resistance. In VS.PACBS voters are identified by their credential. This
means that if a voter is eligible, her ballot can be identified by a valid credential. This
cannot be revealed to the public, as it would also notify the coercer. This is compatible
with the analysis in section 4.7.

However, our scheme does provide private eligibility verifiability, where only the
interested voter learns if her ballot was eligible. The reasoning is similar to Theo-
rem 5.4.

5.3.2 Ballot secrecy

The PACBS voting scheme we defined in section 5.2 provides ballot secrecy. Impor-
tantly, this result holds under the assumption that the TA is corrupted and the use
of the anonymous channel. Intuitively, this is achieved due to the blindness of the
PACBS scheme. During the authorization request, where voter identifying infor-
mation is present, the encrypted vote is blinded, which means that the ballot does
not leak anything. During the voting phase the vote in the ballot is unblinded (thus
merely encrypted). However, the ballot is unlinkable to the signing session.

After the casting phase, the BB contents are the same as Helios, except for the un-
blinded RA signature. Our protocol also incorporated defenses against Helios-related
attacks, such as attacks against ballot independence of [CS13] because of the ballot
weeding that occurs in the VSPACBS.Valid (Algorithm 5.7) and VSPACBS.Tally (Algo-
rithm 5.13) functionalities. Additionally, all the NIZKPoK contain the full statement
in the random oracle call, thus thwarting the attacks of [BPW12; CS13].

The ballot secrecy of our scheme is analyzed in Theorem 5.3 according to a modified
BPRIV definition.

192 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

Theorem 5.3: PACBS voting is private

Assuming that:
– The PACB signature is blind.
– The PACB signature is publicly auditable.
– The BB is honest in that it accepts all entries.
– There is an anonymous channel during casting.

The PACBS voting scheme provides privacy according toU-BPRIV even against
a corrupted TA.

Proof. Recall from section 4.5 that BPRIV essentially states that all the voting data
released in the BB do not provide the privacy adversary any advantage in guessing
the preference of an honest voter concerning what is provided by the election tally
alone. Furthermore, it must be noted that in BPRIV it is assumed that there are 2
bulletin boards BB0, BB1. When the A casts a ballot, it is posted in both. However,
an honest voter can cast a different vote vt0 for BB0 and a different vote vt1 for BB1.
Both vt0,vt1 are selected by the A.

We deviate from BPRIV in two ways: The first concerns the tallying phase. Since
BPRIV considers the TA trusted, the tallying is performed by C always on BB0 and a
proof (or a simulation) is provided. In our case, the adversary performs the tallying
on BBb. As a result, there is no need to define a BPRIV simulator nor a Tally oracle.
Note that the same concept is expressed in U-BPRIV Algorithm 4.11, but since the
RA in our case does not generate the keys on its own, we build on the definition from
Algorithm 5.20 for simplicity. Secondly, in order to indicate the anonymous channel,
the votes chosen byA are not sent to the specified BB, but their destination is chosen
randomly, by a coin flipped by C.

We begin by adjusting the description of the oracles of Algorithm 4.10 for our case.
Note, that to avoid confusion on the names of the oracles and the respective func-
tionalities, when we use the Cast oracle we mean that the adversary executes the
complete procedure to cast a ballot and not only the VSPACBS.Cast algorithm. Fur-
thermore, in our case, the ballot mentioned in the BPRIV definition contains all in-
teractions of the voter with the EA: both the authorization request and the actual
casting. In particular, the ballot of the BPRIV definition contains what the voter
posts in BBvote, BBcast.

Since we don’t want the adversary to trivially win the game, all the sets of inputs
{vt0},{vt1} to the Vote oracle are assumed to be equal as multi-sets, or equivalently
that they are permutations of each other. Since the adversary controls the tally, if
it were not for this assumption then the challenger would not be able to swap the

5.3. Security analysis 193

Algorithm 5.20: Privacy definition for PACBS voting
Input : security parameter λ
Output: {0, 1}
Oracle Vote(i,vt0,vt1)

b←${0, 1}
(⊥, (i, eb, C2, πC2)) ∶= VSPACBS.Vote⟨A(skRA), Vi(vt0, θi), ⋅⟩
(⊥, (i, e1−b, C2, πC2)) ∶= VSPACBS.Vote⟨A(skRA), Vi(vt1, θi), ⋅⟩
BBb,vote⇐ (i, eb, C2, πC2)
BB1−b,vote⇐ (i, e1−b, C2, πC2)
if Valid((vb, πb,v, σb), BBb) AND Valid((v1−b, π1−b,v, σ), BB1−b) then

BBb,cast⇐ (vb, πb,v, σb)
BB1−b,cast⇐ (v1−b, π1−b,v, σ1−b)

else
return �

Oracle Cast(i, bi)
/* Parse ballot contents */
((i, ei, Ci2, πCi2), (vi, πvi , σi)) = bi
BBβ,vote⇐ (i, ei, Ci2, πCi2) for β ∈ {0, 1}
if Valid((vi, πvi , σi), BBβ) for β ∈ {0, 1} then

BBb,cast⇐ (vi, πvi , σi) for β ∈ {0, 1}
else

return �

(prms,pkRA, skRA,pkTA, skTA)← A(1λ)
(VEl, CS)← A()
b′ ← AVote,Cast(prms,pk, BBb)
return b = b′

194 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

votes between bulleting boards, since the tally would change, and the adversary could
trivially distinguish it. Additionally, we also assume that the authorization requests
for {vt0},{vt1} are issued in random order by the challenger.

We define a sequence of games beginning from the adversary interacting with the
challenger of BPRIV0 and concluding to the adversary interacting with the challenger
ofBPRIV1. The differences in each game are detected by the adversarywith negligible
probability.

– Game0 is the BPRIV0 game. Both bulletin boards are built through a series of
calls to oracles Vote, Cast. This means that, for each tuple (i, b) posted by
the challenger, where b = ((e, C2, πC2), (v, πv, σ)), it can internally maintain
the tuple (i, b0,vt0, b1,vt1) where b0 is the ballot for vt0 in BB0 and b1 is
the ballot for vt1 in BB1. We observe that each ballot contains two parts i.e.
bi = (bi[0], bi[1]) where b[0] = (e, C2, πC2) and b[1] = (v, πv, σ).

– {Gamei
1}i∈[n]. For each honest i, the challenger replaces the entry in the BB, to

be tallied, with an entry with the same plaintext vote from the other BB. More
formally, it swaps (i, bb[1]) in BBb with (i′, b1−b[1]) from BB1−b by looking up
an entry in the internal table of tuples it maintains from the calls to oracle Vote,
such that vti,b = vti′,1−b, where i′ is another honest voter.

This change is indistinguishable from the adversarial point of view, for the fol-
lowing reasons:

∗ Since vti,b = vti′,1−b the tally does not change.

∗ The signature for i′ contained in bi′[1] in is perfectly unlinkable to the au-
thorization request for bi[0].

∗ The values v, πv are indistinguishable, or else the Enc + PoK encryption
scheme would not satisfy the NM-CPA property, which is not the case
[BPW12].

∗ Since both voters i, i′ are honest, both signatures are valid assuming an
honest RA. However, since the RA is adversarial, it could try to distinguish
the two BB by providing a valid ballot for i in BBb and an invalid ballot
for i′ in BB1−b, so that BBb contains one less vote. The adversary cannot
disregard the predicate and provide an invalid signature, as this will violate
the public auditability of the PACBS scheme. Additionally, A could try to
mark the request as duplicate, while it is not. This, however, would violate
the soundness of πdup1, πdup2 in the duplicate detection phase.

5.3. Security analysis 195

It is easy to see that Gamen
1 is BPRIV1. Since each game in the sequence is indistin-

guishable to the adversary, the initial and final games are also indistinguishable. As
a result, even if an adversary fully controls the RA, it cannot distinguish between the
contents of BBb and BB1−b. ∎

5.3.3 Everlasting privacy

We will now analyze how our scheme fares against unbounded adversaries using the
gamesWE-BPRIV, E-BPRIV, SE-BPRIV fromAlgorithm 4.12, Algorithm 4.13,Algorithm 4.14.
Intuitively, VS.PACBS provides strong everlasting privacy since the ballots on the BB
are information-theoretically protected and the casting phase is anonymous.

In more detail, assuming there is an anonymous channel during casting and that the
adversary cannot fully control it VS.PACBS provides everlasting privacy according
to SE-BPRIV from Algorithm 4.14.

The reasoning behind this statement is that Â, the unbounded adversary of Algo-
rithm 4.14, will not be assisted by the data in the BB. Note that in our case the
complete communication transcript is posted on the BB. As a result, the notions of
E-BPRIV and WE-BPRIV are essentially the same. Furthermore, in Theorem 5.3 we
proved that VS.PACBS satisfies U-BPRIV. Recall, that the contents of the BB after
Vote and Cast are:

(i, e, C1, πC1 , C2, πC2 , β, πSign, gαθi
0 , πdup1, πdup2) ∈ BBVote

(v, πv, σ) ∈ BBCast

Since Â can decrypt the BB contents are equivalent to:

(i, e, θ1, θ2, β) ∈ BBVote

(vt, σ) ∈ BBCast

The blindness of PACBS does not allow A to associate the identified authorization
request in BBVote with the respective vote in BBCast. As a result, the BB content
alone cannot put an identity to a vote.

One way Â can bypass this, is by tagging the authorization and voting requests by at-
taching identifying information. Timing or network data could provide for such tags.
To thwart this attack the anonymous channel is used. In the spirit of subsection 4.6.3
it is essential that the adversary cannot fully control it.

196 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

5.3.4 Coercion Resistance

Our voting protocol VS.PACBS provides coercion resistance according to the frame-
work of [JCJ05] we analyzed in subsection 4.4.2.

Recall that the JCJ framework defines coercion resistance as receipt freeness, along
with resistance to impersonation, random voting, and forced abstention attacks. Con-
cerning the former two, if a coercer forces a voter V to reveal her credential, or vote
randomly with it, then she can present a fake credential. During the moment of
privacy, she can cast her real vote. Nobody (including the coercer) can tell if the
credential is valid or not, since the conditional verifiability of PACBS discloses this
information only to the designated verifier (the TA in this case) and the holder of
the secret information, i.e. V. The generated proofs used in PACBS.AuditSign and
PACBS.AuditVrfy will merely provide information that the protocol was executed
successfully for verifiability.

To thwart the forced abstention attack, however, a further assumption should be
made, namely that there exists an anonymous channel used by V during authorization
and casting. In the former case, the anonymous channel is implemented with mul-
tiple authorization requests corresponding to the same voter ID. This prevents the
coercer from verifying abstention by checking if a particular ID is missing from the
BB. Such an assumption is common in previous JCJ-related schemes in the literature
(e.g. [CH11; Sch+11]). These extra authorization requests are assumed to originate
from interested third parties (e.g. pro-democracy non-governmental organizations)
or other voters, and will not be counted as they will correspond to a valid credential
with negligible probability.

Of course, for all these to hold, the coercer is assumed not to (fully) corrupt the elec-
tion authorities RA, TA which is one of the assumptions made in the JCJ framework
anyway.

It should also be noted that our scheme is impervious to the ‘1009’ attack of [Smi05],
where the coercer can check if the voter follows his directions by forcing him to cast
a particular number of votes (e.g. 1009) and check if the group size is maintained
in tallying. First of all the chaffvote functionality makes sure that it is improbable
that the number of the ‘1009’ authorization requests is maintained, as there will be
chaff requests for that particular voter ID. As a result, grouping with that value does
not make any sense and hence A cannot use it. If the attacker forces the voter to
cast ‘1009’ votes with a particular credential, the voter can do so and the duplicate
marking functionality will keep one and mark the rest 1008 as duplicates without any
impact to the group size. Additionally, the VS.Valid functionality discards all identical
ballots, so performing these attacks in the casting phase (i.e. with the ballots instead

5.3. Security analysis 197

of authorization requests) will leave one for counting and the rest will be marked
as invalid without again affecting the group size. More importantly, in the tallying
phase of VS.PACBS there is no particular grouping of the votes, as all credential-
related information is absent and the result is hidden inside the signature, protected
by the conditional verifiability property.

In order to formally analyze coercion resistance, we adapt the two games from [JCJ05]
to accommodate our protocol’s functionality and the authorization phase in partic-
ular. Recall that we must prove that Advcr

VSPACBS,A(λ) is negligible in the security
parameter, where:

Advcr
VSPACBS,A(λ) =Pr[Gamecr

VSPACBS,A(λ, n, m, ∣VCorr∣,D) = 1]−

Pr[Gamecr-ideal
VSPACBS,Aideal

(λ, n, m, ∣VCorr∣,D) = 1]

As always, n denotes the total number of voters, who are partitioned in three sets:
VCorr are the corrupted voters, controlled byA. We denote their number ∣VCorr∣. The
corruption is static, which means that the adversary selects them at the beginning of
the game without the capacity to change them. VHon are the honest voters and ∣VHon∣
is their number. The behavior of the honest voters is governed by a distribution D 2

which aims tomodel the uncertainty of the adversary regarding their voting behavior.
For instance, D determines whether an honest voter will abstain or not and how
many chaff ballots except her real one will be cast on her behalf. The coerced voter
is denoted by j and is neither honest nor corrupt. As a result: n = ∣VCorr∣+ ∣VHon∣+ 1.

The coercion resistance game

The game Gamecr
VSPACBS,A(λ, n, m, ∣VCorr∣,D) is described in Algorithm 5.21. In gen-

eral, it does not deviate much from the JCJ workflow, except for the particular adap-
tations required by our scheme.

TheVSPACBS challenger sets up the election system, randomly chooses the credentials
and registers all the voters. In the end of this phase the encrypted credentials are
posted in the BB. Again, for readability, in Algorithm 5.21 the exact data inserted to
the BB are omitted, as they are specified in detail in section 5.2.

The coercer corrupts the voters in VCorr and obtains their credentials. Subsequently,
it picks a voter j to coerce, who must not be corrupt. A random coin b is flipped
to determine the behavior of a coerced voter. If b = 0 then she invokes the fakekey
functionality to create a fake credential to present to the coercer. At a different time,

2We simplify notation by using D instead of Dn,m

198 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

during the moment of privacy, she casts her real vote. If b = 1 the voter gives her real
credential to the coercer, without utilizing the moment of privacy.

Afterward, all the honest voters vote, and A casts ballots on behalf of the corrupted
voters and the coerced voter, in a manner that benefits him the most. Then the chal-
lenger executes the Tally functionality and computes the result T as well as a proof
of correct computation. Finally, the adversary tries to guess if voter j followed his
instructions or not. If he succeeds, he wins the game and 1 is returned from the
experiment.

Note that if b = 0, there exists one more ballot than if b = 1. The reason for this
is that in the former case there are two ballots for the coerced voter (one for the
real and one for the fake credential), while in the latter there is only the fake ballot.
This distinguishing factor is counterweighed by the distribution D that governs the
behavior of honest voters.

Moreover, VSPACBS.Tally also produces a side-channel that consists of evidence with
the role to check the correct operation as specified in Algorithm 5.13 and what is
deduced by them. These include the number of unique valid ballots, the number of
duplicate ballots, or the number of ballots with invalid proofs, the list of anonymized
ballots, the proofs from PACBS.Verify.Prepare and PACBS.Verify.Dec which might
provide extra information to A, such as the number of ballots that contain invalid
credentials. While these are already posted in the BB, we treat them in a special
way as they can aid A in computing b′ and winning the experiment. As a result, we
reserve a special argument Γ for them.

The ideal coercion resistance game

As we saw in section 4.4, a simplistic definition of coercion resistance would simply
request from the adversary to distinguish the coerced voter’s behavior for the differ-
ent values of b in Algorithm 5.21. However, this behavior can be deduced from the
tally (e.g. in the case that the candidate preferred by the coercer receives no ballots).
For this reason, as in [JCJ05] we must define an ideal version of the experiment of Al-
gorithm 5.21 to express the maximal advantage that an adversary can obtain from the
invariant characteristics of the voting system, such as the tally, without interacting
with it. As a result, the ideal version, described in Algorithm 5.22 serves as a baseline
for comparison.

In more detail, the differences of Algorithm 5.21 and Algorithm 5.22 are:

– The adversary is not given the credentials of corrupt voters. Consequently, he
does not cast ballots for the corrupt voters, but merely pre-selects their votes

5.3. Security analysis 199

Algorithm 5.21: Real Coercion resistance game Gamecr
VSPACBS,A(λ, n, m, ∣VCorr∣,D)

(prms,pkPACBS, skPACBS,pkEnc, skEnc) ∶= VSPACBS.Setup(1λ)
{θi ←$ Zq}

n
i=1

if ∃(i, j) ∶ θi = θj AND i ≠ j then
return 0

end
{((Ci1, πi1), θi)← VS.Register⟨RA(skRA), Vi(θi), ⋅⟩}

n
i=1

(VEl, CS) ∶= VS.SetupElection(n, m, prms, L)
(VCorr, VHon)← A(n, corrupt)
{θi}

∣VCorr∣
i=1 ← A(∣VCorr∣,obtain)

(j,vtj)← A(VEl, coerce)
if j ∈ Corr AND vtj ∉ CS then

return ⊥
end
b←${0, 1}
if b = 0 then

θ∗j ← fakekey(j) // generate fake credential
// In the moment of privacy cast the ballot for the real

credential
bj ⇐ VSPACBS.Vote⟨RA(skRA), Vj(vtj, θj), ⋅⟩
BB⇐ VSPACBS.Cast(bj)

else
θ∗j ∶= θj // yield credential

end
{bi ⇐ VSPACBS.Vote⟨RA(skRA), Vi(vti, θi), ⋅⟩}

∣VHon∣,D
i=1

{BB⇐ VSPACBS.Cast(bi)}
∣VHon∣,D
i=1

{BB⇐ A(θi,vti, cast)}
∣VCorr∣
i=1

BB⇐ A(θ∗j ,vtj, cast)
(T, πT,Γ) ∶= VSPACBS.Tally(BB, skPACBS, skEnc)
b′ ← A(T, πT,Γ, BB,guess)
return b = b′

200 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

and does not have access to the BB. The rationale for this is that in the ideal
version, the adversary must not be aided by cryptographic material.

– For the same reason, the coerced voter does not use fakekey but always yields
the real credential to A.

– The functionality VSPACBS.Vote is replaced with VSPACBS.Voteideal that per-
forms the authorization part of the protocol by the RA in an ideal manner:

∗ It gives only one valid signature (ballot) for each valid credential, i.e. per-
forms duplicate ballot weeding.

∗ For honest voters, it does not embed the PET of the credentials inside the
signature. Instead, it extracts the underlying credentials (by decrypting
them) from the authorization request. If they are equal it equips the bal-
lot with a valid signature instead of embedding the credentials inside the
signature, else it provides an invalid signature.

∗ For the credential of the coerced voter the validity of the ballot is deter-
mined by the coin toss - i.e. if b = 0 (coercion resistance) the fake vote
(which now carries the correct credential) is disregarded. Only the vote
cast during the moment of privacy is counted. If b = 1 (coercion) the fake
vote is treated normally, i.e. given a valid signature, as it contains the cor-
rect credential.

– Since the functionality VSPACBS.Voteideal is the one that characterizes which
votes will be counted, tally just follows the regular protocol. Unlike [JCJ05] in
our case there is no need for an ideal tally.

We are now ready to prove that VS.PACBS is coercion resistant.

Theorem 5.4: PACBS voting is coercion resistant

Assuming that:
– The registration phase is sound.
– The RA, TA is honest (or that theA does not control the majority of their

members).
– There is an anonymous channel during vote authorization and casting.
– The adversary is unaware of the exact behavior of honest voters.
– The voter has a moment of privacy.
– The PACB signature is conditionally verifiable.

The PACBS voting scheme provides coercion resistance according to the JCJ
framework.

5.3. Security analysis 201

Algorithm 5.22: Ideal Coercion resistance gameGamecr−ideal
VSPACBS,Aideal

(λ, n, m, ∣VCorr∣,D)

/* Registration proceeds as in Algorithm 5.21 */
(VCorr, VHon)← Aideal(n, corrupt)
∅← Aideal(∣VCorr∣,obtain) // obtain credentials of corrupt voters

(j,vtj)← Aideal(VEl, coerce)
if j ∈ Corr AND Votej ∉ CS then

return ⊥
end
b←${0, 1}
if b = 0 then

bj ⇐ VSPACBS.Voteideal⟨RA(skRA), Vj(vtj, θj), ⋅⟩ // moment of privacy: use
real credential

BB⇐ VSPACBS.Cast(bj)
end
θ∗j ∶= θj // Always yield real credential

{bi ⇐ VSPACBS.Voteideal⟨RA(skRA), Vi(vti, θi), ⋅⟩}
∣VHon∣,D
i=1

{BB⇐ VSPACBS.Cast(bi)}
∣VHon∣,D
i=1

{BB⇐ A(_,vti, cast)}
∣VCorr∣
i=1

BB⇐ A(θ∗j ,vtj, cast)
(T, πT,Γ) ∶= VSPACBS.Tally(BB, skPACBS, skEnc)
b′ ← Aideal(T,Γ,guess)
return b = b′

202 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

Proof. In order to prove that our scheme is coercion resistant we construct a series
of simulated games starting from Gamecr

VSPACBS,A and concluding to Gamecr-ideal
VSPACBS,A

where the advantage of the adversary is negligible between each game. These mod-
ifications aim to show that the extra vote cast by the coerced voter and the use of
the fakekey functionality if b = 0 as well as the behavior of the honest voters cannot
essentially help the coercer to distinguish if he can win the game in a manner sub-
stantially different from the ideal case. Our detailed exposition follows the general
framework of [JCJ05; UH12].

Game0 - Initial simulation

Initialization (Setup, Registration, SetupElection) The challenger C creates the
parameters of the voting system, by running the PACBS.Gen algorithm. The pub-
lic values (q, G, g1, g2, v, g) are selected uniformly at random and posted to the BB.
The private values s, z ∈ Zq are sampled and the corresponding public keys k, h are
posted to the BB. During registration, for each voter i, C selects randomly a credential
θi ←$ Zq, stores it internally in a real credential table (i, θi) along with the voter iden-
tity. This means that the C knows the credentials for all voters (corrupt, honest, and
coerced). Then all credentials are encrypted using h and rebased. In the end the BB
contains encryptions of all the credentials (i,Ench(g

θi
0)). All the proofs are created

normally, as C knows all the relevant values.

Corruption - Coercion - Coin Flip The adversary requests the credentials of the
corrupt voters. The challenger reviews its internal table and retrieves them. A selects
a voter to coerce and sends its id and the instructed vote to the C, who checks for
validity. C selects a random bit b←${0, 1}. If b = 0 the challenger emulates the
actions of the coerced voter, by casting the real vote and producing a fake credential.
Since both of these actions will be modified, we describe them separately.

Coercion evasion - Real vote The challenger retrieves the real credential θj and
computes a new encryption of g

θj
0 , Cj2. It also retrieves the encryption Cj1. Further-

more, it computes an encryption vj of the vote vtj selected by the coercer. Then
OSPACBS.Blind(Cj1, Cj2, vj) is executed and the result ej is posted to the BB along
with the voter identity (i.e. (j, ej, Cj2, πj2)).

In order to answer the authorization request, he decrypts both credentials using its
private key z. If there are no duplicates, it checks if the underlying credentials are
the same. If this is the case, it creates a valid signature by using an encryption of 1
as W , otherwise it encrypts a random element of G. The proof πj,Sign is produced

5.3. Security analysis 203

in the normal manner. Then it posts (Cj1, Cj2, βj, πj,Sign). Finally, it executes the
OSPACBS.Unblind algorithm and posts the ballot (vj, πvj , σj) to the BB.

Coercion evasion - Fake credential The challenger executes fakekey and creates
a fake credential θj that is provided to A.

Coercion concession - Real credential If b = 1 the challenger retrieves the real
credential for j and submits it to A.

Honest voters vote The challenger posts the votes of the honest voters, and the
same procedure that was followed for the real vote for voter j, is used to carry their
authorization requests. As a result, the data that is posted on the BB are the 3 tuples:

((i, ei, Ci2, πi2), (Ci1, Ci2, βi, πi,Sign), (vi, πvi , σi))

Corrupt voters vote The adversary creates authorization requests and votes for
all the corrupted voters. A does not necessarily follow the protocol: As a result, all
types of votes (duplicates, with invalid proofs, with missing components, etc.) can be
submitted.

Coerced voter votes A constructs a vote for the coerced voter.

Tallying The challenger filters the unique ballots and executes the PACBS.Verify
functionality. Then it sends the votes with the partially decrypted signatures to an
oracle Shuffle that performs shuffling. The signature in the result is then decrypted
and if it is valid the corresponding vote will be sent for counting. It is easy to see,
that all the votes submitted from honest voters as well as the real vote of the coerced
voter will be counted in this way.

For conveniencewe denote by Successi = Pr[Gamecr
i,VSPACBS,A(λ, n, m, ∣VCorr∣,D) = 1].

As a result, Success0 = Pr[Gamecr
VSPACBS,A(λ, n, m, ∣VCorr∣,D) = 1].

Game1 - The real vote does not help the coercer Our first objective is to show
that if b = 0 the vote cast during the moment of privacy for the coerced Vj does not
aid the coercer. Note that this vote is present in both real (Algorithm 5.21) and ideal
games (Algorithm 5.22). In the real game, this is the only vote with a valid credential,
since if b = 0 the voter hands the result of fakekey to the adversary. In the ideal game,
however, two votes with the real credential will be added if b = 0 (one by the voter
and one by the adversary). This is taken care of, by the ideal version of the Vote

204 Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

functionality which disregards the vote cast by A. To conclude, an equal number of
votes is cast in both games for this case.

To achieve our objective, we let C in Game1 choose a different credential θ̂j ≠ θj for
Vj and cast the real vote with this one. As a result:

bj ⇐ VSPACBS.Vote⟨RA(skRA), Vj(vtj, θ̂j), ⋅⟩

BB⇐ VSPACBS.Cast(bj)

where theVSPACBS.Vote posts the tuples (j, ej, Ĉj2, π̂j2), (Cj1, Cj2, β̂j, ˆπj,Sign), (vj, πvj , σ̂j))to
the BB. The values j, ej, Cj1, vj, πvj are the same both in Game1 and Game0 as
e, vj, πvj depend only the voter choice which is the same in both games, while Cj1, vj

depends on the registered credential which is the same again. As a result, A must
use Ĉj2, π̂j2, β̂j, ˆπj,Sign, σ̂j to distinguish between Game1 and Game0 . Note that σj

will be a valid signature, while σ̂j will be invalid, as the credentials no longer match.
However, this is not distinguishable by the adversary by the conditional verifiability
property of PACBS. Also, note, that the tally will not be a distinguishing fact as the
C, can monitor the choice vtj of Vj during the various stages of the protocol, and add
it to the final tally, despite having an invalid signature.

This means that:

∣Success1 − Success0∣ ≤ ϵIND-CPA + ϵNIZK + ϵCONDVER + ϵdup

where ϵIND-CPA is the advantage of A to win the IND-CPA game, ϵNIZK is the prob-
ability that the system used leaks information on the witness, ϵdup is the probability
that a duplicate vote has been cast for the credential θ̂j and ϵCONDVER is the probability
that A wins the conditional verifiability game for PACBS.

Game2 - The fake credential does not help the coercer Continuing the case
that b = 0, in the real game (Algorithm 5.21) A receives the fake credential, while
in the ideal game Aideal receives the real one (Algorithm 5.22). The only way the
two can be distinguished, is by using the encryption Ci1 residing in the voter roll, as
well as the relevant proof πi1 posted after the registration phase. The distinguishing
advantage is:

∣Success2 − Success1∣ ≤ ϵIND-CPA + ϵNIZK

Note that Ci1 is reencrypted, which means that the voter cannot recreate it, as the
randomness has changed.

5.3. Security analysis 205

Game3 - The ballots of the honest voters do not offer any advantage to the
coercer If the A can determine the partial tally of the honest voters, then it can
combine this fact with the votes of the corrupt voters and deduce the tally of the
election minus the coerced voter. From there it is easy to see if the coercer obeyed
or not. To examine this, we define a family of games {Gamei

3}
∣VHon∣
i=1 where in Gamei

3

we change the behavior of Vi ∈ VHon to use a credential θ̂i instead of θi. Following the
same reasoning as in Game1 , we can see that:

∣Successi
3 − Successi−1

3 ∣ ≤ ϵIND-CPA + ϵNIZK + ϵCONDVER + ϵdup

where Success0
3 is defined as Success2 and Success∣VHon∣

3 is defined as Success3.

If A has advantage ϵanon to break the anonymity of the anonymous channel in the
authorization and casting phase to win the forced abstention attack we get

∣Success3 − Success0∣ ≤ ϵIND-CPA + ϵNIZK + ϵCONDVER + ϵdup + ϵanon

which is negligible according to our assumptions.

Note that in Game∣VHon∣
3 all the contents of the BB consist entirely of random values

and tallying takes place by internally tracking the honest votes. As a result,A cannot
be assisted by the cryptographic primitives but the only data he can use is the actual
result. This means that Game∣VHon∣

3 is Gamecr−ideal and

Success3 = Pr[Gamecr-ideal
VSPACBS,Aideal

(λ, n, m, ∣VCorr∣,D) = 1]

.

∎

207

6 Conclusion

The end is the beginning is the end

Smashing Pumpkins

6.1 Summary

In this thesis, we presented two cryptographic primitives for the creation of a digital
signature that is conditionally verifiable from a designated verifier. For the simpler
variation, CBS, its validity is determined by a private input to the signer, whichmakes
the signing process and its result not auditable. This problem is solved by PACBS
where the validity, depends on publicly available but encrypted data, that is embedded
inside the signature. The creation and verification functionalities must also emit non-
interactive zero-knowledge proofs of knowledge, so that a corrupted entity is forced
to follow the protocol. We created instantiations for these primitives and introduced
security models to express and formally prove their security properties.

The introduction of CBS/PACBS was motivated by the need to implement efficient,
private, coercion-resistant and verifiable electronic voting in the JCJ framework. In-
deed, we created a voting protocol built around the properties of PACBS Conditional
verifiability was used to provide coercion resistance, public auditability was used for
universal verifiability and blindness was used for privacy against a corrupted signer.
The intuition behind our protocol was to replace the public outputs of the public tests
performed during tallying in the JCJ framework with private but verifiable ones. To
provide efficiency the credential check was moved earlier in the protocol, during the
authorization phase and its results were conveyed using the PACBS primitive. The
combination of PACBS with other components assumed by the JCJ framework, like
an anonymous channel, during the voting and casting phases, allowed us to pro-
vide ballot secrecy without a need to trust the talliers, an assumption common in
the e-voting literature. We observed, that since this could amount to schemes that
are resistant to more powerful adversaries, our voting schemes provide everlasting
privacy.

To better study this phenomenon, we introduced security models for everlasting pri-
vacy. Our adversary has the strongest capabilities ever defined in the literature as he

208 Chapter 6. Conclusion

is both active during the election by collecting data, as well as in the future where he
can break the cryptographic schemes used. Based on this we defined three models of
everlasting privacy. Our novel contribution was the modeling of the adversarial ca-
pabilities both in terms of computational power and in terms of information context.
Using this model, we reasoned that a system based on commitments opened through
private channels cannot provide the strongest sense of everlasting privacy, as an ad-
versary with internal knowledge (such as a governmental agency) will have access
to both the decommitments and network information. The use of an independent
anonymous channel, however, will be able to thwart such an attempt. While such
a channel is not currently practical, especially on a large scale, our model indicates
that research for everlasting privacy will be assisted by its existence, as long as the
other properties required by voting systems (e.g. integrity and election verifiability).
Anonymous channels have the added benefit that they resemble the way traditional
elections work and as a result, such a system will be more accessible to the voter.

While, anonymous channels are indeed a strong assumption, its use was prompted by
the need to defend against the vote abstention attack, described in the JCJ framework.
This also applies to other aspects of PACBS as well, as they were developed for the
extremely adversarial environment of electronic voting. In an environment, with
less strict security requirements, the logic behind CBS/PACBS could be applied more
efficiently.

6.2 Future work

In general, the separation of the authorization and casting phases that characterize
the scheme of [FOO92] can be easily applied to many scenarios. CBS/PACBS fits
easily with this architecture and helps provide certified anonymity combined with
verifiability. Apart from electronic voting, other applications of interest, could in-
clude anonymous surveys, anonymous usage of services for authorized users (e.g.
adults). Such use cases have attracted attention in the previous years and there have
been similar proposals [Hoh+14] that follow the [FOO92] architecture, differing on
the use of primitives.

To make the use of our primitives in such usage scenarios clear, we generalize the
voting use case from chapter 5. A functionality ismeant to be used by a predetermined
set of users, that must be authenticated before access is granted. However, the use
of the service must be anonymous, concerning the identities as well as the inputs
of the users. For instance, one can imagine a questionnaire about the evaluation
of a university course, or the statistical processing of the financial results for a set
of companies. To guarantee anonymity, the identities of the participants should be

6.2. Future work 209

hidden. However, this is not enough, as the answers to survey questions could leak
identifying information. A possible solution could involve homomorphic encryption;
however, this will limit the types of possible operations to process the data.

Our proposed protocol provides another solution. There is a publicly available list of
encrypted tokens, representing the valid authentication information for the users of
a service. The service provider has granted the users with the credential that corre-
sponds to the token beforehand. Each time a user requests the use of the service, she
provides an encryption of her credential and points to the token in the list for com-
parison. Moreover, she includes a blinded input to the service (e.g. the answers of
the survey). The signer uses PACBS to sign the request, granting the service usage, if
the user has the right to. PACBS hides the input to the service from the signer. From
that moment on, the service can be used without any need for identity validation, as
the (unblinded) signature ‘carries’ the authentication information. Consequently, the
processing of the inputs can take place without the need for identifying information.
The PACBS primitive makes all actions auditable. However, the inputs can still leak
information. The fake credential mechanism can allow the users to obfuscate their
submitted data, by posting misleading information accompanied with a fake creden-
tial. These inputs will be seemingly valid, without leaving any public trace of whether
they were really considered. Only the user and the processor will know which items
make it into the outcome.

Furthermore, this obfuscated, auditable but private credential checking mechanism
can provide a solution to metadata anonymity. In many cases, the contents of ex-
changed messages can be protected by cryptography or other means. This does not
apply, however, to other related information, such as the sender or the receiver or the
frequency of exchanged messages. Such metadata have many uses, and are easier to
leak, providing a rich information context. One way to protect them is to flood the set
of genuine conversations with fake ones. During processing, they must be weeded
out for the results to make sense. Both of our primitives can help in this direction.

More concrete avenues for future work also include:

Different constructions of PACBS could be investigated and built on top of blind
signature schemes for instance the original RSA blind signatures of [Cha83] or the
scheme of [Bol02]. Our aim with such constructions is to overcome the polylogarith-
mic bound on the number of concurrent sessions, inherent in the scheme of [Oka92]
from which our proposals inherit. Such instantiations would implement the main
ideas of CBS and PACBS but provide unforgeability against plain one-more forgery
instead of strong one-more forgery, thus improving efficiency and scalability. Ad-
ditionally, the emphasis could shift between blindness, designated verification, and

210 Chapter 6. Conclusion

auditability to express more fine-grained trust models (e.g. a corrupted signer but
an honest verifier and vice versa, or computational instead of perfect blindness). Our
security model should also be extended to reason about the security of such construc-
tions. Secondly, another idea would be to extend the secret information to more than
a single bit, maybe to a complete program, the input of which is the encrypted public
data. This program could be inside a signature and evaluated when the signature is
verified. The design of more concrete protocols for applying PACBS in different usage
scenarios is another direction for further research, following the general guidelines
we described.

Regarding the e-voting part of this thesis, an implementation and application in small-
scale elections can be attempted to study its usability and its acceptance from end-
users. Particular attention should be given on the coercion resistance mechanisms
and the use of panic passwords.

We also plan to explore how this distribution of control for anonymous channels we
saw in subsection 4.6.3 can be applied to the various types of anonymous channels
proposed in the literature and incorporated in known voting protocols in a usable
manner. Our models can prove a useful means of establishing the success of such
efforts. Guided by U-BPRIV, we also plan to further investigate the consequences
of building electronic voting protocols that do not require trust in the tallier for se-
crecy. In our view, this is of independent interest, as in the majority of works in
electronic voting the talliers are trusted for secrecy and not trusted for verifiability.
While this is a common assumption in the e-voting literature, little research has been
conducted on whether it is accepted by the voters. Our intuition, from recent reac-
tions to e-voting attempts are that there is a discrepancy between formal models and
voter perceiptions. However this requires further research.

6.2.1 Coercion resistance in decentralized and blockchain vot-
ing

A major other research direction is the application of PACBS to provide coercion re-
sistance in the decentralized setting with the aim of later transferring such a protocol
on a blockchain. A first such attempt was presented in [PBS20].

One of the most interesting methods made possible by remote electronic voting,
self-tallying elections, were proposed in [KY02], where voters can conduct the elec-
tions themselves, without using or trusting tallying authorities. That initial idea re-
ceived many revisions and improvements ([Gro04]), with the most efficient one be-
ing the Open Vote Network (OV-net)[HRZ10], which was implemented on top of
the Ethereum [But14] blockchain in [MSH17]. However, smart contracts’ limitations

6.2. Future work 211

restricted the number of voters to around fifty in that attempt. Recently [SGY20],
scalability in the OVT was improved, at the expense of decentralization though. In-
stead of using smart contracts for self-tallying, [SGY20] delegates the vote-counting
functionality to an untrusted authority that performs it off-chain, but provides the
computation trace, so that the result can be verified by everybody. This untrusted
authority does not rely on private keys and as a result, any entity with enough local
processing power can play this role.

As far as security is concerned, decentralized voting schemes should have the follow-
ing basic properties [Kha+12]: Perfect ballot secrecy: In order to learn a voter’s choice
all other participants must conspire. Self-tallying: All voters and interested third par-
ties can tally the election result from published data. This property provides universal
verifiability. Dispute-freeness: The protocol avoids situations were one party (rightly)
blames another for breaking the protocol, without providing evidence to support it.
This property is related to accountability [KTV10]. Fairness: No party can deduce
partial results before the voting period has ended. Robustness: The voting protocol
and result computation cannot be blocked by a corrupted party.

Of course, the properties of section 1.2 must also hold. However, their semantics
might be different. For instance, coercion resistance in decentralized voting is not
well researched. The reason is that in such protocols, especially self-tallying ones, a
coercer can be present during vote counting to ‘help’ its victim ‘correctly’ count the
votes and at the same time make sure that his attack succeeded - i.e. the coerced
voter followed his instructions. In fact, [Che+10] proves that universal verifiability
cannot coexist with receipt freeness - a weaker form of coercion resistance - unless
private channels are available. This however leaves open what can be achieved with
private or anonymous channels. A decentralised PACBS could be used to provide
such a private channel and an application of ring signatures, like the one in [PS17]
could provide anonymity.

The main idea of the scheme of [PBS20] can be shortly described as follows: Voters
are arranged in rings and the votes of each ring are counted by a tallier who acts as
the designated verifier for the ring. A sortition mechanism, like in [Gil+17] can be
used to assign voters to rings and select the tallier at random. Alternatively, in the
case where the protocol is executed over a Bitcoin-like blockchain [Nak08] the proof
of work mechanism can be used. More specifically the participants can locally run
an algorithm, until its output matches some predefined characteristics (e.g. number
of zeros) of the proof of work target. Such mechanisms have the goal to deter partic-
ipants from conspiring to create rings and select a designated verifier. During vote
casting, the voter decides on her choice vt and signs it using a ring-based variation of
PACBS. In particular, the vote is seen as coming from the ring as a whole. To prevent

212 Chapter 6. Conclusion

double-voting the pseudoidentity mechanism of [PS17] can be used. If the voter is
under coercion she does not use her regular private key, but a randomly selected one.
In her moment of privacy, she uses her regular private key. As a result, the former
signature will not count and the vote that is accompanied by it will be considered
coerced and therefore not counted. Signature verification is not public, but strongly
tied to a specific verifier identified by a key, who provides proofs of correct operation
as in PACBS.

An implementation of such a scheme could also use an underlying blockchain as
[MSH17]. In general, the fact that a blockchain like [Nak08] or [But14] shares many
similarities with an e-voting BB has generated many proposals for blockchain vot-
ing. However, as analyzed in [GP19] using a blockchain as an e-voting BB solves few
problems and creates a whole lot more. In more detail, the basic blockchain as a BB
scenario [YN16] is very similar to the snapshot of a show of hands analogy that we re-
peatedly used in explaining the properties of voting systems. More specifically, each
candidate is represented by a Bitcoin address. When a voter wants to cast a vote for
a specific candidate, she sends a fixed small payment to the address of the candidate.
This transaction is recorded on the blockchain. Consequently, the voters themselves
need to be represented using addresses that function as pseudonyms. Both a permis-
sioned and a permissionless blockchain could be used. When the voting period ends,
everybody can check the blockchain and sum the amount of coins received by each
candidate address and declare the winner. Since all the votes are represented as trans-
actions in the publicly readable blockchain, everybody can audit them and verify the
tally. If a public permissionless blockchain is used, the voting system is integrated
into the everyday operation of the cryptocurrency, and as a result, the guarantees are
even higher. However, there are things that need to be considered and as commonly
cited, the devil is in the details.

Firstly, in order to enable eligibility verifiability, there must be a protocol that deter-
mines the mapping between voter addresses and their real identities. If it is executed
by a registration authority, then a trusted third party is introduced to the voting sys-
tem and the use of the blockchain resembles the permissioned case. If the elections are
conducted in a small scale, then it is reasonable to assume that the voters can jointly
agree to their eligibility, using commonly agreed upon information. On the other
hand, in large scale elections, voters need to simply ‘vote and go’ and cannot be ex-
pected to run consensus protocols on their own. In fact, some aspects of real-world
voting especially at the national scale are claimed to be inherently uncentralizable
as argued in [Hei+18]. But eligibility verifiability requires an identity provider that
must bind real-world identities to voting credentials granted only to the ones with the

6.2. Future work 213

right to vote. This means that a registration authority is required, but it must be pre-
vented from associating voters with addresses. This can be done using cryptographic
anonymity principles such as blind signatures and mixnets. While this binding can
be made verifiable with tools such as PACBS the identities are still maintained in a
centralized database operated by a nation-state – a trusted third party

A second drawback is that the basic blockchain voting scheme does not satisfy ballot
secrecy. The use of pseudonyms provides minimum protection, but the real identities
might leak or they might be deanonymized by using advanced analysis techniques
[Mei+16]. A solution employs techniques used in homomorphic voting systems. The
voters encrypt their choice of candidate and instead of sending transactions to each
candidate, they send transactions to a single address owned by a tallier. There are
many ways to embed the encrypted ballot inside the transaction, depending on the
type of blockchain used: In the case of Bitcoin, encryption will be done outside the
system and the hidden ballot along with the zero-knowledge proofs of validity will
have to be stored on a separate data source and linked with the transaction with a
construct like the OP_RETURN statement. This approach has the downside that the
external data source becomes a trusted third party that has control over the actual
data. Alternatively, the voters can self-tally the elections using the recorded data.
For this a blockchain that supports smart contracts must be used. This is the idea
implemented in the Open Vote Network [MSH17].

Except for secrecy, the basic blockchain voting scheme does not support fairness, as
anybody can calculate intermediate results by monitoring the transactions broadcast
on the blockchain. This can affect the choice of late-come voters [YN16]. This is
easy to understand by recalling the show of hands analogy, where an initially gener-
ated momentum on a voting option is self-reinforced due to the transparency of the
process.

The proposed blockchain solutions can be examined in many more aspects; for in-
stance, if they are truly non-centralizable or whether they support large scale elec-
tions. An analysis of [DP18] finds that only the OpenVote network, is a functionally
decentralized platform. However, as we said, it has scaling problems, as it is meant
to be used only for small scale or boardroom elections (for a maximum number of
50 voters as the authors themselves claim). In general, all public blockchains suffer
from efficiency issues, both in the number of transactions that are cleared per sec-
ond as well as in the wait time for a transaction to be confirmed. These make them
difficult to use in large-scale elections. It must also be stressed that, the decentral-
ization arguments only hold for the application layer, i.e. the voting protocol itself.
While the network layer – the blockchain – is considered decentralized, a closer look
reveals that there exists concentration on mining power [Hei+18]. For example, a

214 Chapter 6. Conclusion

recent work by [Gen+18] finds that 90% of mining power is in the hands of 16 miners
in Bitcoin and 11 miners in Ethereum. This is a troubling result, because it implies
that the voting protocols are designed on top of a leaky abstraction.

Finally, blockchain voting worsens a major problem faced by all electronic voting
schemes especially cryptographic ones. Enfranchisement requires that the voter un-
derstands the process she participates in. This is difficult to do when the system is
built on top of complex mathematical concepts that cannot be easily explained. Some
claim that approaches like code-voting [Cha01] aim to hide abstract such difficulties
away from the voter, however they have not proved their effectiveness. This situa-
tion is made worse by the probabilistic and the incentive-based nature of the security
of many of the schemes we dealt with. This applies especially to blockchain voting.
While their scientific analysis is sound, the average voter might not be confident with
less than perfect solutions. Opponents of such systems might even take advantage of
such misconceptions in order to cast doubt on these voting solutions.

To conclude, voting on the blockchain solves only a single part of the voting problem
– how to reach consensus on the transcript of the protocol. However, this is only
the tip of the iceberg. In order to be able to convince the loser candidates, as well
as the electoral body and observers, a voting protocol must satisfy strict security
requirements, for which the blockchain does little to help so far.

6.3 Epilogue

Electronic voting is not purely a cryptographic or technical problem. Even if the
perfect protocol existed, the voters must willingly accept it in order to express their
opinions through it. User acceptance requires understanding, first of all, posing a
problem for all cryptographic voting systems. We cannot expect all users to know
about homomorphic encryption or zero-knowledge proofs in order to be able to vote.
For such users, who comprise the majority of the electorate, the use of such systems
would be a black box. If they were forced to use an e-voting system they would feel
that they were deprived of their freedom of expression. As a result, the introduction
of e-voting protocols should be consensual and gradual, otherwise, it is doomed to
fail.

To foster consensus, the authorities that set up the electronic elections must first
educate the voters, train them using pilot projects and be frank about the relative
advantages of electronic voting when compared against physical. In fact, a detailed
comparison can prove that if one applies the ‘paranoidmindset’, usually reserved only
for electronic voting to physical elections, many flaws and implicit trust assumptions
can be revealed. This can aid in user acceptance, as long as it is honest. For the latter,

6.3. Epilogue 215

e-voting cannot be straightly applied to national elections. Smaller-scale elections
should be conducted first in professional organizations, societies, worker unions, and
even in schools. Such elections will allow users to be acquainted with electronic
elections and related processes.

Additionally, an e-voting scheme should not be a monoculture, meaning that it must
not only entail a particular system. Voters can vote with one application, verify their
vote with a different one and check the result with a third. These applications must
be built from different providers. As a result, they must not only be open - source
but also support open application programming interfaces to facilitate the exchange
of data.

Finally, e-voting, as cryptography itself, can be a force for good or bad. It can be
used to improve our democratic processes or by (authoritarian) regimes to legitimize
their views. This leaves a moral obligation to designers and operators of such (cryp-
tographic) voting schemes to add an extra layer of security, by refusing to build or
operate systems that go against the interests of the public.

217

Bibliography

[DH76] Whitfield Diffie and Martin E. Hellman. “New directions in cryptogra-
phy”. In: IEEE Trans. Inf. Theory 22.6 (1976), pages 644–654. doi: 10.
1109/TIT.1976.1055638. uRl: https://doi.org/10.1109/TIT.
1976.1055638.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems”. In: Com-
mun. ACM 21.2 (1978), pages 120–126. doi: 10.1145/359340.359342.
uRl: http://doi.acm.org/10.1145/359340.359342.

[Sha79] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (1979),
pages 612–613. doi: 10.1145/359168.359176. uRl: http://doi.acm.
org/10.1145/359168.359176.

[Cha81] David Chaum. “Untraceable Electronic Mail, Return Addresses, and Dig-
ital Pseudonyms”. In: Commun. ACM (1981), pages 84–88.

[Cha82] David Chaum. “Blind Signatures for Untraceable Payments”. In:Advances
in Cryptology: Proceedings of CRYPTO ’82, Santa Barbara, California, USA,
August 23-25, 1982. Edited by David Chaum, Ronald L. Rivest, and Alan T.
Sherman. Plenum Press, New York, 1982, pages 199–203.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. “The Byzan-
tine Generals Problem”. In: ACM Trans. Program. Lang. Syst. 4.3 (1982),
pages 382–401.

[Cha83] David Chaum. “Blind Signatures for Untraceable Payments”. In: CRYPTO
’82. Edited by D. Chaum, R.L. Rivest, and A.T. Sherman. 1983, pages 199–
203.

[GM84] ShafiGoldwasser and SilvioMicali. “Probabilistic encryption”. In: Journal
of computer and system sciences 28.2 (1984), pages 270–299.

[Gam85] Taher El Gamal. “A public key cryptosystem and a signature scheme
based on discrete logarithms”. In: IEEE Trans. Information Theory 31.4
(1985), pages 469–472. doi: 10.1109/TIT.1985.1057074. uRl: https:
//doi.org/10.1109/TIT.1985.1057074.

[GMR85] S Goldwasser, SMicali, and C Rackoff. “TheKnowledge Complexity of In-
teractive Proof-Systems”. In: Proceedings of the Seventeenth Annual ACM

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
https://doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074
https://doi.org/10.1109/TIT.1985.1057074

218 Bibliography

Symposium on Theory of Computing. STOC ’85. Association for Comput-
ing Machinery, 1985, pages 291–304. isbn: 0897911512. doi: 10.1145/
22145.22178. uRl: https://doi.org/10.1145/22145.22178.

[FS86] Amos Fiat and Adi Shamir. “How to Prove Yourself: Practical Solutions
to Identification and Signature Problems”. In: Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings. Edited by
Andrew M. Odlyzko. Volume 263. Lecture Notes in Computer Science.
Springer, 1986, pages 186–194. doi: 10.1007/3-540-47721-7_12.
uRl: https://doi.org/10.1007/3-540-47721-7_12.

[Ben87] Josh Benaloh. “Verifiable Secret-Ballot Elections”. PhD thesis. 1987. uRl:
https://www.microsoft.com/en- us/research/publication/
verifiable-secret-ballot-elections/.

[Fel87] Paul Feldman. “A Practical Scheme for Non-interactive Verifiable Secret
Sharing”. In: FOCS. IEEE Computer Society, 1987, pages 427–437.

[CA89] David Chaum and Hans Van Antwerpen. “Undeniable Signatures”. In:
Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 20-24, 1989, Pro-
ceedings. Edited by Gilles Brassard. Volume 435. Lecture Notes in Com-
puter Science. Springer, 1989, pages 212–216. doi: 10.1007/0- 387-
34805-0_20. uRl: https://doi.org/10.1007/0-387-34805-
0_20.

[PP89] Birgit Pfitzmann and Andreas Pfitzmann. “How to Break the Direct RSA-
Implementation of Mixes”. In: EUROCRYPT. Volume 434. Lecture Notes
in Computer Science. Springer, 1989, pages 373–381.

[Sch89] Claus-Peter Schnorr. “Efficient Identification and Signatures for Smart
Cards”. In: Advances in Cryptology - CRYPTO ’89, 9th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 20-
24, 1989, Proceedings. Edited byGilles Brassard. Volume 435. LectureNotes
in Computer Science. Springer, 1989, pages 239–252. doi: 10.1007/0-
387-34805-0_22. uRl: https://doi.org/10.1007/0-387-34805-
0_22.

[CH91] David Chaum and Eugène vanHeyst. “Group Signatures”. In:Advances in
Cryptology - EUROCRYPT ’91, Workshop on the Theory and Application of
of Cryptographic Techniques, Brighton, UK, April 8-11, 1991, Proceedings.
Edited by Donald W. Davies. Volume 547. Lecture Notes in Computer
Science. Springer, 1991, pages 257–265. doi: 10.1007/3-540-46416-
6_22. uRl: https://doi.org/10.1007/3-540-46416-6_22.

https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://www.microsoft.com/en-us/research/publication/verifiable-secret-ballot-elections/
https://www.microsoft.com/en-us/research/publication/verifiable-secret-ballot-elections/
https://doi.org/10.1007/0-387-34805-0_20
https://doi.org/10.1007/0-387-34805-0_20
https://doi.org/10.1007/0-387-34805-0_20
https://doi.org/10.1007/0-387-34805-0_20
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22

Bibliography 219

[DDN91] D Dolev DDN, C Dwork, and M Naor. “Non-malleable cryptography”. In:
Proceedings of the 23rd Annual Symposium on the Theory of Computing,
ACM. 1991.

[Ped91] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing”. In: CRYPTO. Volume 576. Lecture Notes in
Computer Science. Springer, 1991, pages 129–140.

[Sch91] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”. In:
J. Cryptology 4.3 (1991), pages 161–174. doi: 10.1007/BF00196725. uRl:
https://doi.org/10.1007/BF00196725.

[CP92] David Chaum andTorben P. Pedersen. “Wallet DatabaseswithObservers”.
In:Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 16-20, 1992,
Proceedings. Edited by Ernest F. Brickell. Volume 740. Lecture Notes in
Computer Science. Springer, 1992, pages 89–105. doi: 10.1007/3-540-
48071-4_7. uRl: https://doi.org/10.1007/3-540-48071-4_7.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. “A Practical Secret
Voting Scheme for Large Scale Elections”. In: Advances in Cryptology -
AUSCRYPT ’92, Workshop on the Theory and Application of Cryptographic
Techniques, Gold Coast, Queensland, Australia, December 13-16, 1992, Pro-
ceedings. Edited by Jennifer Seberry and Yuliang Zheng. Volume 718.
Lecture Notes in Computer Science. Springer, 1992, pages 244–251. doi:
10.1007/3-540-57220-1_66. uRl: https://doi.org/10.1007/3-
540-57220-1_66.

[Oka92] Tatsuaki Okamoto. “Provably Secure and Practical Identification Schemes
andCorresponding Signature Schemes”. In:Advances in Cryptology - CRYPTO
’92, 12th Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 16-20, 1992, Proceedings. Edited by Ernest F. Brickell.
Volume 740. LectureNotes in Computer Science. Springer, 1992, pages 31–
53. doi: 10.1007/3-540-48071-4_3. uRl: https://doi.org/10.
1007/3-540-48071-4_3.

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols”. In:ACMConference on Com-
puter and Communications Security. ACM, 1993, pages 62–73.

[CP93] David Chaum andTorben P. Pedersen. “Wallet DatabaseswithObservers”.
In: CRYPTO ’92. Springer-Verlag, 1993, pages 89–105. isbn: 3-540-57340-
2. uRl: http://dl.acm.org/citation.cfm?id=646757.705670.

https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/BF00196725
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-48071-4_3
https://doi.org/10.1007/3-540-48071-4_3
http://dl.acm.org/citation.cfm?id=646757.705670

220 Bibliography

[PIK93] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. “Efficient Anony-
mous Channel and All/Nothing Election Scheme”. In: EUROCRYPT. Vol-
ume 765. Lecture Notes in Computer Science. Springer, 1993, pages 248–
259.

[BT94] Josh Benaloh and Dwight Tuinstra. “Receipt-free secret-ballot elections
(extended abstract)”. In: Proceedings of the twenty-sixth annual ACM sym-
posium on Theory of computing - STOC ’94. ACM Press, 1994, pages 544–
553. isbn: 0897916638. doi: 10.1145/195058.195407. uRl: http://
portal.acm.org/citation.cfm?doid=195058.195407.

[Cha94] David Chaum. “Designated Confirmer Signatures”. In: Advances in Cryp-
tology - EUROCRYPT ’94, Workshop on theTheory and Application of Cryp-
tographic Techniques, Perugia, Italy, May 9-12, 1994, Proceedings. Edited
by Alfredo De Santis. Volume 950. Lecture Notes in Computer Science.
Springer, 1994, pages 86–91. doi: 10.1007/BFb0053427. uRl: https:
//doi.org/10.1007/BFb0053427.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. “Proofs of Par-
tial Knowledge and Simplified Design of Witness Hiding Protocols”. In:
Advances in Cryptology - CRYPTO ’94, 14th Annual International Cryptol-
ogy Conference, Santa Barbara, California, USA, August 21-25, 1994, Pro-
ceedings. Edited by YvoDesmedt. Volume 839. Lecture Notes in Computer
Science. Springer, 1994, pages 174–187. doi: 10.1007/3-540-48658-
5_19. uRl: https://doi.org/10.1007/3-540-48658-5_19.

[Pfi94] Birgit Pfitzmann. “Breaking Efficient Anonymous Channel”. In: EURO-
CRYPT. Volume 950. Lecture Notes in Computer Science. Springer, 1994,
pages 332–340.

[SK95] Kazue Sako and Joe Kilian. “Receipt-Free Mix-Type Voting Scheme - A
Practical Solution to the Implementation of a Voting Booth”. In: EURO-
CRYPT. Volume 921. Lecture Notes in Computer Science. Springer, 1995,
pages 393–403.

[Cra+96] Ronald Cramer, Matthew Franklin, Berry Schoenmakers, and Moti Yung.
“Multi-Authority Secret-Ballot Electionswith LinearWork”. In: 1996, pages 72–
83. doi: 10.1007/3-540-68339-9_7. uRl: http://link.springer.
com/10.1007/3-540-68339-9_7.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. “Designated
Verifier Proofs and Their Applications”. In: Advances in Cryptology - EU-
ROCRYPT ’96, International Conference on the Theory and Application of
Cryptographic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding.

https://doi.org/10.1145/195058.195407
http://portal.acm.org/citation.cfm?doid=195058.195407
http://portal.acm.org/citation.cfm?doid=195058.195407
https://doi.org/10.1007/BFb0053427
https://doi.org/10.1007/BFb0053427
https://doi.org/10.1007/BFb0053427
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-68339-9_7
http://link.springer.com/10.1007/3-540-68339-9_7
http://link.springer.com/10.1007/3-540-68339-9_7

Bibliography 221

Edited by Ueli M. Maurer. Volume 1070. Lecture Notes in Computer Sci-
ence. Springer, 1996, pages 143–154. doi: 10.1007/3- 540- 68339-
9_13. uRl: https://doi.org/10.1007/3-540-68339-9_13.

[PS96] David Pointcheval and Jacques Stern. “Provably Secure Blind Signature
Schemes”. In:Advances in Cryptology - ASIACRYPT ’96, International Con-
ference on theTheory andApplications of Cryptology and Information Secu-
rity, Kyongju, Korea, November 3-7, 1996, Proceedings. Edited by Kwangjo
Kim and Tsutomu Matsumoto. Volume 1163. Lecture Notes in Computer
Science. Springer, 1996, pages 252–265. doi: 10.1007/BFb0034852. uRl:
https://doi.org/10.1007/BFb0034852.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. “A secure
and optimally efficient multi-authority election scheme”. In: Transactions
on Emerging Telecommunications Technologies (1997), pages 481–490.

[JLO97] Ari Juels, Michael Luby, and Rafail Ostrovsky. “Security of Blind Digital
Signatures (Extended Abstract)”. In: Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, Santa Barbara, Cali-
fornia, USA, August 17-21, 1997, Proceedings. Edited by Burton S. Kaliski Jr.
Volume 1294. LectureNotes in Computer Science. Springer, 1997, pages 150–
164. doi: 10.1007/BFb0052233. uRl: https://doi.org/10.1007/
BFb0052233.

[Oka97] Tatsuaki Okamoto. “Receipt-Free Electronic Voting Schemes for Large
Scale Elections”. In: Security Protocols Workshop. Volume 1361. Lecture
Notes in Computer Science. Springer, 1997, pages 25–35.

[Abe98] Masayuki Abe. “Universally Verifiable Mix-net with Verification Work
Indendent of the Number of Mix-servers”. In: EUROCRYPT. Volume 1403.
Lecture Notes in Computer Science. Springer, 1998, pages 437–447.

[Bel+98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway.
“Relations among notions of security for public-key encryption schemes”.
In:Annual International Cryptology Conference. Springer. 1998, pages 26–
45.

[Bon98] DanBoneh. “TheDecisionDiffie-Hellman Problem”. In:Algorithmic Num-
ber Theory, Third International Symposium, ANTS-III, Portland, Oregon,
USA, June 21-25, 1998, Proceedings. Edited by Joe Buhler. Volume 1423.
Lecture Notes in Computer Science. Springer, 1998, pages 48–63. doi: 10.
1007/BFb0054851. uRl: https://doi.org/10.1007/BFb0054851.

[Ohk+99] Miyako Ohkubo, Fumiaki Miura, Masayuki Abe, Atsushi Fujioka, and
Tatsuaki Okamoto. “An Improvement on a Practical Secret Voting Scheme”.

https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/3-540-68339-9_13
https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/BFb0034852
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/BFb0052233
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851

222 Bibliography

English. In: Information Security. LNCS. 1999, pages 225–234. isbn: 978-
3-540-66695-0. doi: 10.1007/3-540-47790-X_19. uRl: http://dx.
doi.org/10.1007/3-540-47790-X_19.

[Sch99] Berry Schoenmakers. “A Simple Publicly Verifiable Secret Sharing Scheme
and Its Application to Electronic”. In: CRYPTO. Volume 1666. Lecture
Notes in Computer Science. Springer, 1999, pages 148–164.

[AO00] Masayuki Abe and Tatsuaki Okamoto. “Provably Secure Partially Blind
Signatures”. In: Advances in Cryptology - CRYPTO 2000, 20th Annual In-
ternational Cryptology Conference, Santa Barbara, California, USA, Au-
gust 20-24, 2000, Proceedings. Edited by Mihir Bellare. Volume 1880. Lec-
ture Notes in Computer Science. Springer, 2000, pages 271–286. doi: 10.
1007/3-540-44598-6_17. uRl: https://doi.org/10.1007/3-
540-44598-6_17.

[Ger+00] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. “Protecting
Data Privacy in Private Information Retrieval Schemes”. In: J. Comput.
Syst. Sci. 60.3 (2000), pages 592–629. doi: 10.1006/jcss.1999.1689.
uRl: https://doi.org/10.1006/jcss.1999.1689.

[HS00] Martin Hirt and Kazue Sako. “Efficient receipt-free voting based on ho-
momorphic encryption”. In: Proceedings of the 19th international confer-
ence onTheory and application of cryptographic techniques. EUROCRYPT’00.
2000, pages 539–556. isbn: 3-540-67517-5. uRl: http://dl.acm.org/
citation.cfm?id=1756169.1756222.

[JJ00] Markus Jakobsson and Ari Juels. “Mix and Match: Secure Function Eval-
uation via Ciphertexts”. In: Advances in Cryptology - ASIACRYPT 2000,
6th International Conference on the Theory and Application of Cryptology
and Information Security, Kyoto, Japan, December 3-7, 2000, Proceedings.
Edited by Tatsuaki Okamoto. Volume 1976. Lecture Notes in Computer
Science. Springer, 2000, pages 162–177. doi: 10.1007/3-540-44448-
3_13. uRl: https://doi.org/10.1007/3-540-44448-3_13.

[PS00] David Pointcheval and Jacques Stern. “Security Arguments for Digital
Signatures and Blind Signatures”. In: J. Cryptology 13.3 (2000), pages 361–
396. doi: 10.1007/s001450010003. uRl: https://doi.org/10.1007/
s001450010003.

[Can01] RanCanetti. “Universally composable security: A newparadigm for cryp-
tographic protocols”. In: Proceedings 42nd IEEE Symposium on Founda-
tions of Computer Science. IEEE. 2001, pages 136–145.

[Cha01] David Chaum. “Surevote: technical overview”. In: Proceedings of the work-
shop on trustworthy elections (WOTE’01). 2001.

https://doi.org/10.1007/3-540-47790-X_19
http://dx.doi.org/10.1007/3-540-47790-X_19
http://dx.doi.org/10.1007/3-540-47790-X_19
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1007/3-540-44598-6_17
https://doi.org/10.1006/jcss.1999.1689
https://doi.org/10.1006/jcss.1999.1689
http://dl.acm.org/citation.cfm?id=1756169.1756222
http://dl.acm.org/citation.cfm?id=1756169.1756222
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/3-540-44448-3_13
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003
https://doi.org/10.1007/s001450010003

Bibliography 223

[FS01] Jun Furukawa and Kazue Sako. “An Efficient Scheme for Proving a Shuf-
fle”. In:CRYPTO. Volume 2139. LectureNotes in Computer Science. Springer,
2001, pages 368–387.

[Nef01] C. AndrewNeff. “A verifiable secret shuffle and its application to e-voting”.
In: ACM Conference on Computer and Communications Security. ACM,
2001, pages 116–125.

[RST01] Ronald L. Rivest, Adi Shamir, and Yael Tauman. “How to Leak a Secret”.
In: Advances in Cryptology - ASIACRYPT 2001, 7th International Confer-
ence on theTheory and Application of Cryptology and Information Security,
Gold Coast, Australia, December 9-13, 2001, Proceedings. Edited by Colin
Boyd. Volume 2248. Lecture Notes in Computer Science. Springer, 2001,
pages 552–565. doi: 10.1007/3- 540- 45682- 1_32. uRl: https:
//doi.org/10.1007/3-540-45682-1_32.

[Sch01] Claus-Peter Schnorr. “Security of Blind Discrete Log Signatures against
Interactive Attacks”. In: Information and Communications Security, Third
International Conference, ICICS 2001, Xian, China, November 13-16, 2001.
Edited by SihanQing, Tatsuaki Okamoto, and Jianying Zhou. Volume 2229.
Lecture Notes in Computer Science. Springer, 2001, pages 1–12. doi: 10.
1007/3-540-45600-7_1. uRl: https://doi.org/10.1007/3-540-
45600-7_1.

[Bol02] Alexandra Boldyreva. “Threshold Signatures, Multisignatures and Blind
Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme”.
In: Public Key Cryptography — PKC 2003. Edited by Yvo G. Desmedt.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pages 31–46. isbn:
978-3-540-36288-3.

[JJR02] Markus Jakobsson, Ari Juels, and Ronald L. Rivest. “MakingMix Nets Ro-
bust for Electronic Voting by Randomized Partial Checking”. In: USENIX
Security Symposium. USENIX, 2002, pages 339–353.

[KY02] Aggelos Kiayias and Moti Yung. “Self-tallying Elections and Perfect Bal-
lot Secrecy”. In: Public Key Cryptography, 5th International Workshop on
Practice and Theory in Public Key Cryptosystems, PKC 2002, Paris, France,
February 12-14, 2002, Proceedings. 2002, pages 141–158. doi: 10.1007/3-
540-45664-3_10. uRl: https://doi.org/10.1007/3-540-45664-
3_10.

[Wag02] David Wagner. “A generalized birthday problem”. In: Annual Interna-
tional Cryptology Conference. Springer. 2002, pages 288–304.

[Bel+03] Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael
Semanko. “The One-More-RSA-Inversion Problems and the Security of
Chaum’s Blind Signature Scheme.” In: Journal of Cryptology 16.3 (2003).

https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-45600-7_1
https://doi.org/10.1007/3-540-45664-3_10
https://doi.org/10.1007/3-540-45664-3_10
https://doi.org/10.1007/3-540-45664-3_10
https://doi.org/10.1007/3-540-45664-3_10

224 Bibliography

[Cha04] David Chaum. “Secret-Ballot Receipts: True Voter-Verifiable Elections”.
In: IEEE Secur. Priv. 2.1 (2004), pages 38–47.

[DMS04] RogerDingledine, NickMathewson, and Paul Syverson. “Tor:The Second-
GenerationOnion Router”. In: Proceedings of the 13th Conference onUSENIX
Security Symposium - Volume 13. SSYM’04. USENIX Association, 2004,
page 21.

[Gro04] Jens Groth. “Efficient Maximal Privacy in Boardroom Voting and Anony-
mous Broadcast”. In: FC 2004. Volume 3110. LNCS. Springer, 2004, pages 90–
104.

[Nef04] C. Andrew Neff. Practical High Certainty Intent Verification for Encrypted
Votes. 2004.

[Gro05] Jens Groth. “Non-interactive Zero-KnowledgeArguments for Voting”. In:
Applied Cryptography and Network Security, Third International Confer-
ence, ACNS 2005, New York, NY, USA, June 7-10, 2005, Proceedings. Edited
by John Ioannidis, Angelos D. Keromytis, and Moti Yung. Volume 3531.
Lecture Notes in Computer Science. 2005, pages 467–482. doi: 10.1007/
11496137_32. uRl: https://doi.org/10.1007/11496137_32.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. “Coercion-resistant
electronic elections”. In: Proceedings of the 2005 ACMWorkshop on Privacy
in the Electronic Society, WPES 2005, Alexandria, VA, USA, November 7,
2005. Edited by Vijay Atluri, Sabrina De Capitani di Vimercati, and Roger
Dingledine. ACM, 2005, pages 61–70. doi: 10.1145/1102199.1102213.
uRl: http://doi.acm.org/10.1145/1102199.1102213.

[LWB05] Helger Lipmaa, Guilin Wang, and Feng Bao. “Designated Verifier Sig-
nature Schemes: Attacks, New Security Notions and a New Construc-
tion”. In: Automata, Languages and Programming, 32nd International Col-
loquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings. Edited
by Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi,
andMoti Yung. Volume 3580. LectureNotes in Computer Science. Springer,
2005, pages 459–471. doi: 10.1007/11523468_38. uRl: https://doi.
org/10.1007/11523468_38.

[Smi05] Warren D. Smith. “New cryptographic voting scheme with best-known
theoretical properties”. In: Frontiers in Electronic Elections (FEE 2005). 2005.

[Wik05] Douglas Wikström. “A sender verifiable mix-net and a new proof of a
shuffle”. In: Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Volume 3788 LNCS. 2005, pages 273–292. isbn: 3540306846.

[AN06] Ben Adida and C. Andrew Neff. “Ballot Casting Assurance”. In: Electronic
Voting Technology Workshop, EVT’06, Vancouver, BC, Canada, August 1,

https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/11496137_32
https://doi.org/10.1145/1102199.1102213
http://doi.acm.org/10.1145/1102199.1102213
https://doi.org/10.1007/11523468_38
https://doi.org/10.1007/11523468_38
https://doi.org/10.1007/11523468_38

Bibliography 225

2006. Edited by Dan S. Wallach and Ronald L. Rivest. USENIX Associa-
tion, 2006. uRl: https://www.usenix.org/conference/evt-06/
ballot-casting-assurance.

[Ben06] J. Benaloh. “Simple verifiable elections”. In: Proceedings of the USENIX/Accurate
Electronic Voting Technology Workshop 2006 on Electronic Voting Technol-
ogyWorkshop (2006). issn: 03029743. doi: 10.1007/978-3-642-28641-
4_7.

[JV06] Hugo L Jonker and Erik P de Vink. “Formalising receipt-freeness”. In: In-
ternational Conference on Information Security. Springer. 2006, pages 476–
488.

[MM06] Ülle Madise and Tarvi Martens. “E-voting in Estonia 2005. The first prac-
tice of country-wide binding Internet voting in the world”. In: Electronic
Voting 2006 - 2nd International Workshop. 2006.

[MN06] Tal Moran and Moni Naor. “Receipt-Free Universally-Verifiable Voting
with Everlasting Privacy”. In: 2006, pages 373–392. doi: 10.1007/11818175\
_22. uRl: http://link.springer.com/10.1007/11818175_22.

[AFT07] Roberto Araújo, Sébastien Foulle, and Jacques Traoré. “A practical and
secure coercion resistant scheme for remote elections”. In: Frontiers of
Electronic Voting. 2007. uRl: http : / / drops . dagstuhl . de / opus /
volltexte/2008/1295.

[Li+07] Yong Li, Willy Susilo, Yi Mu, and Dingyi Pei. “Designated Verifier Sig-
nature: Definition, Framework and New Constructions”. In: Ubiquitous
Intelligence and Computing, 4th International Conference, UIC 2007, Hong
Kong, China, July 11-13, 2007, Proceedings. Edited by Jadwiga Indulska,
Jianhua Ma, Laurence Tianruo Yang, Theo Ungerer, and Jiannong Cao.
Volume 4611. LectureNotes in Computer Science. Springer, 2007, pages 1191–
1200. doi: 10.1007/978-3-540-73549-6_116. uRl: https://doi.
org/10.1007/978-3-540-73549-6_116.

[WAB07] StefanG.Weber, RobertoAraujo, and Johannes Buchmann. “OnCoercion-
Resistant Electronic Elections with Linear Work.” In: ARES. IEEE, 2007,
pages 908–916. uRl: http://dblp.uni-trier.de/db/conf/IEEEares/
ares2007.html#WeberAB07.

[Adi08] Ben Adida. “Helios: web-based open-audit voting”. In: Proceedings of the
17th conference on Security symposium. USENIXAssociation, 2008, pages 335–
348. uRl: http://dl.acm.org/citation.cfm?id=1496711.1496734.

[CH08] Jeremy Clark and Urs Hengartner. “Panic Passwords: Authenticating un-
der Duress”. In: 3rd USENIXWorkshop on Hot Topics in Security, HotSec’08,
San Jose, CA, USA, July 29, 2008, Proceedings. Edited by Niels Provos.

https://www.usenix.org/conference/evt-06/ballot-casting-assurance
https://www.usenix.org/conference/evt-06/ballot-casting-assurance
https://doi.org/10.1007/978-3-642-28641-4_7
https://doi.org/10.1007/978-3-642-28641-4_7
https://doi.org/10.1007/11818175_22
https://doi.org/10.1007/11818175_22
http://link.springer.com/10.1007/11818175_22
http://drops.dagstuhl.de/opus/volltexte/2008/1295
http://drops.dagstuhl.de/opus/volltexte/2008/1295
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/978-3-540-73549-6_116
https://doi.org/10.1007/978-3-540-73549-6_116
http://dblp.uni-trier.de/db/conf/IEEEares/ares2007.html#WeberAB07
http://dblp.uni-trier.de/db/conf/IEEEares/ares2007.html#WeberAB07
http://dl.acm.org/citation.cfm?id=1496711.1496734

226 Bibliography

USENIX Association, 2008. uRl: http://www.usenix.org/events/
hotsec08/tech/full_papers/clark/clark.pdf.

[CCM08] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. “Civitas:
Toward a Secure Voting System.” In: IEEE Security and Privacy Sympo-
sium. May 19, 2008. uRl: http://dblp.uni-trier.de/db/conf/sp/
sp2008.html#ClarksonCM08.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
uRl: http://bitcoin.org/bitcoin.pdf.

[Riv08] Ronald L Rivest. “On the notion of ’software independence’ in voting sys-
tems”. In: Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences 366.1881 (2008), pages 3759–3767. issn:
1364503X. doi: 10.1098/rsta.2008.0149.

[MPQ09] Olivier de Marneffe, Olivier Pereira, and Jean-JacquesQuisquater. “Elect-
ing a University President Using Open-Audit Voting: Analysis of Real-
World Use of Helios”. In: 2009 Electronic Voting Technology Workshop /
Workshop on Trustworthy Elections, EVT/WOTE ’09, Montreal, Canada,
August 10-11, 2009. Edited by David Jefferson, Joseph Lorenzo Hall, and
Tal Moran. USENIX Association, 2009. uRl: https://www.usenix.
org/conference/evtwote-09/electing-university-president-
using-open-audit-voting-analysis-real-world-use.

[Wik09] Douglas Wikström. “A commitment-consistent proof of a shuffle”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics). 2009. isbn: 3642026192.
doi: 10.1007/978-3-642-02620-1_28.

[Ara+10] Roberto Araújo, Narjes Ben Rajeb, Riadh Robbana, Jacques Traoré, and
Souheib Yousfi. “Towards Practical and Secure Coercion-Resistant Elec-
tronic Elections”. In: CANS. 2010, pages 278–297.

[Che+10] Benoît Chevallier-Mames, Pierre-Alain Fouque, David Pointcheval, Julien
Stern, and Jacques Traoré. “On Some Incompatible Properties of Voting
Schemes”. In: Towards Trustworthy Elections, New Directions in Electronic
Voting. 2010, pages 191–199. doi: 10.1007/978-3-642-12980-3_11.
uRl: http://dx.doi.org/10.1007/978-3-642-12980-3_11.

[ED10] Saghar Estehghari and Yvo Desmedt. “Exploiting the Client Vulnerabili-
ties in Internet E-voting Systems: Hacking Helios 2.0 as an Example”. In:
EVT/WOTE. USENIX Association, 2010.

[HRZ10] Feng Hao, Peter Y. A. Ryan, and Piotr Zielinski. “Anonymous voting
by two-round public discussion”. In: IET Information Security 4.2 (2010),
pages 62–67.

http://www.usenix.org/events/hotsec08/tech/full_papers/clark/clark.pdf
http://www.usenix.org/events/hotsec08/tech/full_papers/clark/clark.pdf
http://dblp.uni-trier.de/db/conf/sp/sp2008.html#ClarksonCM08
http://dblp.uni-trier.de/db/conf/sp/sp2008.html#ClarksonCM08
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1098/rsta.2008.0149
https://www.usenix.org/conference/evtwote-09/electing-university-president-using-open-audit-voting-analysis-real-world-use
https://www.usenix.org/conference/evtwote-09/electing-university-president-using-open-audit-voting-analysis-real-world-use
https://www.usenix.org/conference/evtwote-09/electing-university-president-using-open-audit-voting-analysis-real-world-use
https://doi.org/10.1007/978-3-642-02620-1_28
https://doi.org/10.1007/978-3-642-12980-3_11
http://dx.doi.org/10.1007/978-3-642-12980-3_11

Bibliography 227

[KRS10] Steve Kremer, Mark Ryan, and Ben Smyth. “Election Verifiability in Elec-
tronic Voting Protocols”. In: ESORICS. Volume 6345. Lecture Notes in
Computer Science. Springer, 2010, pages 389–404.

[KTV10] Ralf Küsters, Tomasz Truderung, andAndreas Vogt. “Accountability: Def-
inition and relationship to verifiability”. In: Proceedings of the ACM Con-
ference on Computer and Communications Security (2010), pages 526–535.
issn: 15437221. doi: 10.1145/1866307.1866366.

[MN10] Tal Moran and Moni Naor. “Split-ballot voting”. In: ACM Transactions on
Information and System Security 13.2 (2010), pages 1–43. issn: 10949224.
doi: 10.1145/1698750.1698756. uRl: http://portal.acm.org/
citation.cfm?doid=1698750.1698756.

[TW10] Björn Terelius and Douglas Wikström. “Proofs of restricted shuffles”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). 2010. isbn:
3642126774. doi: 10.1007/978-3-642-12678-9_7.

[Ber+11] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and Bog-
dan Warinschi. “Adapting Helios for Provable Ballot Privacy”. In: ES-
ORICS. Volume 6879. Lecture Notes in Computer Science. Springer, 2011,
pages 335–354.

[Bla+11] Olivier Blazy, Georg Fuchsbauer, David Pointcheval, andDamienVergnaud.
“Signatures on randomizable ciphertexts”. In: International Workshop on
Public Key Cryptography. Springer. 2011, pages 403–422.

[CH11] JeremyClark andUrsHengartner. “Selections: Internet VotingwithOver-
the-Shoulder Coercion-Resistance”. In: Financial Cryptography and Data
Security - 15th International Conference, FC 2011, Gros Islet, St. Lucia, Febru-
ary 28 - March 4, 2011, Revised Selected Papers. Edited by George Danezis.
Volume 7035. LectureNotes in Computer Science. Springer, 2011, pages 47–
61. doi: 10.1007/978-3-642-27576-0_4. uRl: https://doi.org/
10.1007/978-3-642-27576-0_4.

[KHF11] Reto E. Koenig, Rolf Haenni, and Stephan Fischli. “Preventing Board Flood-
ing Attacks in Coercion-Resistant Electronic Voting Schemes”. In: SEC.
2011, pages 116–127.

[KTV11] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. “Verifiability, pri-
vacy, and coercion-resistance: New insights from a case study”. In: 2011
IEEE Symposium on Security and Privacy. IEEE. 2011, pages 538–553.

[Sch+11] Michael Schläpfer, Rolf Haenni, Reto E. Koenig, and Oliver Spycher. “Ef-
ficient Vote Authorization in Coercion-Resistant Internet Voting”. In: E-
Voting and Identity - Third International Conference, VoteID 2011, Tallinn,

https://doi.org/10.1145/1866307.1866366
https://doi.org/10.1145/1698750.1698756
http://portal.acm.org/citation.cfm?doid=1698750.1698756
http://portal.acm.org/citation.cfm?doid=1698750.1698756
https://doi.org/10.1007/978-3-642-12678-9_7
https://doi.org/10.1007/978-3-642-27576-0_4
https://doi.org/10.1007/978-3-642-27576-0_4
https://doi.org/10.1007/978-3-642-27576-0_4

228 Bibliography

Estonia, September 28-30, 2011, Revised Selected Papers. Edited by Agge-
los Kiayias and Helger Lipmaa. Volume 7187. Lecture Notes in Computer
Science. Springer, 2011, pages 71–88. doi: 10.1007/978-3-642-32747-
6_5. uRl: https://doi.org/10.1007/978-3-642-32747-6_5.

[BG12] Stephanie Bayer and Jens Groth. “Efficient Zero-Knowledge Argument
for Correctness of a Shuffle”. In: EUROCRYPT 2012. 2012, pages 263–280.

[BPW12] David Bernhard, Olivier Pereira, and Bogdan Warinschi. “How Not to
Prove Yourself: Pitfalls of the Fiat-Shamir Heuristic and Applications to
Helios”. In:Advances in Cryptology - ASIACRYPT 2012 - 18th International
Conference on the Theory and Application of Cryptology and Information
Security, Beijing, China, December 2-6, 2012. Proceedings. Edited by Xi-
aoyun Wang and Kazue Sako. Volume 7658. Lecture Notes in Computer
Science. Springer, 2012, pages 626–643. doi: 10.1007/978- 3- 642-
34961-4_38. uRl: https://doi.org/10.1007/978-3-642-34961-
4_38.

[DGA12] Denise Demirel, J Van De Graaf, and R Araújo. “Improving Helios with
Everlasting Privacy Towards the Public”. In: EVT/WOTE’12 Proceedings of
the 2012 international conference on Electronic Voting Technology/Workshop
on Trustworthy Elections (2012).

[Kha+12] Dalia Khader, Ben Smyth, Peter Y. A. Ryan, and Feng Hao. “A Fair and
Robust Voting System by Broadcast”. In: 5th International Conference on
Electronic Voting 2012, (EVOTE 2012). Volume P-205. LNI. GI, 2012, pages 285–
299.

[KTV12a] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. “A game-based defi-
nition of coercion resistance and its applications”. In: Journal of Computer
Security 20.6 (2012), pages 709–764.

[KTV12b] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. “Clash Attacks on
the Verifiability of E-Voting Systems”. In: IEEE Symposium on Security
and Privacy, SP 2012, 21-23 May 2012, San Francisco, California, USA. IEEE
Computer Society, 2012, pages 395–409. doi: 10.1109/SP.2012.32. uRl:
https://doi.org/10.1109/SP.2012.32.

[LS12] Mark Lindeman and Philip B. Stark. A gentle introduction to risk-limiting
audits. 2012. doi: 10.1109/MSP.2012.56.

[SU12] Dominique Schröder and Dominique Unruh. “Security of Blind Signa-
tures Revisited”. In: Public Key Cryptography. Volume 7293. Lecture Notes
in Computer Science. Springer, 2012, pages 662–679.

[Spy+12] Oliver Spycher, Reto Koenig, Rolf Haenni, andMichael Schlapfer. “A new
approach towards coercion-resistant remote e-voting in linear time”. In:

https://doi.org/10.1007/978-3-642-32747-6_5
https://doi.org/10.1007/978-3-642-32747-6_5
https://doi.org/10.1007/978-3-642-32747-6_5
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1109/SP.2012.32
https://doi.org/10.1109/SP.2012.32
https://doi.org/10.1109/MSP.2012.56

Bibliography 229

FC 2011. 2012. isbn: 978-3-642-27575-3. uRl: http://dx.doi.org/10.
1007/978-3-642-27576-0_15.

[UH12] JeremyClarkUrs andHengartner. “Selections: Internet VotingwithOver-
the-Shoulder Coercion-Resistance”. In: FC 2011. 2012. isbn: 978-3-642-
27576-0. doi: 10.1007/978-3-642-27576-0_4. uRl: http://dx.doi.
org/10.1007/978-3-642-27576-0_4".

[Ara+13] Myrto Arapinis, Véronique Cortier, Steve Kremer, and Mark Ryan. “Prac-
tical everlasting privacy”. In: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics). Volume 7796 LNCS. 2013, pages 21–40. isbn: 9783642368295.
doi: 10.1007/978-3-642-36830-1_2. uRl: http://link.springer.
com/10.1007/978-3-642-36830-1_2.

[AT13] Roberto Araújo and Jacques Traoré. “A Practical Coercion Resistant Vot-
ing Scheme Revisited”. In: VOTE-ID. 2013, pages 193–209.

[Ben13] Josh Benaloh. “RethinkingVoter Coercion:TheRealities Imposed by Tech-
nology”. In: USENIX Journal of Election Technology and Systems (JETS)
(2013).

[BDV13] Johannes Buchmann, Denise Demirel, and Jeroen Van De Graaf. “To-
wards a publicly-verifiable mix-net providing everlasting privacy”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 7859
LNCS. 2013, pages 197–204. isbn: 9783642398834. doi: 10.1007/978-3-
642-39884-1_16. uRl: http://link.springer.com/10.1007/978-
3-642-39884-1_16.

[CS13] Véronique Cortier and Ben Smyth. “Attacking and fixing Helios: An anal-
ysis of ballot secrecy”. In: J. Comput. Secur. 21.1 (2013), pages 89–148.

[CPP13] Edouard Cuvelier, Olivier Pereira, and Thomas Peters. “Election Verifia-
bility or Ballot Privacy: DoWe Need to Choose?” In: ESORICS 2013. 2013,
pages 481–498. doi: 10.1007/978-3-642-40203-6_27. uRl: http:
//dx.doi.org/10.1007/978-3-642-40203-6_27.

[JMP13] Hugo Jonker, Sjouke Mauw, and Jun Pang. “Privacy and verifiability in
voting systems: Methods, developments and trends”. In: Comput. Sci. Rev.
10 (2013), pages 1–30. doi: 10.1016/j.cosrev.2013.08.002. uRl:
https://doi.org/10.1016/j.cosrev.2013.08.002.

[Tso+13] Georgios Tsoukalas, Kostas Papadimitriou, Panos Louridas, and Panayi-
otis Tsanakas. “FromHelios to Zeus”. In: USENIX Journal of Election Tech-
nology and Systems (JETS) 1.1 (2013), pages 1–17. uRl: https://www.
usenix.org/system/files/conference/evtwote13/jets-0101-
tsoukalas.pdf.

http://dx.doi.org/10.1007/978-3-642-27576-0_15
http://dx.doi.org/10.1007/978-3-642-27576-0_15
https://doi.org/10.1007/978-3-642-27576-0_4
http://dx.doi.org/10.1007/978-3-642-27576-0_4"
http://dx.doi.org/10.1007/978-3-642-27576-0_4"
https://doi.org/10.1007/978-3-642-36830-1_2
http://link.springer.com/10.1007/978-3-642-36830-1_2
http://link.springer.com/10.1007/978-3-642-36830-1_2
https://doi.org/10.1007/978-3-642-39884-1_16
https://doi.org/10.1007/978-3-642-39884-1_16
http://link.springer.com/10.1007/978-3-642-39884-1_16
http://link.springer.com/10.1007/978-3-642-39884-1_16
https://doi.org/10.1007/978-3-642-40203-6_27
http://dx.doi.org/10.1007/978-3-642-40203-6_27
http://dx.doi.org/10.1007/978-3-642-40203-6_27
https://doi.org/10.1016/j.cosrev.2013.08.002
https://doi.org/10.1016/j.cosrev.2013.08.002
https://www.usenix.org/system/files/conference/evtwote13/jets-0101-tsoukalas.pdf
https://www.usenix.org/system/files/conference/evtwote13/jets-0101-tsoukalas.pdf
https://www.usenix.org/system/files/conference/evtwote13/jets-0101-tsoukalas.pdf

230 Bibliography

[But14] Vitalik Buterin. Ethereum: A next-generation smart contract and decentral-
ized application platform. 2014. uRl: https://github.com/ethereum/
wiki/wiki/White-Paper.

[Cor+14] VéroniqueCortier, DavidGalindo, StéphaneGlondu, andMalika Izabachène.
“Election Verifiability for Helios under Weaker Trust Assumptions”. In:
ESORICS (2). Volume 8713. Lecture Notes in Computer Science. Springer,
2014, pages 327–344.

[CS14] Chris Culnane and Steve A. Schneider. “A Peered Bulletin Board for Ro-
bust Use in Verifiable Voting Systems”. In: CSF. IEEE Computer Society,
2014, pages 169–183.

[Gro14] Panagiotis Grontas. “Secure multi party computations for electronic vot-
ing”. Master’s thesis. University of Athens, 2014. uRl: {https://mpla.
math.uoa.gr/media/theses/msc/P.\%20Grontas.pdf}.

[Hoh+14] SusanHohenberger, StevenMyers, Rafael Pass, andAbhi Shelat. “ANON-
IZE: A Large-Scale Anonymous Survey System”. In: 2014 IEEE Symposium
on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE
Computer Society, 2014, pages 375–389. doi: 10.1109/SP.2014.31.
uRl: https://doi.org/10.1109/SP.2014.31.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography,
Second Edition. 2nd. Chapman & Hall/CRC, 2014. isbn: 1466570261.

[Sri+14] Sriramkrishnan Srinivasan, Chris Culnane, JamesHeather, SteveA. Schnei-
der, and Zhe Xia. “Countering Ballot Stuffing and Incorporating Eligibil-
ity Verifiability in Helios”. In: NSS. Volume 8792. Lecture Notes in Com-
puter Science. Springer, 2014, pages 335–348.

[Ach+15] DirkAchenbach, CarmenKempka, Bernhard Löwe, and JörnMüller-Quade.
“Improved coercion-resistant electronic elections through deniable re-
voting”. In: {USENIX} Journal of Election Technology and Systems ({JETS})
3 (2015), pages 26–45.

[Alw+15] Joël Alwen, Rafail Ostrovsky, Hong-Sheng Zhou, and Vassilis Zikas. “In-
coercibleMulti-party Computation andUniversally Composable Receipt-
Free Voting”. In: Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Pro-
ceedings, Part II. Edited by Rosario Gennaro and Matthew Robshaw. Vol-
ume 9216. Lecture Notes in Computer Science. Springer, 2015, pages 763–
780. doi: 10.1007/978-3-662-48000-7_37. uRl: https://doi.org/
10.1007/978-3-662-48000-7_37.

[Ben+15] Josh Benaloh, Ronald L. Rivest, Peter Y. A. Ryan, Philip B. Stark, Vanessa
Teague, and Poorvi L. Vora. “End-to-end verifiability”. In:CoRR abs/1504.03778
(2015). arXiv: 1504.03778. uRl: http://arxiv.org/abs/1504.03778.

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
{https://mpla.math.uoa.gr/media/theses/msc/P.\%20Grontas.pdf}
{https://mpla.math.uoa.gr/media/theses/msc/P.\%20Grontas.pdf}
https://doi.org/10.1109/SP.2014.31
https://doi.org/10.1109/SP.2014.31
https://doi.org/10.1007/978-3-662-48000-7_37
https://doi.org/10.1007/978-3-662-48000-7_37
https://doi.org/10.1007/978-3-662-48000-7_37
https://arxiv.org/abs/1504.03778
http://arxiv.org/abs/1504.03778

Bibliography 231

[Ber+15] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and
BogdanWarinschi. “SoK: AComprehensive Analysis of Game-Based Bal-
lot Privacy Definitions”. In: 2015 IEEE Symposium on Security and Privacy,
SP 2015, San Jose, CA, USA, May 17-21, 2015. IEEE Computer Society, 2015,
pages 499–516. doi: 10.1109/SP.2015.37. uRl: https://doi.org/
10.1109/SP.2015.37.

[GPZ15] Pagourtzis Aristeidis Grontas Panagiotis and Efstathios Zachos. Compu-
tational Cryptography. AvailableOnline at: http://hdl.handle.net/11419/5439.
thens:Hellenic Academic Libraries Link, 2015. isbn: 978-960-603-276-9.

[KZZ15a] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. “End-to-End
Verifiable Elections in the Standard Model”. In: EUROCRYPT 2015. 2015,
pages 468–498. doi: 10.1007/978-3-662-46803-6_16. uRl: https:
//doi.org/10.1007/978-3-662-46803-6_16.

[KZZ15b] Aggelos Kiayias, Thomas Zacharias, and Bingsheng Zhang. “On the Ne-
cessity of Auditing for Election Privacy in e-Voting Systems”. In: E-Democracy
- Citizen Rights in the World of the New Computing Paradigms - 6th In-
ternational Conference, E-Democracy 2015, Athens, Greece, December 10-
11, 2015, Proceedings. Edited by Sokratis K. Katsikas and Alexander B.
Sideridis. Volume 570. Communications in Computer and Information
Science. Springer, 2015, pages 3–17. doi: 10.1007/978-3-319-27164-
4_1. uRl: https://doi.org/10.1007/978-3-319-27164-4_1.

[KTV15] Oksana Kulyk, Vanessa Teague, and Melanie Volkamer. “Extending He-
lios Towards Private Eligibility Verifiability”. In: VoteID. Volume 9269.
Lecture Notes in Computer Science. Springer, 2015, pages 57–73.

[LH15] Philipp Locher and Rolf Haenni. “Verifiable Internet Elections with Ever-
lasting Privacy and Minimal Trust”. In: E-Voting and Identity - 5th Inter-
national Conference, VoteID 2015, Bern, Switzerland, September 2-4, 2015,
Proceedings. Edited by Rolf Haenni, Reto E. Koenig, and Douglas Wik-
ström. Volume 9269. Lecture Notes in Computer Science. Springer, 2015,
pages 74–91. doi: 10.1007/978-3-319-22270-7_5. uRl: https:
//doi.org/10.1007/978-3-319-22270-7_5.

[SFC15] Ben Smyth, Steven Frink, andMichael R. Clarkson. “Computational Elec-
tion Verifiability: Definitions and an Analysis of Helios and JCJ”. In: IACR
Cryptol. ePrint Arch. 2015 (2015), page 233. uRl: http://eprint.iacr.
org/2015/233.

[Cha+16] Pyrros Chaidos, VéroniqueCortier, Georg Fuchsbauer, andDavidGalindo.
“Beleniosrf: A non-interactive receipt-free electronic voting scheme”. In:
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security. 2016, pages 1614–1625.

https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-662-46803-6_16
https://doi.org/10.1007/978-3-319-27164-4_1
https://doi.org/10.1007/978-3-319-27164-4_1
https://doi.org/10.1007/978-3-319-27164-4_1
https://doi.org/10.1007/978-3-319-22270-7_5
https://doi.org/10.1007/978-3-319-22270-7_5
https://doi.org/10.1007/978-3-319-22270-7_5
http://eprint.iacr.org/2015/233
http://eprint.iacr.org/2015/233

232 Bibliography

[CE16] Nicholas Chang-Fong and Aleksander Essex. “The cloudier side of cryp-
tographic end-to-end verifiable voting: a security analysis of Helios”. In:
ACSAC. ACM, 2016, pages 324–335.

[Cor+16] V Cortier, D Galindo, R Küsters, J Müller, and T Truderung. “SoK: Ver-
ifiability Notions for E-Voting Protocols”. In: IEEE Security and Privacy
Symposium. 2016, pages 779–798.

[Küs+16] Ralf Küsters, Johannes Müller, Enrico Scapin, and Tomasz Truderung.
“sElect: A Lightweight Verifiable Remote Voting System”. In: IEEE 29th
Computer Security Foundations Symposium, CSF 2016, Lisbon, Portugal,
June 27 - July 1, 2016. IEEE Computer Society, 2016, pages 341–354. doi:
10.1109/CSF.2016.31. uRl: https://doi.org/10.1109/CSF.2016.
31.

[LHK16] Philipp Locher, Rolf Haenni, and Reto E. Koenig. “Coercion-Resistant In-
ternet Votingwith Everlasting Privacy”. In: FC’16Workshops, BITCOIN,VOTING,WAHC.
2016. doi: 10.1007/978-3-662-53357-4_11. uRl: http://dx.doi.
org/10.1007/978-3-662-53357-4_11.

[Mei+16] SarahMeiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Da-
mon McCoy, Geoffrey M. Voelker, and Stefan Savage. “A Fistful of Bit-
coins: Characterizing Payments among Men with No Names”. In: Com-
mun. ACM 59.4 (Mar. 2016), pages 86–93. issn: 0001-0782. doi: 10.1145/
2896384. uRl: https://doi.org/10.1145/2896384.

[YN16] JeremyClark Peter YARyan YomnaNasser ChidinmaOkoye. Blockchains
and voting: somewhere between hype and a panacea. https://users.
encs.concordia.ca/~clark/papers/draft_voting.pdf. 2016.

[BKV17] David Bernhard, Oksana Kulyk, and Melanie Volkamer. “Security proofs
for participation privacy, receipt-freeness and ballot privacy for the he-
lios voting scheme”. In: Proceedings of the 12th International Conference
on Availability, Reliability and Security. 2017, pages 1–10.

[Ber+17] Matthew Bernhard, Josh Benaloh, J. Alex Halderman, Ronald L. Rivest,
Peter Y. A. Ryan, Philip B. Stark, Vanessa Teague, Poorvi L. Vora, and Dan
S. Wallach. “Public Evidence from Secret Ballots”. In: E-VOTE-ID. Vol-
ume 10615. Lecture Notes in Computer Science. Springer, 2017, pages 84–
109.

[Gil+17] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai
Zeldovich. “Algorand: Scaling Byzantine Agreements for Cryptocurren-
cies”. In: Proceedings of the 26th Symposium on Operating Systems Princi-
ples. ACM, 2017, pages 51–68.

https://doi.org/10.1109/CSF.2016.31
https://doi.org/10.1109/CSF.2016.31
https://doi.org/10.1109/CSF.2016.31
https://doi.org/10.1007/978-3-662-53357-4_11
http://dx.doi.org/10.1007/978-3-662-53357-4_11
http://dx.doi.org/10.1007/978-3-662-53357-4_11
https://doi.org/10.1145/2896384
https://doi.org/10.1145/2896384
https://doi.org/10.1145/2896384
https://users.encs.concordia.ca/~clark/papers/draft_voting.pdf
https://users.encs.concordia.ca/~clark/papers/draft_voting.pdf

Bibliography 233

[GPZ17] Panagiotis Grontas, Aris Pagourtzis, and Alexandros Zacharakis. “Coer-
cion Resistance in a Practical Secret Voting Scheme for Large Scale Elec-
tions”. In: 14th International Symposium on Pervasive Systems, Algorithms
and Networks & 11th International Conference on Frontier of Computer Sci-
ence and Technology & Third International Symposium of Creative Com-
puting, ISPAN-FCST-ISCC 2017, Exeter, United Kingdom, June 21-23, 2017.
IEEE Computer Society, 2017, pages 514–519. doi: 10.1109/ISPAN-
FCST-ISCC.2017.79. uRl: https://doi.org/10.1109/ISPAN-FCST-
ISCC.2017.79.

[Iov+17] Vincenzo Iovino, Alfredo Rial, Peter B Roenne, and Peter Ryan. “Using
Selene to Verify your Vote in JCJ”. In: FC’17 Workshops, BITCOIN, VOT-
ING, WAHC. 2017. uRl: http://fc17.ifca.ai/voting/papers/
voting17_MainJCJ-Selene.pdf.

[MSH17] Patrick McCorry, Siamak F. Shahandashti, and Feng Hao. “A Smart Con-
tract for Boardroom Voting with Maximum Voter Privacy”. In: FC 2017.
Volume 10322. LNCS. Springer, 2017, pages 357–375.

[PS17] Stefan Patachi and Carsten Schürmann. “Eos a Universal Verifiable and
Coercion Resistant Voting Protocol”. In: E-Vote-ID 2017. Volume 10615.
LNCS. Springer, 2017, pages 210–227.

[Wil17] JanWillemson. “Bits or Paper:Which Should Get to Carry Your Vote?” In:
E-VOTE-ID. Volume 10615. Lecture Notes in Computer Science. Springer,
2017, pages 292–305.

[ZGP17] Alexandros Zacharakis, Panagiotis Grontas, and Aris Pagourtzis. “Con-
ditional Blind Signatures”. In: Short version presented in 7th International
Conference on Algebraic Informatics - CAI 2017 2017 (2017), page 682. uRl:
http://eprint.iacr.org/2017/682.

[Boy+18] Elette Boyle, Saleet Klein, Alon Rosen, and Gil Segev. “Securing Abe’s
Mix-Net AgainstMalicious Verifiers viaWitness Indistinguishability”. In:
SCN. Volume 11035. Lecture Notes in Computer Science. Springer, 2018,
pages 274–291.

[CL18] Véronique Cortier and Joseph Lallemand. “Voting: You can’t have pri-
vacy without individual verifiability”. In: Proceedings of the ACM Confer-
ence on Computer and Communications Security (2018), pages 53–66. issn:
15437221. doi: 10.1145/3243734.3243762.

[DP18] Lionel Dricot andOlivier Pereira. “SoK: Uncentralisable Ledgers and their
Impact on Voting Systems”. In: CoRR abs/1801.08064 (2018). arXiv: 1801.
08064. uRl: http://arxiv.org/abs/1801.08064.

[Gen+18] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert van Renesse, and
Emin Gün Sirer. “Decentralization in Bitcoin and Ethereum Networks”.

https://doi.org/10.1109/ISPAN-FCST-ISCC.2017.79
https://doi.org/10.1109/ISPAN-FCST-ISCC.2017.79
https://doi.org/10.1109/ISPAN-FCST-ISCC.2017.79
https://doi.org/10.1109/ISPAN-FCST-ISCC.2017.79
http://fc17.ifca.ai/voting/papers/voting17_MainJCJ-Selene.pdf
http://fc17.ifca.ai/voting/papers/voting17_MainJCJ-Selene.pdf
http://eprint.iacr.org/2017/682
https://doi.org/10.1145/3243734.3243762
https://arxiv.org/abs/1801.08064
https://arxiv.org/abs/1801.08064
http://arxiv.org/abs/1801.08064

234 Bibliography

In:CoRR abs/1801.03998 (2018). arXiv: 1801.03998. uRl: http://arxiv.
org/abs/1801.03998.

[Gro+18] Panagiotis Grontas, Aris Pagourtzis, Alexandros Zacharakis, and Bing-
sheng Zhang. “Towards Everlasting Privacy and Efficient Coercion Resis-
tance in Remote Electronic Voting”. In: Financial Cryptography and Data
Security - FC 2018 InternationalWorkshops, BITCOIN, VOTING, andWTSC,
Nieuwpoort, Curaçao, March 2, 2018, Revised Selected Papers. Edited by
Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali,
Federico Pintore, and Massimiliano Sala. Volume 10958. Lecture Notes in
Computer Science. Springer, 2018, pages 210–231. doi: 10.1007/978-
3-662-58820-8_15. uRl: https://doi.org/10.1007/978-3-662-
58820-8_15.

[Hei+18] Sven Heiberg, Ivo Kubjas, Janno Siim, and Jan Willemson. On Trade-offs
of Applying Block Chains for Electronic Voting Bulletin Boards. Cryptology
ePrint Archive, Report 2018/685. https://eprint.iacr.org/2018/
685. 2018.

[Kia+18] Aggelos Kiayias, Annabell Kuldmaa, Helger Lipmaa, Janno Siim, andThomas
Zacharias. “On the Security Properties of e-Voting Bulletin Boards”. In:
SCN. Volume 11035. Lecture Notes in Computer Science. Springer, 2018,
pages 505–523.

[Sch] Securing Elections. https://www.schneier.com/blog/archives/
2018/04/securing_electi_1.html. Accessed: 2020-04-29. 2018.

[Zac18] Alexandros G. Zacharakis. “Verifiable remote electronic elections with
strong privacy guarantees”. Master’s thesis. University of Athens, 2018.

[CGG19] Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. “Belenios: A
Simple Private and Verifiable Electronic Voting System”. In: Foundations
of Security, Protocols, and Equational Reasoning. Volume 11565. Lecture
Notes in Computer Science. Springer, 2019, pages 214–238.

[Cul+19] Chris Culnane, Aleksander Essex, Sarah Jamie Lewis, Olivier Pereira, and
Vanessa Teague. “Knights and Knaves Run Elections: Internet Voting and
Undetectable Electoral Fraud”. In: IEEE Secur. Priv. 17.4 (2019), pages 62–
70.

[FQS19] Ashley Fraser, Elizabeth AQuaglia, and Ben Smyth. “A critique of game-
based definitions of receipt-freeness for voting”. In: International Confer-
ence on Provable Security. Springer. 2019, pages 189–205.

[GP19] Panagiotis Grontas andAris Pagourtzis. “Blockchain, consensus, and cryp-
tography in electronic voting”. In: Homo Virtualis 2.1 (2019), pages 79–
100. issn: 2585-3899. doi: 10.12681/homvir.20289. uRl: https://

https://arxiv.org/abs/1801.03998
http://arxiv.org/abs/1801.03998
http://arxiv.org/abs/1801.03998
https://doi.org/10.1007/978-3-662-58820-8_15
https://doi.org/10.1007/978-3-662-58820-8_15
https://doi.org/10.1007/978-3-662-58820-8_15
https://doi.org/10.1007/978-3-662-58820-8_15
https://eprint.iacr.org/2018/685
https://eprint.iacr.org/2018/685
https://www.schneier.com/blog/archives/2018/04/securing_electi_1.html
https://www.schneier.com/blog/archives/2018/04/securing_electi_1.html
https://doi.org/10.12681/homvir.20289
https://ejournals.epublishing.ekt.gr/index.php/homvir/article/view/20289

Bibliography 235

ejournals.epublishing.ekt.gr/index.php/homvir/article/
view/20289.

[GPZ19] Panagiotis Grontas, Aris Pagourtzis, and Alexandros Zacharakis. “Secu-
rity models for everlasting privacy”. In: E-Vote-ID 2019 (2019), page 140.

[KWV19] Kristjan Krips, Jan Willemson, and Sebastian Varv. “Is your vote over-
heard? A new scalable side-channel attack against paper voting”. In: Pro-
ceedings - 4th IEEE European Symposium on Security and Privacy, EURO
S and P 2019. 2019, pages 621–634. isbn: 9781728111476. doi: 10.1109/
EuroSP.2019.00051.

[Sti19] Douglas Stinson. Cryptography: Theory and Practice,Second Edition. 4th.
CRC/C&H, 2019. isbn: 1584882069.

[Ben+20] Fabrice Benhamouda, Tancrède Lepoint,MicheleOrrù, andMariana Raykova.
On the (in)security of ROS. Cryptology ePrint Archive, Report 2020/945.
https://eprint.iacr.org/2020/945. 2020.

[BS20] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptogra-
phy. 2020. uRl: https://toc.cryptobook.us/.

[FPS20] Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. “Blind Schnorr
Signatures and Signed ElGamal Encryption in theAlgebraic GroupModel”.
In: EUROCRYPT (2). Volume 12106. Lecture Notes in Computer Science.
Springer, 2020, pages 63–95.

[GPZ20] Panagiotis Grontas, Aris Pagourtzis, and Alexandros Zacharakis. “Secu-
rity Models for everlasting privacy in electronic voting”. In: under sub-
mission to the International Journal of Information Security (2020).

[Gro+20] Panagiotis Grontas, Aris Pagourtzis, Alexandros Zacharakis, and Bing-
sheng Zhang. “Publicly Auditable Conditional Blind Signatures”. In: un-
der submission to the Journal of Computer Security (2020).

[HM20] Thomas Haines and Johannes Mueller. SoK: Techniques for Verifiable Mix
Nets. Cryptology ePrint Archive, Report 2020/490. https://eprint.
iacr.org/2020/490. 2020.

[LQAT20] Wouter Lueks, IñigoQuerejeta-Azurmendi, andCarmela Troncoso. “VoteA-
gain: A scalable coercion-resistant voting system”. In: 29th USENIX Secu-
rity Symposium (USENIX Security 20). USENIX Association, Aug. 2020,
pages 1553–1570. isbn: 978-1-939133-17-5. uRl: https://www.usenix.
org/conference/usenixsecurity20/presentation/lueks.

[MPT20] Eleanor McMurtry, Olivier Pereira, and Vanessa Teague. When is a test
not a proof? Cryptology ePrint Archive, Report 2020/909. https : / /
eprint.iacr.org/2020/909. 2020.

[PBS20] Aris Pagourtzis Pourandokht Behrouz Panagiotis Grontas and Marianna
Spyrakou. On coercion resistance in decentralized voting (Short paper). 1st

https://ejournals.epublishing.ekt.gr/index.php/homvir/article/view/20289
https://ejournals.epublishing.ekt.gr/index.php/homvir/article/view/20289
https://ejournals.epublishing.ekt.gr/index.php/homvir/article/view/20289
https://doi.org/10.1109/EuroSP.2019.00051
https://doi.org/10.1109/EuroSP.2019.00051
https://eprint.iacr.org/2020/945
https://toc.cryptobook.us/
https://eprint.iacr.org/2020/490
https://eprint.iacr.org/2020/490
https://www.usenix.org/conference/usenixsecurity20/presentation/lueks
https://www.usenix.org/conference/usenixsecurity20/presentation/lueks
https://eprint.iacr.org/2020/909
https://eprint.iacr.org/2020/909

236 Bibliography

International Workshop on Foundations of Consensus and Distributed
Ledgers (FOCODILE 2020). https://www.discotec.org/2020/focodile.
2020.

[Sch20] Berry Schoenmaker. Lecture Notes on Cryptographic Protocols. 2020. uRl:
https://www.win.tue.nl/~berry/2DMI00/.

[SGY20] Mohamed Seifelnasr, Hisham S. Galal, and Amr M. Youssef. “Scalable
Open-Vote Network on Ethereum”. In: IACR Cryptology ePrint Archive
2020 (2020), page 33.

https://www.discotec.org/2020/focodile
https://www.win.tue.nl/~berry/2DMI00/

237

Index

accountability, 9
anonymous channel, 22, 172, 174, 195

ballot secrecy, 10, 138, 160
BPRIV, 140
PACBS voting, 191
U-BPRIV, 143

blind signatures, 41
Okamoto Schnorr, 43
unforgeability, 42
unlinkability, 41
voting, 146

bulletin board, 21

CIVITAS, 170
coercion resistance, 11, 122, 160

anonymity sets, 134
board flooding, 136
CIVITAS, 134
JCJ, 127, 130
assumptions, 128
blind hashtable, 132

PACBS voting, 196
conditional blind signatures (CBS), 58

blindess, 59
conditional verifiability, 60
Okamoto-Schnorr construction,

61
unforgeability, 59
variations, 70

credential, 165, 169, 170, 172

designated verifier signatures, 44

digital signatures, 38
Okamoto-Schnorr, 39
unforgeability, 39

ElGamal encryption, 24
enfranchisement, 14
everlasting privacy, 12, 152, 156, 160

PACBS voting, 195
strong, 157
weak, 156

fairness, 13

Plaintext Equivalence Test (PET), 49,
72, 172, 175

publicly auditable conditional blind
signatures (PACBS), 72

auditability, 76
blindness, 74
conditional verifiability, 75
Okamoto-Schnorr, 78
unforgeability, 74
voting, 163, 167

receipt-freeness, 11, 123, 160
deniable vote updating, 126
Game-based definition, 125

registration, 169
resiliency, 14

Security Assumptions, 19
Computational Diffie Hellman

Assumption, 20

238 INDEX

Decisional Diffie Hellman
Assumption, 20

Discrete Logarithm Assumptions,
19

selections, 170
shuffle, 51
software independence, 6

untappable, 169
untappable channel, 23

verifiability, 7, 111, 160
administrative, 9

E2E, 8, 112
eligibility, 8, 118, 191
helios, 105
individual, 113, 180, 185
PACBS voting, 185
universal, 115, 181, 188

zero-knowledge, 30
Σ-protocols, 31
Chaum-Pedersen, 33
Fiat-Shamir, 37
Schnorr, 32
voting, 36

	Abstract
	Περίληψη
	Εκτεταμένη περίληψη
	Αντιστοιχία όρων
	Ευχαριστίες
	Contents
	List of Figures
	List of Symbols
	Introduction
	Election technologies
	Security properties of voting systems
	Verifiability
	Confidentiality
	Other properties

	Contribution
	Publicly Auditable Conditional Blind Signatures
	Everlasting privacy
	PACBS Voting

	Thesis structure

	Cryptographic Preliminaries
	Basic notions
	Security Assumptions
	Communication channels

	Public Key Encryption
	Commitment schemes
	Zero-Knowledge Proofs of Knowledge
	-protocols

	Digital Signatures
	Blind Signatures
	Designated Verifier Signatures

	Threshold Secret Sharing
	Threshold cryptosystems
	Plaintext Equivalence Tests

	Verifiable Shuffles
	The road to PACBS

	Publicly Auditable Conditional Blind Signatures
	Conditional Blind Signatures
	Definitions
	Security Properties

	Okamoto-Schnorr CBS construction
	CBS Security Analysis
	CBS Variations
	Publicly Auditable Conditional Blind Signatures
	Definition
	Security Properties

	Okamoto-Schnorr PACBS construction
	OSPACBS parameter generation
	OSPACBS signing
	OSPACBS verification

	PACBS Security analysis
	Correctness
	Blindness
	Unforgeability
	Conditional Verifiability
	Public Auditability for signing and verifying
	Performance

	Alternative OSPACBS instantiation
	A note on the ROS attack

	Electronic Voting Systems and Models
	Voting System Syntax
	Helios Case Study
	Election Verifiability
	Individual verifiability
	Universal verifiability
	Eligibility Verifiability

	Coercion resistance
	Receipt-Freeness
	The JCJ coercion resistance framework

	Ballot secrecy
	Trust assumptions
	Security games for ballot secrecy
	Privacy based on blind signatures

	Everlasting Privacy
	Game based definitions for everlasting privacy
	Application of the new everlasting privacy definitions
	Discussion

	Relations between properties and models

	Voting with Publicly Auditable Conditional Blind Signatures
	Overview
	PACBS Voting Scheme Specification
	Setup phase
	Registration phase
	Voting phase
	Tally phase
	Verification phase
	Performance

	Security analysis
	Verifiability
	Ballot secrecy
	Everlasting privacy
	Coercion Resistance

	Conclusion
	Summary
	Future work
	Coercion resistance in decentralized and blockchain voting

	Epilogue

	Bibliography
	Index

