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Abstract

Panagiotis M. Grontas

Privacy-Oriented Cryptographic Primitives and Protocols for Electronic Voting

We propose a new cryptographic primitive, Publicly Auditable Conditional Blind Signatures
(PACBS), which connects the verification of a digital signature to publicly available data.
During signing, a predicate on these data is embedded into the signature, so that the latter is
valid if and only if the former is true. Verification is performed by a designated verifier, in a
strong manner, with the use of a private verification key. The privacy of the user requesting
the signature is protected information-theoretically, because the message to be signed is
blinded. Additionally, to avoid attacks from a malicious signer or verifier that disregards the
predicate, all their operations are accompanied with evidence in the form of non-interactive
zero-knowledge proofs of knowledge that force them to follow the protocol. We define a

security model to capture the guarantees of our primitive and provide an instantiation.

We utilize PACBS in a remote electronic voting protocol. The conditional nature of PACBS
enables us to build credentials that allow our protocol to provide coercion resistance in the
re-voting with anonymous credentials paradigm of Juels, Catalano and Jakobsson. When
coerced, a voter uses a fake credential to accompany the vote, while when the coercer is
not watching, she can cast her real vote which is accompanied by the valid credential. Only
the latter will be counted. All interactions are indistinguishable to the coercer, who cannot
tell if his attack succeeded. The evidence generated by PACBS accompanied with standard
evidence used in e-voting schemes allows each voter to individually verify that their votes
were correctly cast and tallied. Vote counting is also universally verifiable by any interested
party. Our overall architecture also provides strong privacy guarantees, since, contrary
to the conventional e-voting paradigm, we do not assume that the talliers are trusted for
privacy. This allows us, to extend our reasoning about privacy against a computationally
unbounded attacker. We generalize our findings to express security models for everlasting

privacy that also consider the data available to the adversary.

Keywords: cryptography, electronic voting, privacy, coercion resistance, security models






[TepiAnyn

[Movaywotng M. I'povtég

ISwwtikootpepn Kpvrroypapixd Xyrpora ko [pwtokoAla yia HAektpovikés Wnpopopies

[Ipoteivovpe tig Anpdoia EAéyEes Yro-XvvOxn TopAés Ymoypapés (AEYTY), éva véo kpu-
TTOYPOPLKO GXNH, TOL GLVOEEL TNV emaAnBevon Hog Yn@Lokng voypogng pe SnpocLa
SwxBéopa dedopéva. Katd tn Sidpkeia tng voypagnc, éva katnyopnpo mov oxetileton
HE ALTA To OESOPEVA EVOWHATOVETAL GTNV LITOYPAPT], ETOL DOTE 1) TEAELTALO VO LOYVEL EAV
KoL HOVO €V elvo TO KATyopnpa amotiuatol og aAnbég. H emadnBevon mpayportomotei-
Taw ot évav mpokoBoplopévo emaAnBeuth, pe LoxvpO TPOTO, He T XPHOT VOGS LOLWTLKOD
KkAewdLov emainBevong. To amdppnrto Tov XprioTh oL {NTE TNV VITOYPAPT]) TTPOCTATEVETOL
TATPOPOPLODEPNTIKA, TUPADVOVTAG TO TPOG-LITOYPOPT) HVupa. EmumAéov, yia va asto-
@evyBovv embécelg amd kamolov kakofovAo vtoypapovta 1 enaAnBevTr] TOL AYVOOLV TO
KOTNYOPNHL, 1 SpLovpyia KoL 0 EAEYX0G TV LITOYPAPOV HOG GLVOIEVOVTOL ATTO GTOLYELN
HE TN HOopOT] UN-SLadpaoTIKOV arodeifwv undevikng yvaong mov avaykalouv GUHHOPP®-
on mpog To mPwTOkoALo. Opilovpe éva HOVTELO OGPOAELAG YLOL VU QTTOTUTTOCOVHE TLG

EYYUNOELS TV LITOYPAPOV HAG KOL TAPEYOVHE HLa VAOTTOLNOT).

Xpnopomorotpe tig AEYTY oe éva TpTOKOANO QUTOPOKPLOHEVNG NAEKTPOVLKTG YN POPo-
piac. H vmo-cuvOnkn emainbevon pag Bondd va dnpiovpynocovpe avoVLUpa SLTLoTev-
TNPLOL TTOV ETMUTPETOLY GTO CUOTNHA PG va avTipeTorilel embéoelg eEavaykacpod 6to
LITOdELYHt TTOAAATAGVY YRPwV avd Yneopopo 6e GUVOLACHO HE AVOVUHX KOVOALL Ko
pio otiypn Wiotikotntag. Katd tov eavaykaopo, pio Yneopopog xpnotpomnotel Yedti-
KO SLOUTLOTEVTIPLO YLt VAL GLVOSEVCEL TNV ETTLAOYT] TNG, EVAD OTAV 0 e€avaykaoTig dev o~
pokoAovOel, pHITopel var ELCAYEL TNV TPAYHOTIKT Yo TNG TOL cuvodebeTal amd £YKLPO
Swamotevtpro. Puotkd, povo 1 Yrgog pe to éykvpo damiatevtrplo Bo petpnOei. Oleg
oL oAANAemdpdoelg elvor pn drokpioipeg od tov e€ovaykaoth, 0 omolog dev pwopel va
meL ot Yngog pétpnoe. To amodelkTikd otolyeia mov dnpovpyovvton amd tig AEYTY,
podi pe Toe oLV AITOJELKTIKG GTOLYEL TTOV X PTIGLHLOTOLODVTAL GE GUOTHHOTO AEKTPOVL-

KNG Ynypogopiac, emttpémovv oe k&Be Yneopopo va emadnbedoel pepovopévo 6TL 1) Yreog
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Kotoywpnfnke cwotd ko petprOnke. H xatopétpnon tov Ynewv, emimiéov, eivor kobo-
A& emoAnBedon, and omowadnmote evdiopepopevn ovtotnta. H cuvoAikr) apyitekto-
VIKT) TOU CUGTHHOATOG HOG, TTAPEXEL ETIOTG LOXVPOTEPES EYYVT|OELS YIO TNV TPOCTAGIX TNG
HLGTIKOTN TG TNG Yrj@ov, kabng, ce avtiBeon pe Tn ovvnOn TPAKTIKT GTIG NAEKTPOVLIKEG
yneogopieg, dev vTOOETOVHE OTL OL KATAUETPNTES TNPOVY TO ATOPPNTO TNG Yripov. Avtd
HOG ETLTPETEL VOL ETTEKTELVOVE TNV HUGTIKOTITA EVOVTIOV VO VITOAOYLOTIKA AdEGHELTOV
ovtutdAov. 'evikeDoupe T EVPTHATR PG YLOL VO EKPPAGOVHE HOVTEAX XCPUAELOG YLot OLé-
Vo TPOC TGO HUGTLKOTNTAC, TTOL AapPavouy entiong vtoyy ta dradéoipa dedopéva Tov

dtappéovton atd TNV LAOTTOINGT TOL TPWTOKOAAOU.

AgEerg-KAerdrd: kpumtoypopio, NAEKTPOVIKESG PNPoPopieg, LOLWTIKOTNTA, AVTIGTAGT) GTOV

eEAVOYKAOoPO, HOVTEAX Ao PAAELOG
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Extetapévn mepiinymn

Ewoaywyn Ot nlextpovikéc Yneopopieg Hropotv v KAVouv KaADTEPEG TIG EKAOYEG He
moAAoUG TpoOmovg: Emitaybvovtag tnv katapéTpnon, PEATIOVOVTOG TNV eumeLpia Tov Xph-
ot - ek 0TV Ta YN@odEATLA elval TOAVTAOKX 1) OTAV OL YNPoPoOpoL AVTIHETOTLILOLY
QLGLKOVG TEPLOPLOHODG KoL Xpetdlovtal vioforfnoT yio v EKPPAGOLY TLS TPOTIUNCELS
T0uG. Ol QTTOPOKPLCHEVEG NAEKTPOVIKEG YNPOPOpieg prtopovy entiong va tpocHésouvy a-
HECOTNTA, HE ATTOTEAEGHA LEYOADTEPT] GUYVOTN T KAl GUHHETOXT) 0TI GLAAOYLKT) AjYn a-
TOPAGEWV KATL TTOV €iva TOAD GNUAVTLKO GTNV TTYKOOHLOTOLNHEVT) Kowvwvia pag. Télog,
propel v 0dnynoouvv oe véo LITodelypaTa eKAOY®OV dAAGLoVTOG TNV SNpoKpaTic e HIKPT)

KoL peyaAn kAlpoko.

[ va emitevyBovv O A oLTA, Ol NAEKTPOVIKEG eKAOYEG TTPETTEL VAL elval ATPAAELS, ako-
Lot TTEPIOTOTEPO ATTO TIG PUOIKES, KOOGS TTpémel va melcouv 0TL HOVo kEPSOG TPOKUITTEL ATTO
NV xprion Touvg kot dev Stakivduvedovtal KeKTNpéva. Améxouvpe ToAD amd avTod T0 6TOYO,
Topd TG TOAAEG Tpoomabeleg Kol T dLpopa CLGTHHATA TTOL €XoUV avartuyBel. Avtod
opelleTal KUpiwg 6TO OTL OL eKAOYEG eival €va TOAD dUoKOAO TPOPANpa KkaL oL dukAeideg
acPaAelag OV ePUPPOLOVTAL GTOV PUGLKO KOGHO elval avTikeipevo eEEMENG Ko Telpopa-
TIOHOU €KOTOVIAOWV ETOV, GTEVA GUVOEDEPEVES e KOLVWOVLIKEG SOpEG TTOL amolapfavouy
gpiotoovr. OAn avth n eEéMEn mpémel va avTikataoTobel atd cLOTHHATH LITOAOYL-
OTQV, T oToia, eKTOG ard OTL aplOpovV pepLkég povo dekaetieg DIAPENG, elval YVOOTA
Yla TNV PELGTOTNTA TOLG KL TO TTOCO eVKOAA EKTPETOVTOL ELOLKA OTAV VAOTTOLOVVTAL GE
Aoylopko. EmumAéov, ol ekAoyég nhektpovikég 1) OxL, elvan €€ oplopo0 éva exOpLiod mept-
BaAlov, kabmg oL eviiapepopevoL EXOVV TOAAR KIVNTPO VOl ETTNPEAGOVV TO ATTOTEAEGHX
pog 0peldg Toug. Katd cuvémela, dev apkel kAmoLo nAekTpovikd cOoTpHa Yn@opopiag
va elval cwoto. Ilpémel emiong va eivon emadnBedoipo, yia va wbroel Toug Yngogopouvg
(e1d1K& TOLG LITOGTNPLKTEG TV NTTNHEVOV) VO artodexBo0v OTL 1) GuvelGPopd ToLg ArjpOnKe

Loy, Xwpig Tuxaia 1) kakoBovAa A&O).
Id16tnteg O 1810TNTEG OV TPETEL VAL LKAVOTIOLEL £VOL GUOTNHA EKAOYDV PUOLKO 1} NAe-
KTPOVLKO €LVl OL TOPOKATE:

« OpBotnta (Correctness): Ta omoteAéopATA TPETEL VOL AVTLOTOLYOUV GTLG TTPOTLUY-

OELg TV YNPoopwv.
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« EmoAnBevopotnra (Verifiability): Ou ekAoyeig adAé& ko omotoodnmote evdiopepo-

pevog mpérel va prtopel vo emadnBedoel v opBotnta. iveton cuvibwg oe 3 otddio
[Chao4; [ANog]:

— EmaAnBevon kataypogng npdbeong (Cast-as-intended): To exAoyikd cOoTnp

emLTPETEL OTOV YNPopopo va eAéyEel OTL kataxwpnOnke cwotd n Tpodbeot) Tov.

- EnaAnBevon katdBeong (Recorded-as-cast): Mmopel va edeyyOel av 1 katoyw-
PNHEVN YNPOG PeTapépONKe CWOTA Lo KATAPETPNOT).

— EmaAnfevon xatopétpnong (Tallied-as-recorded): H xatapétpnon avriotoryet
oTIg Yrjpoug ov Katatédnkayv - dev vdpyel dNAadt K&molo aAAayr) 6TO €Vv-

duapeco.

1o TapadocLaK& CUGTARATE YNPOoPopLag 1) eTaANDeLOIPOTNTA Elval KUPLWG opHO-
Srotnta épmiotwv TPtV ovToTHTWV (HEADV NG dikaoTikng e€ovaiag KoL avTuTpo-
oWV TV vToYneiny). O Yneoedpog dev propet dpeca va etainBeboel v Yo
TOV €KTOG OO TO 6TASL0 KaTaypopng mpobeong. e éva nAektpovikd meptPaiiov
Kovéva 6TadLo dev popel va yivel ywplg tn Porfetat LTTOAOYLOTIKOV CUGTHHATOV.

Katd cvvémeia mpootibetot ko pior akopo pn dtoxavig oviotnTaL.

>t SwtpPny avtn dev aoyolovpacte pe tnv emaAnBevon tng tpdbecng tov Yneo-
QOpov, KOBMOG YL TOV GKOTTO LTO PITOPOLV va Xpnoiporotnfodv ToAAEG amd Tig
YVWOTEC OXETIKEG TEXVIKEG. XPTOLLOTOLOVUE TOV OPO €KAOYLKT) eTOANOeLGIHOTN T
(election verifiability) [SFC15], 1) omoia propei var avahvBei oe atopukr] (individual)
Ko kaBohkr| (universal) eronOevotpodtnra [Cor+16]. Ttnv tedevtaio moAloi cup-
nepthopPavouv v enainBevopotnta Sikowdpartog Yrneov (eligibility verifiability)
1) omoia prropotv va givan Snpodoia [SFC15] 1 Srwtikr [KTV15]. Eneid 1) emaindev-
opotnTa Tpoonabel va mpooTatedoEL TOLS YNPoPopovs artd de@Bappéveg apyEg
KOl CLUGKEVEG TTOL kAvouv AaBn - eite emitndec, eite kotd AdBog - KoTd TNV TUTTLKT

povteAomoinaot] tng OAeg oL apyég Bewpodvtal wg eAeyXOpeEVEG QIO TOV AVTITTOAO.

« Muotikétnto: Bonba ko avaykdlel Toug Yneopopoug va ekgpdlouvv edevBepar tn
YVOUN TOVG. QG ammaitnon acpaielog HaAoTa eivat kKwdlkomolnpévn ot vopobeoia.
211G UOLKES Yn@opopieg epappoletal pe Tov EAeyyo ToL meplBaAlovtog Yneopopi-
ag pe uotkd péoa (topaPiv, KAATN) KoL EUTTLOTES TPLTEG OVTOTNTEG TTOL TEPLOPLLOLY
TOV Yn@opopo e Té€tolo Tpomo wote va diatnpnbel to amdppnto TG Ynpopopings.
To cuykekpEVA AVTIHETP dEV LEXVOLY G€ ATTOPUKPLGHEVO (NAEKTPOVLKO) TTEPLPAA-
Aov, yeyovog mov KobloTd TNV TOANoT YooV Kot Ty eEavaykacpévn Yneogopio

mBava ko emtikivovva evdeyopeva.

H puotikotnta opileton kot avtr) oe Siapopa emimeda:
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- puotikoétnTa Yrgov (ballot secrecy / privacy) [Cor+14]: mpootatedel evavTia
oe évav TafnTikd avtimalo o omoiog Bélel va pdbel ta eplexopeva g Yn-

QoL evog Ymyopopov. Tétolol yio Topadetypa eival oL KATAPETPNTES 1) GAAOL
Un@o@odpol. Xe avto 1o eminedo, 1) HUOTIKOTN T elval e@rjpepT) pe dLdpkeLa 0o

KoL OL eKAOYEG.

- pn-amodelfipdTnTa Yrjpov (receipt-freeness) [BT94]: mpooTatevel evévTia oe

évav kakoPBovAo Ymngogopo mov BéleL va TovAnceL TNV Yripo Tov.

- avtioTaon oTov eEavaykaouo (coercion-resistance) [JCJ05]: mpootaredet evév-
TIoL 0€ €vay eEOTEPLKO LoYLPO AVTITOAO TTOL LITOSELKVVEL GTOV YNPOoPOPo TNV
ETLAOYT] TOV 1} TOV TTPOGOHOLOVEL 1} TOV avarykdlel va amooyel. O avtimorog
avtdg propei va Ppioketon ‘Simha’ 6tov Ymeoedpo kabadg o tedevtaiog Ymei-
CeL 1) va ailel To poAo ToL éxovtag LIToKAEPeL Ta emtionpa dtamiotevthpla. Ot
d00 TopaTtdve OLOTNTEG LKOVOTTOLOVVTOL SLOLGONTIKA e TNV TAPAKAT® TTPO-
o€yylon: o avtimalog dev €xel £xeL KiviTpo Vo Tpaypatomotoel TNy enibeot)
ToUL av dev propei va eivan oiyovpog otL O emitdyel. Etol o Ymeogdpog o-
ok Td drpopa péca otn dudbect) Tov OGTE va PITOPEL va TOL dNULOLPYHCEL

apgpLBoAia.

~ aévan 1ietikotnTa (everlasting privacy) [MNO6]: mpooTateel amévavtt oe é-
VOV DTTOAOYLOTIKA LoYUPO AVTITOAO 0 0TT01l0g avTLTpocwIeLeL enlbécelg Tov
AapPavouv yopo 0Tav oL Stpopeg LITOAOYLOTIKEG LTTOBEGELG TTOL TPOSTATED-

ovv Ta dLapopa KpLITooLGTHHATH Oev Bat Loybovv TAEOV.

ATo TNV Tapamdve TEPLYpoPn) TPOKUTTEL OTL OL OepeAiddelg 1OLOTNTEG AT PaAeLog
TOV EKAOYOV elvar ev YéVeL avTikpovopeves. H emaAnBevoipotnro xwpig puotiko-
rta eivan e0KOAN ka1 Tavapyowa péBodog g Yngogopiag St avatdoewg Xelpog
v vAomotel. H puotcotnta xwpig emainBevopotnto dev éxel vonpa yroti ot Y-
QoPOpoL dev £XOLV KIVITPO VA EKYPAGOULV T1 YVOUN TOUG oV EEpouv OTL dev Do kaTor-
petpnOei oiyovpa. H pn amodel&ipotnta Yyrgouv kot n avtictocT otov eEavaykaopo
epyovton oe avtifeon pe Tnv emoAnBevopotnTa. Xta SLAPopa GLGTHHATE TTOL EXOLV
npotadei, 6w to Helios [Adi08], mpotipdron 1 toxvpt] emaAnOevoipdtnto mapd 1
Wwwotikotnta. Katd ocvvéneia amaiteitor epmiotoodv) otig apyxég 0tL O epappo-
GOLV TO TPWTOKOAAO GTNV HUGTIKOTNTA. ATOoTeAEL OPWG AVOLKTO EPOTNHX OV KATL

TETOLO €lvall TOOEKTO ATTO TOLG YNPOPOPOULC.

ANEG LOLOTNTEG TTOV TPETTEL VAL LKOLVOTTOLODV Tat SLAPOPO GLOTHHATA EKAOYDV glvat
n dwkaroovvn (fairness), n avBektikotnTa (resiliency), n arodotikotnta (efficiency)

Ko 1 evBappuvon (enfranchisement).



Kpuntoypoagikd oxnpota yio ekAoyég H Paoikrn évvola mov épyetal vo ovTi-
HETWTTLGEL T TTPOPATHALTA TTOV ELGAYEL 1) TEXVOAOYLA OTLG NAEKTPOVIKES YN PoPopieg
etvau 1 aveEaptnoio amd o Aoyiopkd (software independence) [Riv08], 1) ortoia o-
pileL OTL omoladrmote un aviyveboiun cdloyn 1 Adbog 6to cboTnua ekAoywv dev
odnyel oe pn aviyvedoyrn adlayn 1 Adbog oto amotéAeopa TV ekhoy®v. Evag
TpOTTOG emitevEng tng WLoTNTOGg TG avefaptnolag amd AOYIoHIKO eivar 1) DrtopEn

eAEYEWV OTOLYELWV 0 KATTOLO PUGLKO HEGO OTTWG XOPTL.

H Satpifr) avt acyoleital pe TNV KPLTTOYPAPLKT] TPOGEYYLOT GTNV JLCPAAL-
on g Wotntag g avefoptnoiag oamd to AoYLopHIKO KOOGS Kol TV LITOAOLTWY
ot TOV divovtag WLaitepn EHEACT) GTNV TPOCTAGLX ATO TOV eEXVAYKAUGHO Kol
NV aévar) WLWTIKOTNTA. EdLKOTEPA 1] KPUTTTOYPAPLKT) TTPOCEYYLOT) PTLAYVEL TUTTLKA
HOVTEAOL XCPAAELNG VIO TLG LOLOTNTEG TV EKAOYLKOV CUGTNUATOV. XTNV GUVEXEL
TPOTELVEL TTPWTOKOAAQ KOIL TEXVIKES TTOV LAOTTOLOVV TETOLX GUGTHHATO KO OTTOOEL-
KVUEL e ALGTNPO TPOTO TIG LOLOTNTES ACPAAELAG TTOV LoXLpileTal. ATdTEPOS OTO-
X0G TNG KPUTITOYPOPLKNG TTPOGEYYLONG elvor vor petwBel 1) var e€ahelpBel evteAwg n
ELITLOTOG VT TTOL TIPETEL Va evamoTifetal o eEwTeplég apxEg yia tn dte€xywyn Twv
EKAOYOV KATL IOV elva adOvarto oTa tapadociakd cuothpata Yngogopiag. Tavto-
XPOVO OHWG 1) povTeAomoinon cLpPaAAel 6TV KAADTEPT) KATAVONOT] TV SLOPOPWV
LOLOTATWOV AoPUAELOG Kol TOKOADTTTEL TTOAAEG POPEG ATTPOCHEVES GXETELS PeTAED

TOULG.

>t dwtpLPn PacllOpaoTE GTA TOUPAKAT® KPLTLTOYPAPLKA CYTHOTH KO TTPWOTOKOA-

Ao

— Opopop@ikd kpuvrtocvotripata dnpociov kAedov: Emitpémovv tnv mpoota-
ol TNG HLOTIKOTNTAG TNG YHPOL KPLITOYPAPOVTAG TNV YHPOo pe TO dNPOcLo
KkAedl Tng ekAoykng apyne. EmmAéov emtpémovv tnv dievépyela mpaEewv
HETAED KPUTTTOKELUEVOV OL OTTOLEG HETAUPEPOVTAL GTA OPYLKA HNVOHAT. 2TLG
EKAOYEG PN OLHLOTOLOVVTOL KPUTTTOCVGTHHATO TO OTole TOAAATAAGLALOVTOG
dvo kpumrokeipeva abpoilovv ta meplexdpeva pnvopata. Etol pmopel va v-
TOAOYLOTEL TO ATOTENEGHA TV eKAOYOV. Eva TéTolo KpunmtocOoTnpa eivo to
exOetikd ElGamal [Gam83; CGS97].

— TuoeMéc vmoypagég (blind signatures) [Cha83]: Eivow yngiakég voypagéc, 6-
7TOV 1) OVTOTNTA TTOL LTTOYPAPeL dev €xeL TPOGPACT) GTO PVLpK KoL dev pTopet
VO GUGYETIOEL PNVOHATA Kol GLVOO0VG LITOYPUPNG HE TLG TEALKEG VITOYPOLPES.
Y€ 0,TL POPA TN U1 TAACTOYPAPNCT], TO HOVTELO acPaleiag Tovg opilel OTL O-
7010G OeV €L TO LOLWTLKO KAELDL Oev PITopel va Tapdyel pia emLITAEOV LITOY PPN
amd 66eg éxer Ol 0 xprotne (pia emmAéov mAaotoyphgnon) [PSOM]. Stice-
KAOYEG 0 LTTOYPAP®V elvau 1) EKAOYLKT] aLpXT) EVED O XPTOTNG ELval 0 Yn@opopog.
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Xpnopomototvtot ot TNV eKAOYLKT ap) OOTE VO EMLTPEYOLY TOV EAEYYO TOVL

SIKAUOPATOG YPOL TOL YNPoPopov, XwPIg TNV aTTOKAALYY TNG TPOTIHNONG
tov. 2t dwxtpifry xpnoomolovpe Wiaitepa TG TVPAES vIToypapég Okamoto

— Schnorr [Oka9Z].

- Amodeifeic pndevikrc yvoong (zero knowledge proofs) [GMR85]: Emitpémouvy
v aodel€n yvoong evog ‘paptopa’, SAadt g g mov kével pio oxéon
Vo LoYVEL, XWPLG TNV toKGALYM Kopiog Tepaltépw TANPoPopiag yU avThv.
2y ditpiPn) A& Ko 0T TEPLEGOTEPA TTPWTOKOAAX NAEKTPOVIKDV Yn@o-
(POPLOV YPTNCLHOTOLELTOL LA TAPAAAXYT) TOVG: T Z-TTPOTOKOAAX - GUGTHHOTOL
amodeifewv 3-yOpwv pe tipo emainBevth, Ta omoio prtopovv va yivouv pn dia-
Spactik& xpnopomoldvtag tnv teyviky Fiat — Shamir [FS86]. XTig exloyég
XPNOLHomolovvToL wote vo aodetyBel 1 opOotnTa g Ynpov xwpig va Buoro-
otel n puoTkOTNTAH AN Ko Yo va arodety et 0 0pBOG vIToAoyLopOg ToL ato-

TeEMOPATOC. Baoi{opaote ekTeTapéva 0T TPOTOKOAA Twv Schnorr [Scholl]
kot Chaum — Pedersen [CP93].

- (Ioxvpéc) voypapég kabopiopévou emainbevtn ((strong) designated verifier
signatures) [JSI9q]: Ze avtéc ekTOC aTd TOV LITOYPAPWY, KAl 0 eaANBevTHG
draBéter éva Cebyog kAeWdiwv. Xtnv oA €xdoot] tovg, o emaAnBevtig xpn-
olpomotel To WOLWTIKO KAELdL TOL PHOVO YLOL VO TLG TTPOCOHOLOGEL. XTNV LOYXLPN
¢kdoom Toug, dev eivar dnpocia eTaAnOedoIES, OTWG Ol KAVOVIKEG PYNPLOKEG
VTTOYPOPEG AN O ETTAANDEVTNC TTPETEL VAL X PT|OLULOTTOLOEL VAL LOLWTLKO KAeLdL
eAéyEel. Zta SLAPOPA KPLTTTOYPAPLKA CUOTHAT EKAOYDV £€XOUV GTOXO KLPL-
WG va Topéyovy mpootacio amd eEavaykaopod. Ot kabopiopévol emaAnBevtég
elvar oL Yneopodpot. Ot dudpopeg apxég (KLpLwg eYYPAONG) TOPEXOLV Lo TE-
TOlO LTTOYPUPT WG ATTOdeLEn Yo Tr oWoTH dNpovpyla £vog dlatieTevTnplov.
Otav ) {ntrjoet o eEavaykaotng, TOTe 0 Yneopopog divel pioe Tpooopoinwot
NG 1ov dev popel va dixywplotel ard Tnv mpaypatikr. H dikr) poag mpoocéy-
ylon eivar 1 avtiotpoen: O mpokabopiopévog emadnBevtng eivor o Kotote-
pntng. O Yneopdpog dnpiovpyel pia Tétola vtoypogr), eykabiotovtog £ToL
EVOL LOLWTLKO KOVAAL YO VO HETOUPEPEL TNV TANPOPOPLx oV 1) YHPOG TPETTEL Vo
KotopeTpnOel 1 OxL, 1 Loodbvopo av amotedel Tpoidv ehevBepng emAoyng 1
eEavaykaopot. H Witk enadnBevon, éxel oG amoTéAeopa, LOVO O KOTOHE-
TPNTNG v yvopilel av n Yngog mpémel v kotopetpndel 1 oxt. T va eivon
aLTO TO Yeyovog kaboAikd emainBeboipo Opws, Tpémel o kKaBopLopPEVOg eTaAn-
Bevtnc va Topéxel otolyeio oe popyr aodeifewv Pndevikng yvoong T omola

B aodeticvoouy 6TL akoAovBnOnke To TPpwTOHKOALO.

— EAeyxog tooduvvapiiag pnvopdteov (Plaintext Equivalence Test) [JJo0; MPT20]:

Eva TpTOK0ANO TO 071010 EMLTPETEL GE £V GVUVOAO OVTOTHTWV VoL eAEYEOLY av
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dv0 kpumToKEipeva TTEPLEXOULV TO 1810 Prvupe. OL OVTOTNTES TUPADVOLV AP LKA
TO OHOHOPPLKO TTNALKO TWV KPUITTOKELHEVOV. XTI CUVEXELXL TO AITOKPLITTOYPAL-
POV HEPLKMOG Kot aLVOLALOLV TIG KPLTTOYPAPTIGELS TOVG. TéAog, eAéyyouv av
TO UTOTEAEG A Elval 1 TOL GNHALVEL OTL TAL KPUTTTOKELHEVX TTEPLEXOVV TO OO OXp-
XLKO UM VUHO. Xe SLa@OpPETLKT) TTEPITTWON TO amoTéhespa Ba eivon éva Tuyaio

otolyeio Tng opadag.

Stnv dwxtpifr}, TPOTEIVOULHE EVO KPLTTTOYPAPLKO EpYyaAeio TO omoio cLVSLALEL
Evory €AeYX0 LEOOLVOPLOG HNVUHATWOV e TUPAES LTTOYPAPES KatDopLopEVOU eTTO-

AnBevty.

Aixtoa pifng (mixnets) [Cha8d]: Emitpémouv tnv avwvuponoinen evog cuvolov
HNVOHATOV pe TpOTo emaAnBeboipo. Amotelovvtan atd éva cOvolo eEvumnpe-
TNTOV oL ortoiol aAA&Lovv T popen kot e@appolovy pia Tuyoia petdbeon otig
eLl60d0Vg TOLG, oL oLVIBWG elvor KpuTTOKEipEVX TTOL €YOUV TTarporyOel pe Eva
OHOROPYPLKO KpuTTocUoTNHE. [l va amopevyBel n) e€amdtnon k&Be eEvmnpetn-

NG mapéyel pior arddet€n undevikng yvoong 0Tt akolovBnce To TpwtoOKoA0.

Kpuntoypo@ikd tpmTtokolla Pn@o@opiog e Vo TPOTOKOAAO NAEKTPOVIKNG

YnNeoeopiog CUPHETEXOVLY OL TTOLPAKAT® OVTOTITEG:

¥neogpopot. ZuviBng xpnoLpomoloty edLkd AOYLOHLKO / DALKO Yl vor KoTodé-

GOULV TNV YNPOo TOUG.

Apxég eyypaong (registration authorities): Moipalovv anmAd 1) cOvOeta Srott-

OTELTHPLA GTOVG YNPOPOPOLGS KoL EAEYXOLV oV £XOUVV SIKAULWHX PYHPOv.

Apyég katopétpnong (tallying authorities): Katopetpotv tig Yngoug ko e€&-

YOUV TO TEALKO QTTOTEAECHA.

Amobetipro Yfipwv (bulletin board): Eva kav&AL eKTTOUTTAHG Pe PVHUT, TTOL A€L-
Tovpyel WG atoBeTrpLo YRewv.

H Baoiwkn cvvelspopa tng dratpPric, eivor éva mpwtdkoAro Yneopoplag mov ov-

TAel épmvevon amd dVo yvwotd oxfipata g PipAloypagpiag: To TPWTOKOANO TV
Fujioka, Okamoto kai Ohta (FOO) [FO092; Ohk+99] mov mpoc@épel 1o Lpég eYYULH-
GELC IBLOTIKOTNTAG KL TO oXApa Tev Juels, Catalano ko Jakobsson (JCJ) [JCJ05] mov

TPOGPEPEL AVTIOTACT] GTOV eEavarykaopo. ot KadDTepn KaTavonon Tng cLVELGPO-

pac pag o To TEPLYPAPYOULE TEPLANTITIKA GTT) GUVEXELA.

To oxfua FOO, xpnoitomolel TOPAEG LTOYPOAPES Yt Vo eYKpivel Tow YnQodéATia

KO TTAPEYEL TTPOOTAGIA TNG HUOTIKOTNTAG, XWPLG var elval avarykoda 1) eumiotoovvn
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oToug KatapeTpntég. EmmAéov otav n katdbeon Tov Yrnewv yivetal xprnoLlorotov-
TOG OLVOVUHO KOVAAL TapéyeL Kot aévar Ol TikOTtnTe. QoT060, EXEL TPOPANHX e £L-
caywyn Yedtikowv Ynenv kot dev mapéyel kabohikn etainbevopotnta. H por tov

TPWTOKOAAOV, OIS €XEL SLPOPPWOEL PHeTd aTd apkeTéC TapaAAayEg EXEL WG eENG:
— K&Be yneogdpog emdéyel tnv Yrjgo tov.

- Kpurtoypagel tnv Yreo xpnoyorotodvtag to dnpocto kAedi tng apxng koto-
pétpnone. Etol oxnpatiletar to Yngodédtio.

— To YnpodéAtio TVPAGOVETOL KL ATTOCTEAAETAL GTNV ApXT] EYYPOAPTC.

— Tivetan éleyyog av o Yn@opopog éxet dikalwpa Yneov 1 oxL. Xtnv Betikn me-
PITTWOT VITOYPAPETAL TO TUPAWHEVO YNPOSEATLO KOL ETLOTPEPEL GTOV YNPo-

@opo. H paon avtn Tov TpwtokdAAov ovopaletal e&ct e£ovolodoTnong.

— O Yneo@popog amoTuPA®VEL TNV LITOYPOYPT) ko £ToL dtobéTel TAEOV Eva Ymgo-

OEATLO KO LI LITOYPAPT]) G€ ALVTO, TNV OTTOLX KATAOETEL BTNV OPYT] KALTOPETPN)-
ong.
— Movo ot Yn@ot pe £yKupT) LITOYPOPT] KATOUHETPOVTOL GTO OTTOTENEGHAL.

310 oyxnua FOO, 1 xprion tov TVPAGV LTTOYPAPOV ToPEXEL TEAELA LUGTIKOTNTO MG
POG TNV apxn eyypopng. EmmAéov o cuvdvacpodg Tou pe v avdvupo KovaAL pto-
PEL VoL TTOLPEXEL HUGTLKOTNTA XWPLG VO LTTAPYEL AVAYKT) OL KATOHETPNTEG Var Oewpodv-
To EPTTLOTEG TPiTeG OVTOTNTEG. AlatsONTIKd LTO OPelAeTaL GTO OTL OL dLAPOpeg ap-
X€G OeV PITOPOVV VoL GLGYXETIOOLV YNPOULG G€ YNPoPOPOLG, OTOTE 1) ATOKPLITTOYPA-

PNOT YO TNV KATOHETPTOT) OEV TOUG TTAPEXEL KaLiot ETTLITAEOV TTANPOPOPLCL.

To oxfpa JCJ [JCJ05] mapéyel évav oplopd kot TPOTOLS TPOGTAGING Yior TIC ETTL-
Oéoelg eEavayKoopon. SUYKeKPLHEVA, 1) OVTIHETOTLOT TOU eE0VOlYKOGHOD TTepLAQ)L-
Bével mpooTacio EvavTl TNG TOANONG YOOV KoL AVTIHETPA EVOVTL TOV eMOEcEDV
TPOCOHOLWOTG, TUXXLOG YHPOL KL VALY KXGTLKAG ATTOXNG. 2G HEGO AVTILETOMLONG
XPNOLHOTOLOOVTOL TTOAAXITTAEG oVTL Yio HOVadLKT) PO ToL GLVOSEDOVTAL HE LVOVL-
po dromiotevtnpra. H faoikn déa tov oxnpatog JCJ eivar nn dnpiovpyic apgrtfoiidv
otov eEavaykaoth yla To av 1) entifeot) Tov méTuye pe oTOXO va Tov apoipedel o
KivnTpo yio tnv mpaypatonoinot tg. Kabe ymnpopopog éxel éva éykvpo damiotev-
TNpLo TO omolo SMpLovpYel o cuvepyaoio pe TNV apyxn eyypaens. Amoktd duva-
TOTNTA Vo dnpLovpyel véa StatioTevThpLa pe Xprion eLStkod LALKOD 1) AoYLopLKOD 1)
ko xwpic [UH12]. ‘Etot, 6tav Séyetou enifear, o Yngoedpog pmopei v akolovdr-
oeL TG 0dnyleg Tov eEAVAYKAOTI) XPTOLHOTOLOVTAS éva YeVTIKO SLATTLGTEVTHPLO, TO
onolo Opwg dev pmopel va droywplotel ad To mpaypotikd. darvopevikd, dniady,
vTtoKUTITEL 0TNV emifeon Tov e€avaykaoTh. Xe P wTIKY oTiyul OPWG, 1) ool &i-

vou atapaltnTn Tpovmobect yia TNy enitevEn g mTpooTaciag otd eEAVoYKaoHO,
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propet va emAé€el Tov vtoyn@lo mov mpaypatikd emtbupel ko va katabéoel v
Tpaypatikn Yrj@o pe to kavovik tng dtoutiotevtrpla. Tar YedTiko Kot To KvoviKe
dwmotevthpla eivo pn dwokpicipa. H povn dixgopd touvg eivar 0tL T TeAevtaio
éxouvv dNAwBel aTNV apyT EYYPAPNG, EVD TA TPOTH TUPAYOVTOL OTTO HLOL GUOKELT]
1ov Pépel kabe Yneopodpog. Katd cuvémela, o avtinarog dev eivan oe Béomn va Ee-
xwpioeL eqv 1 entibeot) Tov mETLYE KoL WG ek ToLTOL dev Ba €xel kavéva kiviTpo va
NV Tpoypotonotoel. AkOpa pe dedopéva OTL 0 Yngopopog dev Exel TPOTTO var Tel-
o€l edv ta dwoumiotevThpla eivo aAnOva, tote dev éxel aioe v TOLANGEL KoL TNV
yngo tov. Katd tnv katopétpnon n appodix apyr eAéyxel OAa Tor SLTLGTELTHPLOL
7OV GLVOSEVOLV TIG YNPOULG He TX aPXLKE INAWHEVA X PTCLLOTOLOVTOG TOV EAEYXO
woodvvapiag pnvopdtev (PET) ko katapetpd povo avtég 6Tig omoieg o éAeyxog ei-
vou emmitoxns. [ va mapéyel mpootacia amd tov eEavaykaopod to povrédo twv JCJ

vloBetel TIg TOpaAKAT® LITOBETELG:

- O ekavaykaotng dev mapakorovbel Tov Yneowopo oe OAN TN Srdpketo TnG dro-
dwcaciag. AnAadt) o Yn@o@opog EXeL Lo GTLYHT LOLWTIKOTNTAG, OTTOTE KL PITO-

pel va katabéceL TNV KovovikT] Tov Yreo.

- H eyypaypn twv yngopdpwv ctovg kataddyoug kat 1 dnptovpyia Tov diort-
OTELTNPLOV YiveToL PHEGA ATTO EVOL KOVAAL TO OTTOLO eV PITOPEL VAL TTXPAKOAOV-
Oei o avtimarog. Eva tétolo kavadL eivon pe guotkt] mapovoia. Av kot ovtd
paivetor acOpPPato pe TIg NAEKTPOVIKEG Yn@popopieg, dev amoTelel GNUAVTIKO
TPOPANpHa kKaB®OG pTopel vor yivel o gopd Kol T SLALTTLGTEVTH PLAL VAL X PT)OLHO-

monOolv oe TOAAEG exAOYEG.
- EmutAéov yix tnv apyr) eyypoagng toybouv ot e€ng eldikotepeg vobéoelg:

7 ’ J4 J4 ’ b
« To pnvopata Tov aVTAAAAGGOVTHL OO TO TPWTOKOALO dlaypapovTat e

oAokArfpov 1

+ H apxn eyypoong eivon épmiotn 1

x 0 Yn@oedpog yvwpllel oo péAN TNG aepx NG ouvepyalovTaL e TOV aVTima-
A0 KOt KOTG GUVETTELX PHITOPEL VAL X PT)OLLOTTOLOEL VO QIO TOL EVTIHAL (OO TE
vo prtopet va Eeyeddoel Tov avtimado pe ta dedopéva Tov AopPavel otd

auTOV.

- H xatdBeon tng Yrepov yivetar ammd éva avdVLpo KavdAt, 6To omolo dev gai-
VETOL 1] TALTOTNTA TOL YNPo@dpov. Avto eivar avaykoia cuvOnKn ylo ver orv-
TIETOTLOTEL 1) €iBe0T OTTOL 0 AVTITAAOG aVOYKALEL TOV YNPOPOPO VO OITEYEL

oo TIG EKAOYEG.
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— Hapyn xatopétpnong eivor katd thetoyneia évryrn. Onwg emonpaiveton 6o
[MPT20] avticTotyo amote éoporta propei var e€ay@ov akdpor ko av O Tt

HEAN TNG ApXNG KATAHETPNOTG Elvarl EAEYXOHEVO OTTO TOV ALVTITTALAO.

— O avtimorog €xet pa oaffefordtnta yio To TG 1) yiee to ey Oa Ynepicouvv ot Y-
@o@opol Tov cvvepyalovtal pall Tov. Ze diaopeTikn mepintwon Oa propovoe
vo paBe av éTuye 1) emifect] TOL APALPOVTAG TIG YVWOOTES GE AVTOV YPOLS O~

7O TO ATOTEAEGHA TOV EKAOYDV.

To kOpro mpoPfAnpa pe to oxnpe JCJ eivor 0TL KOBLOTA TNV KATOPETPNOT) HN) ATTO-
dotikn), kaBodG autatel TeTporywvikd TAN00g ocvykpicewv diamioTevTnpiny, doTe Vo
Eexwploel ta mpaypatikd and ta Yevtika. Avto kabiotd to JCJ epappocipo povo
o€ Yneogopiec Tov ocuppetéxovy Atyot Ymeoedpot. Exovv vdpEel oapketéc Tpoomti-
Beleg emitéryvvong Tov JCJ [Smi05; AFT07; |Ara+10; AT13; KHF11] xou 800 aEldoAoyeg
vAomooelg o sbotnpa CIVITAS [CCMO8] ko to ovotnpa Selections [UH12]. Ztnv

Televtaior paAoTa Sivetan Kot évag TOAD PLALKOG UNYOVIoHOG dnpovpyiog dtoutt-

otevTnplev, mov dev amontel amd Tov xpriotn vo dibétel AoyLopLKd TO oTolo ek Te-
Ael KPLTTTOYPAPLKEG AELTOVPYLEG YLOL VO TOX STIHLOVPYTICEL KoL VL TOL XeLpLoTel, aAAA
HTTOPEL VO AELTOVPYT|CEL XPNCLHOTOLOVTAG €V ELOIKO GUOTNHA GUVONHATIKGOV TO O-
7ol0 VO VTG TOLYL ETAL GE KPUTLTOYPAPLKX SLOUTLOTEVTHPLL. LUYKEKPLUEVX 1] ap)T]
eyypaeng dnAovel éva cbvoro artd mbava cuvOnpatiké (tx. 6Aot ot mbavol cuv-
Svacpiol 5 Aé€ewv amd éva AeEicd [ICHO8]). Kard tnv eyypagr o Ymeopdpog Snidvel
moto Ba eivor To éykvpo ocuvOnpartikd tov. OAa T vtdAowa, av xprotpomonfovy
LTTOONAVOLV OTL elvar LTTO ekPLAGHO KoL eV TPETEL Vo PETPTIOEL 1) YIPOG TTOL TAL G-
vodevel. H Semapr) ypriotn dev avtidpd Stapopetikd 6Tig S0 AVTEG TEPUTTAOTELS.
Av d00¢l k&L dAro, Bewpeiton 6TL To AdBog Tpoékve KaTA TNV TANKTPOAOYNOT) Ko

To ouvOnuatikd Eavalnreitoal.

CBS kot PACBS H «0pua 1déa mov avamtocoeton ot Statpilfr] tpoépyetot otd
NV TTapatrpnomn OtL edv 0 EAeyX0G YLt TOV TPOGSLOPLOHO TG eYKLPOTNTAS YHjPOoU
tov JCJ propoveoe va petakivnBel atn @don e£ovclodotnong, OIS AUt TOL EKTE-
Aeiton 6t0 TpwtokoAro FOO, tote B pmopodoayie var XpriGLLOTOL)COVHE TIG TTAT-
POPOPLEG TAVTOTNTAG TWV YNPOPOPWV YL VX OHAOOTOL)COVHE T JLATTLGTEVTH PLAL
OV TAVTOTNTA KOL VO HELWGOUVHE TOV TETPAYWOVLIKO oplOpd GLYKPLoEWV GE YPapLKO
[GPZ17]. Emopévac, 1 ekhoyik} apyt) eyypagnic Oa yvwpiler ek mpémet va petpnOei
Hioe Y1j@pog. AuTto To yeyovog Tpémel va kowvorotnOel otnv apyn KatapéTpnong xwpig
va To KotaAaPel o e€avaykaotic. EmumAéov, emedn) kopia apyn dev mpémel va eivor
EUITLOTN, QLTO TPETEL Vo YiveTou pe emaAnBedoipo tpomo. Me auth TNV apyLTEKTO-

VIKT) HTTOPOVHE EMUTAEOV VO EKHETAAAEVTOVHE TIG LOYVPEG EYYVTOELG LOLOTLKOTNTOG
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mov opéxel To FOO ko vor meTO)ovpe HUGTIKOTNTO XWPLG Vo X PpeLdleTaL var ePTTL-
OTELOPAOTE TIG OLAPOPES apXEG Yiow TNV ovykekpipévn wWiotnta. H mpodtaoh pog
etvou 1 petofifoacn tng TAnpogopiag yix to av Oa mpémel va petpndel n Yrgpog va
ylvel péc® TNG LITOYPAPTC TNG APXNS EYYPUPNG. AUTI 1) LTTOYPAPT) TPETEL VA elvort
LTTO oLVONKT WOTE va elvat EYKLPT oV Kol HOVO v €xeL XpnotpomnolnBel To cwotod
SLTLETELTNPLO KoL KT oLVETTELX POVO TOTE Vo petpnBetl. Emtiong mpémel va eiva (1-

oyvpn) voypoyt kaboplopévou etaAnBevTn, OOTE TO ATOTEAEGH VXL YiVEL YVOGTO
HOVO GTNV opXT) KOATOHETPNOTG.

Epoappolovpe avtr) Tnv 1déa, o€ pioe TpadTn amhomotnpévn poper, opilovrog tig Ymo-
YuvOrjkn TopAéc Yrmoypagéc (YTY) - Conditional Blind Signatures (CBS) [ZGP17]. Ze
QUTEG TIG LITOYPOPEG EKTOC OUTO TOV LITOYPAPOVTA GUHUETEXEL KoL £VOG TTpokaBopt-
opévog emainBevtric. Kabe évag drabétel éva tdrwtikd kAeldi xan éva dnpoocto kAeldi.
O vroypdywv éxet emurAéov pia WLtk eicodo b. Av b = 1 t61e 0 vTOoyphPwV TTO-
péxel éyxvpn vroypogr], eved av b = 0 o vtoypdpwv Topdyel o Akvpn LITOYPOPT -
1 loodbvapa oTnv mepintwon tng Yneogopiag av b = 1 npénel va petproet 1 Yeog

70V 6LVOdEVEL 1) LTTOYPYT], eVDd av b = 0 dev mpérmel va peTprioeL.

O CBS mpémel va tkarvomolov Tig e€1g TPeLS LOLOTNTEG, Y TIG 0Toieg opilovTatl o-
KPLPN HOVTEAQ AT PAAELNG HEG® KPULTTTOYPAPLKDOV TTOLY VIOV HETAED TOV CLGTIHATOG

C xou Tov avtitdiov A otn Sratpip:

- TopAotnta: O voypaYwv dev PTOPEL VoL GLOYETIGEL PN VOHATO HE VITOYPAPEG.
>to avtiotoyo maiyvio, o A mailel To poOAo TOL LITOYPAPOVT Ko ETTLAEYEL
OPYLKA TIG TTUPAHETPOLS TOL GLGTHRATOG cLaThpatog CBS kabmg kot dvo un-
vopata mgy, my. O C mailel To poAo Tov ypriotn kot Stahéyel éva Tuxaio bit b
TTOL LITOSNAMVEL TN GELPA LITOYPAPNG. APXLKA LITOYPAPETOLL TO M1, KOL HETA TO
mi_p. O avtimorog kepdilel edv pmopel vo HovTEPEL T GELPA VITOYPOPNG e

pn-opeAntéa mbovotnTa.

- Mn-mhaoctoypagpnoypdtnto: Omorog dev Stabétel To WuwTikd KAewdi vtoypa-
ONG dev propel vor SNULOVPYHOEL TTOUPATTAVE®D VITOYPOPES ATTO OCES ALTNOELS OE-
XTNKE. ZUYKEKPLHEVA, O AVTITTAAOC, TTOL €8 eival 0 TAXCTOYPAYOC, ekTeel
oLVOS0LG LTTOYPOPTIG HE TOV LITOYPAPOVTX (TO TOAD). ZTOXOG TOL ELVaIL VXX TTPO-
onafroel va dnpovpyrioet [ + 1 éykopeg voypagég éxovtag otn didbeot| tov
OAa aToLyeia oL TPOoEKLY Y ATTd TIG TOPATTAV® aAAnAemidpdoels. Av o A dev
propel vau viktoeL 0To mapadve aiyvio pe [ moAvAoyopOpikd wg mpog tnv
TOPAPETPO ACPAAELAG, TOTE TO GYTHA LIOYPOPDOV TOPEYEL TPOGTAC LA ATTO TNV

emifeom piag emumAéov mAaoToyphenonc (strong one more forgery) [PSO(].

- Yno-ouvOrkn etaAnBevopotnto: Omorog dev Sabétel o diwtikd kAedi ema-

AnBevong dev propel va SlamioToeL av 1) vioypagn eivat £ykvpn 1 oxt. [o
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TOV TUTTLKO OPLoPO TNG LOTN TG ALTHG 0pilovpe éva Talyvio ac@aAelag Tapo-
poto pe tnv Wiotnta acpareiong IND-CPA tov cvotnudtov kpurtoypogiog
dnpociov kAewdod. O avtimarog A éxel otn dudbect] Tov k&IToLEG LITOYPAPEG
TIG OTTOLEG X PTOLHOTOLEL YOt VO KPLVEL AV i LITOYPOPT] G& KATTOLO PIVUHA TNG
emAOYNG TOL eival €ykvpn. Av 0 avTimaAog 8ev KaTa@épel vor HaVTEYEL TNV

eykvpotnTa g vtoypaic (dnAadn to bit b) pe pn apeAntéo mbavoTNTAL.

31N ovvéyela Tpoteivoupe po kataokeun yia to CBS, 1 omola Paciletan oTig TUPAEG

vroypagéc Okamoto-Schnorr [Oka92]. H xataokevr Aapféver ydpa oe 5 paoelg

ko Aertovpyei oe pio opddo G tééng g, 6mov woyvet 1) vtobeon DDH pe yevvritopeg

91,82 ZUPHETEXOLV TPELG OVTOTNTEG:

O vrtoypaywv mov éxet ot didBeat] ToL TO pLGTLKO KAELWSL TOVL aroTeAeiTon ard

to (81,57) € Z% ko éva ot bit b. To Snpocto kAeidi eivon to v = g, 71,

O xpriotng éxel wg WOLwTIKT €i60d0 TO PVUpRK 11 TO omoio BéAeL var vToypaget,

XWPLg Opwg va o ‘del’ 0 vIToypaPwV.

O emaAnBevtrig mov dabétel To puoTIKO KAEWSL S KoL TO avTioTolyo dnpodclo

k=g

H Snpovpyia kou 1 emaAnBevon tng vmoypagng Aapfdvouy xopa g e€ng:

A¢opevon: O voyp&ewv emléyel 11,12 <$ Zg ko Ltodoyilel To X := g;lggz TO

071010 KOl TOGTEAAEL GTOV XPNOTH).

Tophwon: O xpriotng emAéyel uy, Uy, d «$ Z; kou viroAoyilel Ta
« X* = xg;tlg;tzvd
» e*:=H(m,x*)
x e:=e* —d 1o 0moio Ko AWTOCTEAAETOL GTOV LITOYPAPOVTAL.

Yroypagry: Yroloyilovton ot TipéG Y = 1 + €51, Yo := rp +esy. Avb =116Te dn-
povpyodvran ot Tég (B1, B2) = (k¥1,y2) adhdg emdéyovron (B, B2) <3G x
Z4. H topA1 vroypagn eivou B := (x, e, B1, B2).

Amotdprwon: O xpriotng voroyilel oy := By - k1,05 := By + up kou e€dyel TV

vroypogn 0 = (x*,e*,01,07)

Entalr0evon: EAéyyeton av woyveL n oxéon: x*° = oy - go72° e

Me Baon auth) TNV KATAGKELT] ATTOJELKVOOVHE TOL TTOPUKATO:

Ou CBS mapéxovv TéAela TUPAOTNTA. ZUYKEKPLHEVO ATTOSELKVVETL OTL KL YLOL

T1g 800 OYeLg ToL TPWTOKOAAOL TTOL propel va éxet o A popet va Ppet uq, up, d
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woTe vo prtopet va dpovpyrcel ootadnmote and TG dvo vroypapéc. Kata

ouvémelo Oev PITOpPEL va GLGYETIoEL LTTOYPOYPT] He GVVODO.

— Ou1 CBS mapéyovv mpootacio evavtia otnyv enifeon plag enutAéov TAAGTOYpa-
pnong pe dedopévo 6TL Loy vel 1 vtoBeon CDH. Zvuykekpipévo omodetikvOoupLe OTL
oV 0 AVTITAOG KaTapépeL va KepdLoeL TO Taly VIO P TAAGTOYPAPLOLHOTN TG,
toTe propel v vtohoyioel o g5 amd T g1, 82, k = g5 H amdderén pog Baoi-
Ceta otnv Texvikn enibeong pe emavaAnyn tov pavteiov (oracle replay attack)

twv [PS00].

— Ou CBS mapéxovv vrtd ouvOnkn emoaAnbevopotnto pe dedopévo OtL LoXveL 1)
vntoBeon DDH. Amodetkvioupe, OTL av 0 avTimalog popet va Stk pivel To ov
Hioe vIToYpaPn elval éykvpn 1) OxL, TOTE popel vor eAéyEel av oe pioe TAeLdda

9,8%, 8°,8° woxbeL av ¢ = as.

[Mop’ 6Aa vt oL vtoypaég CBS éxovv éva oA onpavtikd TpofAnpo: Emewdr) to
bit Tov eAéyyeL TNV eykLPOTNTA TNG LTOYPAPNG elvar WOLWTIKO input 6ToOV LITOYPA-
povta, propel kKGAAota v mopakop@Oel kot var doBel pio dicvpn vITOYpPOPT], EVED
oxvel b = 1, ) avtiotpoga va §obei o ykvpn vitoypoagr] eved woxvelt b = 0. Avri-
oTolyo kot 0 eaAn0evtng pmopel va ayvoroel Ty vroypagn kot va kpivel oavbai-
peTa TNV eykvpoTnTd TNG. o vor AvBel owtd mpémel v vtapEovv dVo aAlayég oTig
CBS: H tyr) tov b pémer va vitoloyileton otd e€wtepikd dedopéva ko ot dradika-

oleg voypagng kat etaAnBevong mpémel va eivor eAEYELES.

>t SratpPn emAvOLpE TX GLYKEKPLUEVA TTPOPANHAT ELGAYOVTG VAL VEO KPUTTTO-
ypopiko epyaleio, Tig Anpooia EAéyEpeg Yro-SovOrkn TueAég Yroypagpéc (AEYTY)
— Publicly Auditable Conditional Blind Signatures (PACBS) [Gro+18; Gro+20]. H ei-

caywyt twv PACBS, o0nwg ko twv CBS yivetou pe avtovopo tpodmo €161 woTE va

HItopolV va X pnotpoolnBotv Kot e AAAX TPWTOKOAAX EKTOG ATTO TIG NAEKTPOVLKEG
Yneogopieg.
Ou PACBS eiva Ynorocég vmoypagég pe To akOAovbor Yopok T pLoTikée:

— H vmoypagn eivon éykupn, eqv kat povo eqv éva Katnyopnpa oe dnpocto dia-
Oéopor A& kpumtToypognpéva dedopéva eivar ainbég. To katnyopnua av-
Tikabiotd o kpLEO bit b twv CBS. Xtnv mepintwon twv ekAOYdV, avtd To
dedopéva eivar to dramioTevtrplo ov £xel dnAwbel ad Tov Ynopodpo oty
QACT) EYYPOPNC KOL OLUTO TTOL TTPALYHATLKA XPTOLLOTTOLeiTOL KoTé T didepicetar
™™g Ynyogopiac. H drotnta mov mpémel va tkavormoinBel yior va etva €ykopn
1 LITOYPOYPT] elval OTL TPETEL VL KPLTTTOYPOPOLY TO 1810 privopa, dnAadr vo

aVTLeTOLYOUV GTO d10 SlamlaTevTpLo.
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— Humoypogn dev pmopet va emainBevtel dnpooia, 0Twg ovpPaivel pe Tig YnoLa-
KEG LTOYPOPES. ZTNV TEPITTWOT) TOV EKAOYDV, avTd Bt elye wg amotéAeopa o
eEavaykaotng va pabel eav ypnotpomomifnke to cwotd dwamiatevtnpro. Ot
PACBS eivou emaAnBedoipec povo amd évav mpokabopiopévo emainbevtn, o o-
molog oTnV TepinTon Yneopoplog eival 1 appodia apxn KatapéTpnong. Me
7o oA Aoy, ot PACBS evowpatdvouy 1 AettoupytkotnTa eAéyXou 1eodv-
vopiog pnvopatev PET tov Jakobsson kau Juels oe mepifadrov tpokaBopiopié-

vou emaAnBevty).

— T tpootacio and Sie@Bappéves apyég TOL ALYVOOUV TO KATNYOPTHO KOTA TH)
duapkela TNG vToypaPng kot tng emainBevong, ot PACBS mapdyovv ammodet-
KTLKQ oToLYela pe Tr Hop@1] UN-OadpaoTik®v artodeifewv Pndevikng yvaoong
TTOL TOLG AVYKALoLV vor akoAovBcovy 10 TPWTOKOAAO. AvTég oL atodeifelg

opéyovy duvatotnta kaboAikng emaAnbevopotTnTog.

— Téhog, ot PACBS emitpénouvv oto XproTn Vo TUPAMGEL TO PIVUHP, £TOL OOTE
0 LTTOYPAPWV VO PNV HITOPEL VO GUVOEGEL AUTHHATA VITOYPAPNG HE DITOYPAPEC.

AvTo emitpémel TANPOPOPLOOEWPNTIKT] LUCTIKOTNTA.

Ex@palovpe Tk quTEG TIG eMOVUNTEG LOLOTNTEG X PT)OLHOTOLOVTAG TIG EVVOLEG TNG
TUPAOTNTOG, TNG LTTO-cLVONKT) emaAnBevoIpOTNTOG KAt TNG SNHOCLAG EAEYELHOTNTOG
1oL opilovtal pe KpumToypaPlkd otyvia. Aedopévov 6tL or PACBS eivan Ynerokég
VITOYPAPEG, TIPETEL ETTLOTG VO LKAVOTIOLOUV TNV pN-TAacToypapnotpotnta. Ot kot-
vég 1010tnTeg pe Tig CBS opilovtan pe mopopoLo Tpomo, eved 1) dnpocto eAeyEpoTnTa
Baoileton oto mapakdte maiyvio: O avtinalog tpoomadel va dnpovpynoet pio v-
moypopr 1 omoia va ertodnBedeton 0pB& oA vo un céfeton To KATNYOPNHIA 1] pLo
voypaPn 1 ool To aToTéEAECH TNG eaAnBevong va eivor SlaepopeTikd ad To

Kot yopnpo to onoto eiye AngOel voYv kot Tn dnpovpyia Tne.

>1n SatpiLPr) mapéyovpe dvo kataokevég yix Tig PACBS, pe Baon tig CBS. Ztnv mpod-
1 LTTOYPAPWV Kal ETAANDELTHG XPNOLHOTOLOVV KOLVO LOLTLKO KAELSL etaxABevong
KoL vIToYPaPNG eved otn devtepn Sropopetikd. Kau ot dvo opilovtal oe pice opddo
G ta€ng ¢, omov woyvelL  voBeon DDH. YnoBétouv éva kpuntochotnpa dnpociov
kAewdov to omoio Srabétel tnv WdoTnTar IND-CPA Kou €xel xpnopomonOet yio
dnpovpyia twv kpumtokeévewv Cp, Cp. Emiong xpnoyomotodv dvo cuvapthoelg
covoyeig Hy : G*xG - G, Hy : mxG — Z.5 mov povtelomolovvTaL WG Tuaia
povteio. Katd v apyikomoinen tov cuotipatog enthéyovral g1, 2,0, hy <sG. Ta
WLoTikd KAedd vtoypa@ng Kat kpurtoypagnong opilovion wg s,z «$Z; Vo Ta
dnpdoia vroroyilovran wg k = g3, h == hi. O diadikacieg vtoypagrg ko emadn-

Bevong opilovtal Tapakdtw:
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- Togplwon (OSPACBS.Blind). O xpfotng vroloyilel o x := H1(Cq, Cp). 21

ovvéyelo Stadéyel Uy, up, d <s Z 4 xou vroloyilel Ta:
« x* = xg)1gy v
x e*:=Hy(m,x*)
x e:=e* —d, 10 omoio Ko ATooTEAAEL GTOV LITOYPAPOVTAL.
- Ynoypaery (OSPACBS.BlindSign). O vrtoypdaewv vroloyilet Tou:
« x:=Hi (G, C2)

ni=xg," ¢ pe Yo «s Zg

*

*

N := Ency(n;t) pe t < Z,

*

W= (C/C1)* - Ency(1,7) pe a, 7y € Z3

*

B:=(N-W)

*

KO TIG TTOPOKAT® amodel&elg Hndevikng yvaonG, Ol OTTOLEG aVaPEPOVTOL

GUVOAKE WG TTsign

my <« NIZK{(h,h,n,N),(t): N =Ency(n;t)}
my <« NIZK{(C1,Co, W), (a,7) : W = (C2/C1)* -Ency,(1;7)}
n3 < NIZK{(h,k,N,W,B),(s): B=(N-W)* AND k=gj}

» Telkk 1 TopAH vtoypagt) eivaw: B = (((n, N, W, B),v2), 71, 72, 713) 1

orolot Kot GTEAVETAL GTO XPNOTN.

- AnotopAwon (OSPACBS.Unblind). Apxika etaAnBedovton oL aodeitelg 711, 7, 713.
Y11 ovvéyewx vtoloyifovtan ta 07 := B - Ency(k*1) and 07 := v, + up. H tehikn

vroypat eivon 0 == (x*,e*,01,07).

- EnaliBevon (OSPACBS. Verify). Apxucd ehéyyetan av Hy(m, x*) # e* omodte

Ko 1) dradikacior TeppatiCel. Xe StopopeTik mepintwon voloyiletol T
« validity := x* - g,7 v
» M = Ency(validity; 1) pe 1 € Z,
* V = MS
R:= (%) z
= (E_l) HE ¥ <$ g

o result := Dec;(R)

*

*
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« Tlapayovtor ko oL Topokdte amodelfelc undevikng yvaong, oL oToleg a-

VOLPEPOVTAL GUVOMKE OG TTverify

711 < NIZK{(hy, h, M, validity), (r1) : M = Ency,(validity; r1) }
11, < NIZK{(V,M),(s) : V = M*}

i3 < NIZK{(V,71,R),(7) : R = (%)7}

Ty < NIZK{(hl,h, result, R), (z) : result = DecZ(R)}

Eniong opiloupe kat 8o Aertovpyieg tig AuditSign ko AuditVrfy yia tov éleyxo tng
Sadikasiog vroypagnig kou emadnfevong. H AuditSign edéyxeravn = Hi(Cy, C2)g£yzv“’
KoL TNV amddel€n Msign. H AuditVrfy edéyyer av Hp(m, x*) = e* ORvalidity # x* -

— 0‘2

82

V¢ Ko TNV oOSELEN TTverify-

AT08elKVOOLHE TNV ACPAAELA AVTOV TWV KATACKELOV PACLLOHEVOL O YVWOOTEG KPU-

TTOYpaLKéG LITOBETELS. SvyKeKpLHEVQL:

— H topAotnta ammodetcvietal ywplg vtobéoelg pe avtiotoryo tpomo, Owg éyve
otig CBS. AnAadn yia ke 2 0Yelg TpwTOKOAA®YV ; TOL 03N YOV Ge LITOYPAPEG
7j, propotv va Bpebodv povadikd uq, iz, d mov avtiototyifovv onolodrote

OYn oe 0moLAdNTOTE LITOYPAPT).

- H pn-mhactoypapnopdtnra amodetkvioetal pe tnv vmobeon OTL 1) KATACKELN
OSCBS eivot pn-tAacToypo@nGLn). ZUYKEKPLHEVA KATAOKEVALOVE pia ovar-
YOy oTnv omoix 0 avtimalog xpnotpomnolel pio mtAaotoypaenon OSPACBS
yla va katookevdoet pia thaoctoypagnorn OSCBS pe to 8o akpipog tAeové-
KTNpa. AuTO OHOG COHO®VA He TNV atodel€n TNG HN-TAACTOYPAPTCLHOTN TG

tov CBS dev eivar e@ikTo.

— H vmo ouvOnkn enaAnBevopotnta amodetkvoetal pe tnv vdbeon OTL TO Xp1)-

OLHOTTOLOVHEVO KpLTtTOocUaTNHa Stafétel Tnv dotntar IND-CPA.

— Honpoowx eAey€ipotnta amodetkvoeton pe Baon tnv opBoTnTa twv amodeiewv

UNOEVIKNG YVOOTC.

Yneogopiegpe PACBS H kOplax cuvelopopd tng epyosiog eival Evo TpoTOKoAAO
NAEKTPOVIKOV Yn@opopldv o ocvvdudlel Ta oxrpata FOO kot JCJ xpnoipomotmdv-
tag Tig PACBS. H yevikt] apxitekTovikT] Tov mpotokdAlov [GPZ17] éxer Toug eEric

O0TOYOVG:

— Noa pewwoel tnv molvmdokotnta Prnpdtwv tov JCJ, kablotovTag TNV YpoppLKn

oto A100g TV Yneopdpwv.
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— Noa mapéyel o LoyLpEG eYYUNOELG HUOTIKOTNTAS YNPOL XWPLg VA LITAPYEL -

VYK ELITLGTOOVOVNG OTOVG KATOHETPNTEG YLOL T GUYKEKPLHEVT LOLOTNTAL.
O mapamdive otdyol emTuyxdvovtal 0mwg mpoavagépape pe Tig PACBS oto mpw-

ToK0MNO Yn@ogopLiy VSpaces [Gro+18] mov amoteAeitan ard ta e€hc oTddia:

1. ApéoBANTn Eyypaen - Anpioupyia & AnAwaon lMpayuatikou Alachsumplou

2.Anpoacieuon KPUTITOYPa@oewYV OAwWY TwV dIATTICTEUTHPIWV

4 'EAeyx0g dIKaIWUATOG Wrigou
- dlatrioTwaon exBiaguou

(B, Tisign) = OS-PACBS-BlindSign(s, C1, Cs, €)
ID, e=0S-PACBS-Blind(Cy, Ca, v @

Eyypagn

v 3.E¢ouciédotnon yrigou
ciiiriiiiiiiiiiiiiirizooiioocos| 2. (ID,Cl)
) QAVWVUHO KAVEAI
Wnpopopog 3,4.(ID, e, B, Tsign)
Ariiiiririniiiiisiiiiiiinioiiiiise 5' (V’G) 6 E )\,9 .
i . . EmaAfBeuon utroypagwv Kai
5.KatdBeon Wheou 6. (R, Turfy) ATTOKPUTTTOVPAONON

v, 6=0S-PACBS-Unblind(B \r// (R, Tyy) = OS-PACBS-Vrfy(s, 2, V, 0)

7. EmaAn®eucn atmodeifewv
0S-PACBS-Audit-Sign(Ttsign)
OS-PACBS-Audit-Vrfy(Ttyfy)

Sxnuo 1: Zxnpo ymeogopiog pe PACBS atd tnv mAevpd evog Ymeopdpou

- Apyikoroinon mov vAomoteitan amd Tig Aettovpyieg VSpacgs-Setup ko

VSpacgs-SetupElection.

- Eyypagrn péow tg VSpacgrs-Register.

— Yneopopia mov ywpiletor 6TIG Pacels NG eEovoloddtnong kot katdbeong pé-
ow TV Aettovpytodv VSpacps.Vote, VSpacgs.Cast. Emiong xpnopomoteiton 1
VSpacgs-Valid 1 omoia atopakpiver Tavtdonpo Yneodédtior od arobetripro
opécwg peta tnv katdbeon. ESo xpnopomototpe kat tig fondntikég Aettovp-
yieg VSpacgs-fakekey, VSpacgs-chaffvote, VSpacgs.dupauth yio tnv Snpovpyia
Pe0TIKOL SLATLoTELTNPLOV, TNV ELCAYWYT AKLVPWV PPV kal To EekabapLopo

SmAOTLUITWV autroewV €£0V0108OTNONG AVTIGTOLYCL.
— Koaropérpnon, mov vhomoteital amd tnv Aettovpyia VSpacgs. Tally.
— EmaAnfevon mov amotedeitan amd tig VSpacps. VerifyBallot, VSpacps. Verify.

To mpwtdKoALO exTedeiton amd v apyn ekloydv EA 1 omoia Sraywpileton otig
apxeg eyypagng ko katopétpnong (avtictorya RA, TA). Me tn celpd Tovg aruTég
artoptilovTol ot TOAAG PEAT HE AVTLKPOVOHEVA CUHPEPOVTAL, OL 0TTOLES potpilovTal

KPUTLTOYPoPLKA KAELDLA.

Mo avaduTik& oL &celg TOL TPWTOKOAAOL ekTeEAODVTOL WG eENG:
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Apywomnoinon OuRA, TA extelodv v Aettovpyio VSpacps.Setup 1 omoio op&-
yeu Tig topopétpoug Tov PACBS, petakd twv omoiwv ta tdotikd kAetdid vtoypa@ng

S KOl KPLTTTOYPAPNONG Z TTOL HOLPALOVTaL GTO PEAT) TOVG.

Eyypaen HRA ko kéBe ymeopodpog V; extedovv tnv Aettovpyio VSpacps.Register
HEC® eVOG ampdoPANTOL KarvadloD (Y. pe puoikh tapovasia). Etot dnpiovpyodvron

Ta Tpaypatikd diamiotevtnpia. ITio cvykekppéva:

- O Yneopdpog V; eyypapeton 6Tig ekAoyEg kot Aapfivel To KpLTTOYPAPLKO Sto-
TG TELTHPLO oL B ToV avTITpocweveL. Yoo TN pileTal TOGO TO TPWTOKOAAO
pe ovvOnpatiké tov Selections [UH1Z] aAA& ko TO TPOTOKOANO e LITOYPA-
péc mpokaBopiopévov emainOevtr) Tov CIVITAS [CCMO§]. Ta Siamiotevtripia
LT pITopoLV va xpnoipomonfoiv ce moAAég exhoyéc. T tn @don tng ey-
Ypoeng Loybouv ot vtobécelg Tov JCJ. Oa mepLypdPovpe TNV QAGT) TNG EYYPOL-
ong mov Paciletal 6To TPpwTOKOAAO Selections kot xpnoponolel cvvlnuanikd

mavikov [CHOS):

« H apyxn eyypagng emhéyel éva kotvo cOvoro amtd Aé€eilg (Ae€iko).

+ Ta cuvOnpatikd B arotelovvTon artd Tov cvvdvacpod k Aé€ewv Tov AekL-

KOO.

« KaBe Yympopodpog emidéyel évav ouvSLAGHO Yo TO Tpaypatikd cuvOnpa-

TIKO.

» To ouvOnpatikd avTd avticToLileTon o8 SamisTevThplo 0; € Zg Xproipo-
molOvTag i cuvéptnon ¢ : {0,1}* — Z,.

» H apyn kpuntoypagei to g% kou mapéyet pio arddetén opOrig kpumtoypd-
pnong.

*

H dwadikacio emavalapfavetor a @opég yia emainfevon tng opbotntag.

— Metd v 0AOKANPWOT) TNG PACTG TNG EYYPUPNG 1) APXT] ETAVAKPUITTOYPOPEL
OAO Tl SLOTTLOTEVTIPLX KOUL TO EKYXWPEL GTO KEVTPLKO otoBeTrpLo Twv eKAOY®V

70 omntoio mAéov eivon évae sovoro {(i, Cip)}-

MoAig ohokAnpwBel 1 mepiodog eyypagrig 1 EA extedel v VSpaces.SetupElection
omov dnpootebovtal Ta dNUOCLA KAEWLX TV ApX®OV EYYPOPNG KAl KATAPETPNIONG

KOG koL 1 Alota TV vITOYNELWVY pe TNV KATAAANAN Kodikomoinon.

Yneogopia

- H dwdwaocio Yneopopiag Eekva pe tnv aitnon efovotodotnong péow g
VSpacgs.-Vote.
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+ O Yneopopog V; elodyel 1o cLVONUATIKO. AV KATOXWPTGEL TOV GUVOLACHO
7oL SNAWCE KATR TNV eYYPOQT TOV, TOTE PECW TNG P TapdyeTal TO idLo

Swamotevtnpro 0.

+ Omoloodnmote GAAog cuvdvaopog Bewpeiton cLVONpHATLKO TTaVIKOD KoL dn-
A@veL 0TL 0 YNpopopog tapakolovBeiton amtd Tov e€avaykaoth. Avtd on-
paivel 0Tl Sev amoppinteton omd to cvoTnpa. Exteleiton pia mapopola
dwaxdikacio pe avth Tov akoAovdnOnke KATd TNV EYYpO@T) KoL 1) ooia o-

’ ’ ’ ! ’ ’
dnyet oe dagpopetikd dmotevtipio O € Z;. H dwadikacio avth vio-

moteitan péow g VSpacrs-fakekey.

+ Av d00el cuvdvaopog Aé€ewv mov dev avrkel ato Ae€lkd, TOTe Bewpeiton

Ot €xeL yivel A&dBog mAnktpoAoynomn ko {nteiton emovaelcaywym.

Amo v Sadkaciar LT TOPAYETAL VL KPUTITOYPOPLKO SLOITLOTEVTHPLO TO
omolo kot kpumroypageitor wg Cip. Ot Ynepopopot agot emtAéEovv v mpoTi-
HNoT) TOUG Vt;, TNV KPLTTOYPAPODLV STHLOVPYDOVTAG £TGL TO KPULITTOKEIHEVO ;.
To YngpodéAtio b; mepiéxet emumAéov pior amodet&n pndeviknig yvaong 7y, 0TL
vt; elvou éykupn kal yvootr). 2tr ovvéyela Snpiovpyovv tnv aitnor e£ovelodo-
™mong, péow tov tpwtokdArov OSPACBS.Sign o¢ cuvepyasio pe tnv RA. Kat’
apxnv TvpAovouy To Yneodédtio toug, pe tov arlyopidpo OSPACBS.Blind ma-
payovtag TNV TN €;. Madll pe auth eTLOVVATTOLY GTNV ALTNOT) TOVG TNV TAL-

TotNT& TOV 1, T0 Cjp. To Cj1 pmopel var avarktnOel ad to kevrpuicd aobetrpuo.

T va pnv eivon duvartn 1 entibeon eEavaykaopévng amoyng vobétovpe OtTL
0TO TPWTOKOANO GUHUETEXOLV KO eEWTEPLKEG OVTOTNTES (TL.)Y. [ KUPEPVNTIKEG
OPYOVOGELS). AVLTEC, AN Ko evdiapepopevol Ymgpopdpot, katabétouv Yngo-
déATI pe TuY A SLATTLGTELT PLAL YL OAOVG TOVG YNPOPOPOVG, EKTEADVTOG TNV
Aertovpykotnta VSpacgs.chaffvote. Avtol ot Yrgpor puoika de Ba petpricovv

KaBwg 1 mbavotnTa va eiva £ykupo To Yn@odéATio eivor opeAntéct.

H apxn eyypogng, eAéyxel yio SUTAdTUTEG QLT OELS TTOL TTEPLEXOLVY TO {810 dax-
TLOTEVTHPLO XPNOLHOTOLOVTOG TH Agttovpyia VSpacgs.dupauth, av o Yneo-
POPOG €L LKOLOMPX YNPOL KL LTTOYPAPEL TNV AULTNCT X PCLLOTOLOVTAS TOV
alyopBpo OSPACBS.BlindSign. IMapdyetor n voypogr) Bi 1 omoiot GOPP-
va pe to PACBS eivon éyxvpn av ko povo pred(Cip, Cip) = 1 1) woodbvapo
Dec(Cj1) = Dec(Cjp). Tavtdoxpova mapdyeton ko 1 oddelén éykopng vio-
YPAPNG 7T; Sign-

O yn@ogpopog emadnBedel TNV amdSeLEN 7T; gign. LTH CLVEXELX ATTOTUPADVEL TNV
vroypogr] pe tov adyopbpo OSPACBS.Unblind kot katabétel To Ymepodédtio
tov. Ed® L mtpémel va ypnopomonOei éva avddvupo kavéil. AAAwoTe oOp-

pwva pe o JCJ 10 avevupo kavaAl eivon avaykaio cuvOnkn yiox avtictoon
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otov eEavaykaopo oto miaiclo JCJ. Katd ovvémeia, to YneodéAtio mepiéyel
Hlo vTTOYpOPT) T TTOL 0pilel eav 1) Yrpog mpémer v petpnBet 1 Oxt. TeAkd
67]7\0(6]‘] bz' = (7)1', ﬂvi,ﬁl’).

— Mo katatebel ) Yneog, BB edéyyel 0TL dev vimdpyet apLPég avtiypapd tng
Non katatedeyévo xpnoomotwvtag tn Aettovpyia VSpacgs.Valid.

Katapétpnon Exteleiton pe tov alyopiBpo VSpacgs. Tally o omoiog extedeitan -
76 v TA. Etd)0G eivar va emaAnBevBolv oL LTOYPAPEG DO TE VOL ATTOPACLOTEL TTOLEG
yneovg Ba petpnBoiv. Ecwtepikd n VSpacps. Tally extedel tqyv OSPACBS. Verify
woTe vo KotopeTpnBovv povo ekeiveg ol Yripol mov cuvodebovTal amd £YKLPES L-
moypo@és. T voo pnv yivel avtd avTANTTod amtd Tov e€avaykaoTh 1) GUYKEKPLLE-
vn Aettovpyio exteleiton oe 00 QACELG: XTNV TPOTY), TOUPAYETAL TO OTTOTEAEGHL
g enaAfBevong kpuntoypagnuévo SnAady 1 Tiun R; ko ot awodei€elg 7T; verify =
(7111, TTin, TTi3). 1N ovvéxela pecohafei éva diktvo piEng pe otdX0 Vo pnv prtopet va
OUGXETLOTEL TO ATTOTEAEGHX TG LITOYPAPNG HE TOV YNPopdpo ov tnv katébeoe. Me-
T& ord owtd ektedeitan 1 Aertovpytkdtnta astokpuntoypdgnong Dec(R;) n omoia
emumAéov mapdayel tnv amodelln iy H avtictowyn Yneog Oa xatopetpnOet povo av
TO QITOTEAECHO TNG ATtOKpLTTTOYPaPnong eivarl 1. H 18idtnta tng vmd dpouvg emaiy-
Bevong twv PACBS, adAd kot toe UTTOAOLTAL GUGTATIKA TOL TPWTOKOAAOV, KOOI TOVVY

TIG TTEPLITTOCELG EYKUPWOV KXL AKLP®V VITOYPAPDOV AOLAKPLTEG YLA TOV eEQVAYKATTH.

EraAnOcvon Kda&be Ynpopopog propei va emainbevoel tnv Yrigo tov xpnoipo-
oLOVTOG ToV ahyoplOpo VSpacps. VerifyBallot (atopikn etainBevopotnta). I'a tov
OKOTO QLTO XPTCLHOTTOLELTAL 1) TUXOLOTNTA TNG KPLITTOYPAPNONG TOL v; kat Tov Cjp
wote v SromoTwlel v To Yn@odEATIO Ko TO SLITLGTELTHPLO KPLITTOYPaprOnKoy
cwotd. Xpnoomoteital erriong o alyopiBpog AuditSign yio va etadnBevtei n da-
dikaoia Tng voypaenc. Omoloodnmote evilapepoOpevog Popel v ekTeAéceL TOV
alyopBpo VSpacgs.Verify yio va ehéyEet tn Aettovpyia Tov TpwtokOAAOL (KatboAL-
k1) emoAnBevopotnta). O cvykekpipévog alyoplbpog eAéyyel OAeg TIC oodeielg
OV TTAPAYOVTOL KXTA TO TPwTOKoALO. Tlepthapfdvel emtiong kot Tnv AeltovpyLko-
ta Tov AuditVrfy tpomomownpévn BéPora dote va AapPavel voyw tn dikomaon
TWV AELTOVPYLOV TOL AOY® TOL JLKTVOL HIENG. AV OL TAPATAV® EAeYXOL EKTEAEGTOVV
e emiTuyla, TOTE OAOL HTTOPOLV var elval olyovpol OTL TO TPWTOKOAANO EKTEAECTNKE
cwotd. O Yneopodpog Opwg o omolog yvwpilet pe Pdon to cuvOnpatikd mov £dw-
o€ oV €XEL EYKLPO SLATTLGTELTHPLO 1] OXL, 0ONYELTAL EMUTAEOV GTO GUUTTEPACHX OTL T

Yneog Tov petprOnke, xwpig KATL TETOLO VO UTOKAADTTETAL OTOV EEAVAYKAOTT).

Avdhvon ac@dAerag TNa vo omodei€ovpe TNV AoOHAELX TOV CLGTHHATOS HOG, €-

EeTalovpe S1&PopoLg TLTLKOVG 0PIGHONE Yl TNV emaAnOevoipdtnta [Cor+16; KZZ15a;
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SFC15], T pootikodtnra [Ber+15] ko tnv avtictasn otov efavaykaoud [JCJ05; Alw+15;
FOS19]. IIpooappodlovpe avtovg TOUG OPLEHOVG OTO TPWTOKOAAD HOG, SLALTNPOVTOG
OHWG TIG KOUPLeG 18€eG TOVG. Me TNV gukapior SlepeLVODVE EMIONG TIG OXECELG HETAED

TV WOLOTATOV AoPAAELNG XVTOV.

Tot amoTEAECPATA PAG TXETLKA HE TNV XCPAAELX TOV TPWTOKOAAOVL HOG TTEPLYPAPOV-

TOIL TTOPOKATE:

EnaAnOsvowpotnta Ilopéyeton atopikn kot koBoAikr) emaAnBevopotnto.

H atopikt] emaAnBevoipdtnTa tapéyetar oo povrédo tov [SFC15]. O avtimatog
npoonofel va emitdyel oTig dvo mapakdtw embécels: Ipwtov, mpoomadel va dn-
povpynoel pia ovykpovon (clash), 6ov o dvo 1} TeprocdTEPOLG StapopeTikos Y-
Qopopovg avatifetal To 1810 YnPodéAtio, He ATOTEAECHX O AVTITTAAOG VO €XEL OTT
duxBeon) Tov évar TOLAGXLGTOV YNPOSEATLO TO OTTOLO HITOPEL VO XPT|CLHLOTTOLCEL YLol
vo katabéoel tnv Yreo tng mpotipnong tov. H eniBeon avtn dev propel va emitdyet
0TO OVOTNIA oG YTl LITOBETOVpE OTL O 1) PAOT) eYYpaPNG €xeL apeAnTéo A&Bog op-
Botntog (apot emavalapPfaveton & opég) Ko OTL 0 YNPoPoOPog ELGAYEL TUXOLOTN T
Kot TNV Aot g dnpovpyiag tov YneodeAtiov. Me avtdv Tov Tpomo 1 mbovortn-
O VoL TRVTLETOUV 800 Yn@odéATia elvar apeAntéa. Xe éva cvvnOiopévo cvoTNHA, 1
npoctacia amd autr TV enifeon Ba apkovoe, kabwg OAeg oL Yrgot ov fpickovron
oto BB kot éxovv éykvpeg amodeielg Oa katapetpnBovv. Xto cvotnpa VS.PACBS
OHWG aLTO deV Lo VEL - AAAWGCTE Yot TOV AOYO otUTO OL atodelEeLg KPLTTTOYPAPNONG
Ynpov kat StamieTevtpLlov dev propovv va xpnoipomotnfodv wg amddelEn yia mo-
Anon yneo 1 e€avaykaopo. O avtimarlog Aowdv Ba propovoe va tpoomadioel vo
aproel éva YneodéAtio oto BB adAé e téTolov TpoTo wote va eiva dkvpo, entnpe-
alovtag AL To amotédecpa. Avtd Ba propoloe va yivel av 0 avtimalog propovoe
VO OVOKTHOEL TO QLTTLGTEVTHPLO ATTO TNV KPUILTOYPAPTHEVT) TOL popyt) ato BB. Av
Kol oG kokOPovAn RA Srabétel Tar kAeLOLA oUTOKPULTTTOYPAPNOTG, YL VAL TO LTTOAO-
yioel Oo pémet va emdboel éva duokpltd AoyapiBpo. Evaddaktikd Ba propotdoe va
xopoxtnpicel v Yneo wg Surhotunn. Av vobécovpe Opwg 6tL To BB datnpet
oelpd katdbeong towv Ynewv, tote avtn 1 enibecr epmodileton omd v opboTnta
TV otodei&ewv PNdeVIKAG YVOOTS TOL THPEXOVTAL KATX T OLAdLKOG L EVTOTLOHOD
TV SImAoTUTOVY YnNewv. Télog, wg diepbappévn apyn Oa propovoe va ddoet pio
AKLPT LTOYPOYPT] G HLa EYKLPT PYNPo, KATL TTOL epmodileTon OPWG amd T dNpocLo

eoAnOevopotnta twv PACBS.

Sxetikd pe v koBoAikr) emainBevoypdtnta Pacllopacte 6Tny €vvolx TNG LoXVPNG
eoAnOevopotnTag tov [Cor+14]. Onwg mpoavagépaye, 1 kabohikt erahndevoi-
HOTN T ETLTPETEL GTOVG YNPOPOPOULG va eTaAnBedGOLY TH PAGT) TNG KATAUETPNOTG.

OL meplocdTEPOL OPLOHOL OPWOG APOPODV CUOTNHATH GTA OOl OV LTTAPYEL APYT
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eyypoong. H tedevtaia, av vpiototol, PTopel v exnpedcel TNV GAGCT) TNG KOUTOE-
TPNONG av Kot O CLUPpETEXEL EvEPYQ o avThV, TTY. divovtag To 8o StamieTevtrplo
oe TOAAOVG YNPopopoug 1) SNHLOVPYOVTAS PeOTIKK SLATTLGTEVTHPL YL VO ELGAYEL
Yneouvg Tov dev avTLoTOLYOUV € TTPAYHATIKOVG Ynpopopoug. To povtédo tng toyv-
pNg emaAnBevolpotnTag propel vo epoppoctel oe TETolx TPOTOKOAAA. [ vor auto-
det€ovpe 0TL TO0 cVOTNUA pag StabéTel LT TNV WOLOTNTA, TO TPOTOTOLOVHE OOTE TX
JLOUTLE TELTNPLAL VO PNV TTOLPAYOVTOL HOVO QO TNV OPYT) EYYPOPTG, OAAX GE GuVeEp-
yooio pe kaBe Yneopodpo. H facikn vmodbeon acpdreiag eivat 0TL 1) apyn eYYPOYNG
Kot o dev elvan tavtdypova StepBappévec. Lnv mepintwot pog vtobétovpe OtTL 0
QVTITOAOG EAEYYEL TNV OPYT) KATOHETPNONG XAAR KO £YYPaPnG, aAAd OxL To BB, to
07t0L0 ATOTIHA CWOTA TIG TOdeLEELG HNOEVIKTIG YVAOOTG KL TOV EAeYXO0 SLITAOTOTTWV.
Emntiong vroBétovpe 611 o BB, dev eiohyel véeg Yngpouvg aAld o onpoavtikd do-
TNPEL TN GELPA ELCAYWOYNG TOV VITAPYOVTWV. XTOX0G TOV, AVILITAAOV, OGS KAL GTO
[Cor+14], eivai v KATAOKEVAGEL £VaL ATTOTENEGHX TO OTTOLO VO TTEPVAEL ETLTUYAOC TNV
emaAnBevom, aAAX va TTepLEXEL ELTE TTEPLOGOTEPEGS, EITE AANAYHEVEG ELTE DLEYPAPPEVEG

ynpovg. Katt tétolo Sev eivar duvatov, Opwg yla Toug TopakaTew AdYoug:

— Tt voo adhoyOet To meplexopevo pag Yneov, mpénel va mapaPioactel n opHo-

TNTA NG AOdELENG TTo.

— O povog tpodmog va drypopet pia Yneog, pe dedopévo ot to BB, eivon évripo
elvor vor akvpwBei. Avto dev pmopel va cupPel ovte otn don tng eEovolodo-
TNonG, olTe GTN PAGCT) TNG KATOUETPNONG, Xwplg va TapoPiaotel n dnpocia
enoAnBevopotnta twv vroypapwv PACBS. Eniong dev propei va xapaktnpt-
otel SumAoTuTn, Ywplc va mapaPlactel 1 opBoTnTA TV arodei&ewv TG apxNg

EYYPOPTG.

— TéMlog, dev pmopovv va TpocteBovVv emuTAéov YreoL Ywplg var elval YVwoTd To
avtiotolya Samiotevtrpla kKabog K&TL TéTolo TpovITobétel TNV emilvot evog

npoPArpatog Stakpitod Aoyapibpov.

EmumAéov, yia v pnv eivor Suvatég tétoleg emBEGELS OTNV KATOHETPTOT) TTPETTEL KOLL

T0 diKTLO PIENG TTOL XproLoTOoLelTaL ekel Vo elvat eTaAnBebopo.

Téhog, To oboTnud pog dev mapéyel Snpocia emaAnBevopdTNTA KATAAANAOTNTOG
av propovoe va eEakplPwbel dnpocia av pic ovykekpyiévy Yripog Ba kotopetpnOet,
omotoodnmote O prropovoe va SLaLeTAOGEL o €xeL XpnotpomnolnBel To cwoTod Siatt-
otevtrplo. Katd cvvémeia dev Ba vmrjpye Suvatdtnta yla tpootacio and eEovay-
koopo. H emadnBevopotnto kKataAANAOTNTOG EpYETaL EPHECO HEGK TNG KABOALKNG
emtoAnOevopoTnTag yior 6Aovg Tovg Yn@oPopoug kot oL Yo k&be évav EexwploTd.

To oV TN Hag, WoTOCO, TTapéyEL LOLWTLKTY ETAANDEVGIHOTNTA KATAAANAOTNTAG, TO
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omotio propel vor arodetyOel pe pio dradikacior TAPOHOLX [E TNV HEHOVOHUEVT) ETTOLAT)-

BevopotnTa.

IIpootacia and efavaykacpd To mpwTOKOALO NAEKTPOVIKNG Ynopoplag Tov
npoteivoupe pe Baor tig PACBS mapéxel mpootacio amd eEovaykaopd 6To HOVTELOD
JCJ, vrtd v vtoBeon ot ot PACBS Swabétouvv vmd ouvBnkn emadnBevoipotnTo Ko
TIg vTOAOLTTEG LTTOBET el Tov JCJ epl 0pONg YAoNG EYYPAPTG, TIHLOV XPXDOV, VOVL-
ung xataBeong Ymgov kot afePodtnto Tov eEavaykao T Yo TV GUVOALKT] GUpTTE-
pLpopda TV Yneopopwv. I'a va amodeiEovpe avth TNV WOLOTNTA X PTCLLOTOLOVHE TH)
peBodoloyia Tov [JCJ03] kat suykpivovpe TNV MOAVOTNTA emTUYING TOL AVTITAAOL
o€ 800 KpuTTOYpAPLKA TTaiyvia, 61ov Aapfdveton éva Tuyxadio bit b. Otav awwtd Ad-
Ber v Ty 0 0 Ynepopodpog mapdyet Eva YedTIKo SLATLGTEVTHPLO X PTCLLOTTOLOVTOG
Vv Aettovpyio fakekey to omoio ko Sivel oTov avtimalo. e kot GAAN WOLWTLKT
OTLYHT KOTaBETeL TNV TPOYHATIKY TOL Yo pe TO Kovovikd dwoutiotevtriplo. Otov
AaPer tnv tpn 1, o Yneopdpog mopadidet To TPoyPaTIKO SLOTLGTEVTHPLO GTOV AVTi-
oA, EMLTPETOVTAG VO TTPOGOpOLWOeL kot dev kataBétel Tnv dikn) Tov Yngo. Ko o1ig
d00 TEPLTTHOOELS 0 AVTITTAAOG eTLAEYEL TNV Yo, kKaBDS 0 6TOX0G elval va povTéyel
0 avtintalog av ypnoiponodnke to cwotd dwamictevtnplo. EmimAéov pmopet va
XPTOLHOTOLGEL YLt TOV GKOTTO atuTO Ynpopodpoug mov éxel Lo Tov éAeyx06 Tov. To
yeyovog otL 0tav b = 0 vrdpyel pio mapamdve Yrneog, KaAdTTeToL Ao TNV LITOOE-
o1 OTL 0 avtimaAog dev pmopet var yvwpilel pe PePatdTnTa TNV CUUTEPLPOPE TWV U
eAeYXOpHEVOV YNQopopwv. Xpnoipomototvtol S0 Talyvix, OoTE Vo unv vtapEet me-
pimtwon vo propet va e€ayBel 1 cupTTEPLPOPAR TOL YNPOPOPOL ATTO TO ATOTEAEGHAL
- av Y. TpEmeEL va PneLloTel KAtolog vioYneLog o omoiog TeAtkd dev AdPet kaypio
Yo, Etol ouykpivoupe Tnv mbavOtnTa emLTU)iceg TOL EVAYKAOGTY GTO ‘TTPOypo-
TIKO’ Ty VIO TTOL AVATTAPLOTE TO TTPWTOKOAAO HE LTV TTOL €XEL Ge va LOoVIKO’
LY VIO GTO OTOLO 1) KATOHETPTOT) YIVETOL OUTTO P EUITTLOTT), LOAVLKT) AELTOVPYLKOTH)-
TaL KoL 0 avTimolog dev éxel mpocPact oe kpumtoypogik dedopéva. BAémer dniadn)
povo to amotédeopa. To Wdavikd maiyvio ekppdalel dnAadn tnv péylotn mpootacio
artd eEaVoyKaopO oL PItopel va Tapéxel Eva TPpwTtokoAlo Yngogopiag. H obykpt-
o1 QUTH WTOKOADITTEL TO TTAEOVEK TN ETLTLY LG TOL AVTUTAAOL TTOL OPEIAETAL GTNV

XPNOT TV CUYKEKPLUEVOV KPUTITOYPAPLKOV KATAGKEVOV HOGC.

>t dwatpPry oumodelkvooupe OTL TO TAEOVEKTHO TOV AVTLITAAOL GTO TTPOYHOTLKO
oy vio dlopépel ad To avTioTOLXO GTO LOVIKO pe apeAntéa Tpomo. H amddeién
amoteleital amd Tpio otddio: [IpodTov, detyvoupe 6TL N Y@og 1 omoioe Guvodeve-
TaL oo 1o TPaypatikd dwamiotevtnplo dev Bonbd tov exPraotr, kabahg dev propet
va TN Eexwplioel ko va deL OTL pétpnoe. Avtd opeileton 0TV aveOVLRN Katdbe-

on Ynewv cAld kuping otnv vtd-cvvinkn etaAnBevopdtnTa twv PACBS. H povy
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droupopd NG Yneov avtng artd ekeivn mov katébeoe o ekPlaotng elvat OTL GLVOSED-
etal oo o £YKLPT) LITOYPAPT), KATL TTOL OPWG HITOPEL VAL SLATTLGTOCEL O ALVTITTAAOG.
Ae0Tepov, Seiyvoupe 0TL 0 avTimahog dev pmopel va Eexwploet v AapPfavel Yedtiko 1)
oAnOwo dwaumiotevtnpro. H kpumtoypdgnomn tov aindivod eival Stobéoiun oe dAovg
oto aobeTplo oe KPLILTOYPAPNIEVT) HOPPT). AV 0 avTimalog propovce va To dio-
XWPLloeL amtd TNV Kpumtoypagenon mov AapPaver amd tnv fakekey tote Ba prropovoe
va onaoel Ty WotnTa IND-CPA tov ypropomotodpevov kpurtoovothpatog. Emi-
oG, 00TE OL YNPoL TV 1) eEAEYXOHEVOV YNPopopwV dev prtopotv va Pondrnocouvv Tov
avTiolo, KOG oV GTO TPAYHATIKO TALYVLO TLG VTLKOG TG THOOVHE OO TUXLEG
TIHEG KOl TO ATTOTEAEGHA PYeEL A0 TIG QPXLKES TOVG TUHEG, O AVTITOA0G dev prmopel va
Kotahdfel tn dapopd AOYw Twv WOLOTHTOV TNG LITO cLVORKNG eTAANOeLOLHOTN TG
kot IND-CPA. EtutAéov Adyw Tov avdVUpoL karvallov, o eEavaykaotrg dev popet
va artoavBel av 0 otd)0g Tov Yrgioe §j OxL. Apa cOpewva pe to povtélo JCJ, o

TPWTOKOAAD HOG TTopEXEL TPOSTATL OTTO EEAVAYKAGHO.

MuotikdTnTa  AvaADOLE TNV pUoTikdTNTA akolovdhdvTac To povrého BPRIV [Ber+15].
310X0G LTOL TOL HOVTEAOL elval Vo eEETACEL 0LV T KPUTLTOYPOPLKG dedopéval mov
vntapyovv oto BB Ponbodv tov avtitaro va pavtéyer tnv mpotipnon kdmwotov Y-
POPOPOV, TEPLEGOTEPO aTTO 0,TL B propooe KPivovTag HOVO aTd TO ATTOTEAECH

NG KATAWPETPTOTG.

AvTo ek@paletol pécw evOG Talyviov 6To 0oio o avtimahog PAémel d0o amobetrpro
ta BBg, BB1. Ot kavovikoi ymgogpopot katabétovv drapopeticég Yrjgoug (emheypé-
VeG otd TOV avTinaho) 6To Kabe éva. XT0 TENOG, YIVETOL 1) KATOHETPNOT) TTAVTA OTO
BBy. Me opotopopen mbavotnta to amotédecpa Kot éva amd T dvo amobetrpro

TOPOLCLALETOL GTOV AVTITAAO, O 0TTOLOG TTPETTEL Var HavTéPeL TToLo eide.

SNV TEPINTWOT HOG TPOTOTOLOVHE TO CUYKEKPLHEVO HOVTENO, OOTE VO EKPPALEL [N
EUTTLOTH) WOLWTLKT) KATOHETPNOT) - va ekTeleital dnAadn amtd Tov avtimaro. Ovopd-
Covpe 1o ovykekpipévo povtédo U-BPRIV xou pe Béon awtd amodetkvibovpe 6Tt TO
TPWTOKOAAO NAEKTPOVIKO YNPOPOPLOVY JIVEL GTOV VTITTAAO CPEATTEO TTAEOVEKTIHOL
WOTE VO VIKN|GEL OTO GUYKEKPLUEVO TTatyvio pe tnv voBeot otL ot PACBS mapéyouvv
TVPAOTNTA KoL dnpdcto emalnOevopdTnTO OoTE Vo unv ptopet va Eexwpioel Ta 0o
oDt pLaL XPICLHOTTOLOVTOG VO AKLPWHEVO Ynpodédtio. AEilel va onpelwbel oTL
TO GUYKEKPLUEVO ATTOTEAEGHA lval Evar arkOpo Pripar TO 00l GLOYKETICEL TNV PLOTL-
KOTNTA pe TNV emaAnBevopdTnTa peté to [CGG19]. AMdec vobécelg yia va toylet
TO CUYKEKPLHEVO QTTOTEAEGHX €lvall Vor PNV aToppinmtetat Kopiar Yripog KoL vor pnv
LITAPYEL CLOYXETION TNG OELPAS katdbeong Tovg. AvTO pmopel va yivel HECw eVOG

OVAOVUHOL KOVOALOD.
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Aé¢van Wwwtikotnta  To povtédo U-BPRIV pag 0dnyel otnv e€ng mapatipnon:
Av Sev elvor aopaitnto v epmiotevovHE TOUG KATAUETPNTEG YL TNV HUGTIKOTH T
™G YnPov, onpaivel OTL TO EKAOYIKO GOGTNHO TAPEXEL TPOOTAGIN XKOHO KAl EVOLV-
Tiov evdg LITOAOYLOTIKG LY VLPOD avTidhov A, kafdg gite 0 avtinadog amokpumTto-
ypopel pe T KAEWOLh eite emeldr) TOUPAKAUITTEL TNV KPULITTOYPAPLKT) TPOCTACIX TO
amotéleopa eival to idto. ‘Eva tétolo mpwtdkoAlo Aoutdv, av cuvdvaoTel pe ave-

VOHO KAVOALOL ETTLKOLVOVING,HTTOPEL Vo TTapéyel aévar) LOLOTLKOTNTAL.

>t BipAoypagio, péxpL TP 1 AVEALGT) TNG 0EVONG LOLWTLIKOTNTAS TOV HOVOOLA-
otatn. Svykekpiéva, oto [Ara+13] opiotnke 1 évvola Tng mpakTikiic advang 1diwri-
KkotyTac, bmov o A éxel mpboPact povo ota Snuodcia ekhoyikéd Sedopéva Tov BB ko
OxL otal OLOTIKA dedopéva oL avTaAAdcoovTaL HETaED TV Yn@oopwy Kol Twv
apx®v, | PeTaEDd TV SLPop®V TOUKTOV TOL atapTilovy TIG eKAOYLKES apyés. Me
avth TNV évvola omodetkvioetal 0Tt StaféTovy aévar OLWTIKOTNTA GUOTHHATO OTTWG
10 [MNOG; MN10; DGA12]. To cuykekpipévo povtélo dev eivar mAfpeg, kabog Sev

AopBéver v OGPy A o dedopéva, ‘ecwTEPIKAC TANPOPOPNONS’, TTOL PITOPEL Vor EXEL

otn dudBecn} Tov o peArovtikog avtimtarog. Ta mopaderypa, éva peAlovtikd aso-
Avtapyiko kabecTmdg popel va ekpeTadAevtel dedopéva TV TopodXWV TPOSPacng
oto Internet, Ta omoia éxovv cLAAexBel oTo TOAPOV, 1 dedopéva Tar oTolar elval GTN
duabeon twv ekAoyIKOV apydv. OTAGHEVOG pe TETOLa TTANPOPOPLaL O HEAAOVTLKOG

LOXLPOG AVTITAAOG PITOPEL VO KATAPYTOEL TNV HUGTIKOTNTA G€ OAX TOL GCYTHOLTO TTOV

éyouvv amoderyBei acpan) oto [Ara+13].

>1n dwatpiPn, opilovpe Tpelg TapaAAay€g yior TNV oévar OLWTIKOTNTA, VAAOYQL e
Ta €101 mpodcPaong mov popel va €xel 0 avtinalog ot dedopéva Kot TNV oxéo
TOU HE TOV LITOAOYLOTLKG TTepLoplopévo avtimaro A tng puotikotntoag. H povrero-
7OLNOoT TOUG YIVETOL XPTOLHOTOLOVTAS KPUITTOYPOUPLKA Ty VLKL, KATL OV arroTeAel
Hio oakOpn ovvelopopd tng SatpiPng kabwg péxpL Tdpa N aévar WLWTIKOTNTO elxe
tunomotnfel pOVO PEG® GUHPOALK®OV HOVTEAWYV, OTTWG O EPAPHOGHEVOS TT-AOYLONOG

[Ara+13].

— 270 TP®TO TO omoio ekPpalel TNV acBevéoTtepn Hopen TNG 0 LOYLPOG AVTiTToL-
Aog éxeL tpocPaoct povo ota Snpocia dedopéva TV eKAOYQOV - 6ca dnAadi

Bpiokovtal oto BB.

— TNV kavovikT poper Tnc o loxupde avtimarog A éxel mpdcPacn T6c0 oo -
pooia dedopéva, AAAG HTTOPEL VOL X PTG LHOTTIOLGEL KO YNPOPOPOLG TTOL eixe LTTO
ToV éAeYX0 KaT& TN dbpkela TV ekAoydv o A. Avth 1) poper) Tng aévang t-
doTKOTNTOG prtopel va BewpnBel wg eTEKTAOT TNG HUGTIKOTNTOG TV EKAOYDV

OToV 0 AVTIAAOG elvall LITOAOYLOTIKA ATTEPLOPLOTOC.

— 2TV woXLpn HOpPN TNG, 0 aVTITAAOG pitopel va éxel tpocPact emutAéov Ko
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OTO KOVAALQL ETTLKOLVOVING TTOL PN OLHoTToOnKay Kotd T Slevépyela Twv e-

KAOYOV aAAd ko oe dedopéva Tov PplokovTot LITO TOV EAEYXO TOV APYDV.

Me Bé&on v mopamdve poviehomoinot, avalbovpe To SO €181 KPLITTOYPAPLKDOV

TPWTOKOAAWV TTOL £xouV Tpotadel oe oxéom pe TNV oévar WLwTikoTnTa: ATTodeticvo-

oLpE OTL TO TPWTOKOALO Twv [FO092; Ohk+99] ov ypnoipomolel TUPAEG LITOYPALPEC

wcavortotel tov opiopd U-BPRIVkal etiong mapéyetl toxvpn aévarn WbuwtikdtnTo av
xpnotpornoinOel avovupo KavaAL yia v katdbeon twv Ynewnv. Avtibeta, n avaiv-
o1 TOL TPWTOKOAAOL TV [D 2] mov mpocBétel éva oxpa déopevong oto Helios,
TOPEYEL KAVOVLKT] acévar) it TikoTnTa. Emekteivovtog to mapomdvew amotélespa, o-
A0l TOL GXHOT TTOL YPTCLHOTOLOVY GYTHATA OECUEVLOTNG HE TANPOPOPLOBEw P TIKE
Loyvpt amokpun, dev HITOPOLY Vo TETVYXOLV LoYXLPN aévar LOLOTIKOTNTA KoBDG Ta
avolypata twv deopeboewv Oa eivat otn Stdbeomn Twv apydV Kot Katd cuvémela dia-
Oéoa otov Loyvpd avtimaro. AvtiBeta, Ta oXNHATA e AVOVLRN katdbeon Yngwv

POLVETOL VO TTAPEXOLV LOYVPOTEPES EYYLNOELG LOLWTLIKOTNTAG,

Ao TV GAAN TAELPA, prtopel va TeDel 0TV TPOCEYYLOT) HEG® TNG AVWVUHLAG, 1] KPL-
Tk} 0Tt Sev emAlel TPAYHATIKE TO TPOPANHA, CAAK OTL TO OVTIKOOLGTA pe KATTOLO
aAro. Avti dnAadn va amaitel TéAela puoTKOTNTA (LEcW OYNHATOV décpevonq) a-
noutel Tédelx avovupia. H Stagpopd, eivar 6TL To detepo eiva o e0koAo va emLtev-
xOetl pe tnv évvora 6Tt eiva o SVoKOAO var elva TNV TA P KOLTOXT) TOL LVTUTAAOU.
Eva avddvupo kavadt, Pitopel va elvot KOTavepnpévo ko vor AeLtovpyei amd pépn ta
ormoio eivort d0oKoAo va eleyyxBolv akdpa KoL otd Evay LoYLVPO AVTITOAO - YLo TTo-
padetypa propet va Ppiokovton oe dtoupopeTikd kKpatr. Mmopodv va epoppocTodV
Kot eVOAAaKTUCEG pEBOdOL avvLpiag oTa dKpa, OTTMG Yot TOPADELYHO LITOYPAPES
dakTuAiov (ring signatures) ®oTe oL YnPoPopoL oe v eKAOYLKO TUNHHO VO HITOPOUV
Vo GXNHATiooLV v 6OVOAO avevupiag. Katd cuvémela dev yperdletal TéAelx ove-
vopia, A& TOLAGYLGTOV évar GLGTATIKO TNG va dtotnpnBel exTOG TOL EAEYXOL TOU

avTitdlov.

Téhog, To povtéro puoatikotntag U-BPRIV ov opioape otnv epyacio propei v xpn-
olpomotnBel yio TNV épevval Kol ATOTIHNOT) TPWTOKOAA®VY Tar oTola dev xperdlovtol
EUTTLGTOGDOVI GTOVG KATOUETPNTES LA TNV SLATHPNOT) TNG HUGTLKOTNTAS. AUTO €p)e-
tau oe avtiBeon pe v mAeloymeio Twv epyactdv otnyv BifAloypagia Twv niekTpo-
VIKQOV Yn@ogopLodv Kab®g TPOTIUATAL VO LTTAPYEL EPTLETOGDVI GTOVG KATAUETPNTEG
Yo eTaAnOevoIHOTNTA KA OXL YLt LUOTIKOTNTA. YTtdpxel OpS oap@LBoAio yix To av
avtn 1 vtobeo eivat aodek T amtd Tovg Yneopopovg. To povtélo U-BPRIV propet

Aoutov va xpnopomnolndetl wote va eEepevvnBel meplocdtepo avth 1 katevBuvon).

Ta kpurToypaiké epyodeior kKol TPOTOKOAAX OV avotTOXONnKay otV Tapovoa

epyaoia, dnpovpyodv apketég evkopieg yio peAlovtikry dovhewd. Evag opyikodg
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0TOX0G €LVOL 1) TPOGAPHOYT TOL TTPWOTOKOAAOVL NAEKTPOVIKOV YNPOoPopLOV GE ov-
tiotowya mepaAlovta pe TIG NAeKTpOVIKES Ynpogpopieg. MaAioTa oe TOAAK amod
ALTA, OTWG YA TaPAdeLYPa o€ TEPLPAAAOVTO AVOVUUNG CUUTA POOTG EPWTNHATO-
Aoylwv, oL amautoelg ao@dhelng eival mo ehaotikég. Katd ovvémela, pmopel vo
xpnotpomonBovv ko ot vroypawég CBS pe apketn Pertioon otnv amdédoon. Emi-
ong, B avalnTnBovv kat dAdeg vAomojoelg Twv CBS, PACBS pe kalttepn amddo-
om, Wlaitepa o€ OTL Popdt ToV aPLOpd TV ToUPIAANA®Y GUVOdWY AOYW TNG avi-
Avonc twv [PS00; Ben+20]. Mix &AAY katebBuver, mov éxer 18n Eexivijoer [PBS20]
etvou 1 petapopd twv PACBS oe amokevtpwpévo meptpailov, péow vroypapov do-

KTUAlov (ring signatures) Siatnpovtag T Pacikn cvvelo@opd tng SatpiPng avtig,
OTL dnAadn) propel v vITAPEEL TPOGTATL ATTO EEAVAYKAOHO PHECW LOLWTIKNG KOTO-
pétpnong ko amodeiewv pndeviknig yvoong. H mpootacio and e€avaykacpod oe
TETOLOL €180VG EKAOYEC, tOTENEL TPOG TO POV (tVOLKTO epdTNHA. Eva TéTolo mpw-
TOKOALO Bt PHTOpOvGE VO EYAPHOCTEL X PTCLHOTOLOVTAGS Lot AALG IO OPAd WV GLVAA-
Aayov (blockchain) 6mwg avtr] epappodleTon 6T KPLITTOVORICHATH OTTWG TO bitcoin
[Nakog]. Kéti tétoro Sev eivan ka®oAov ammhd, kabodg 6mwe avalbovpe 6to [[GP19]
1) OHOLOTN T TTOL LITAPYEL HETAED TNG £VVOLOG TNG XALGLdAG CUVAAAAY®V KoL TOV -
moBetnpiov BB dev apkel ammd povn Tng ylor vor LKvoTtotoeL TIG TOAD oITaLTTLKEG
WOLOTNTEG Ao PAAELNG TTOL YapaKkTnpilovv Tig Ynepogopiec. Me Sedopévo awtod, OPWG,
1 épevva mpog avth TNV KatevBvvoT Ba Exel To TAeOVEKTNHA OTL Propel va 0dnynoet

o€ VEQ LTTOJELYHATO NAEKTPOVLKOV YNOOPOPLOV.
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Evyaplotieg

H nmapotoa dratpiPr) oAokAnpadvel i evvidypovr) SLadpopr] TPOCWITLKNG ETLGTPO-
PG OTOV AKOOTHOIKO XDPO, HETA OTTO OEKOETT) ALTTOLGLN. € QUTNV elyaV GTHAVTIKO
HEPLOLO CUPHETOYNG HLA GELPA AVOPOTWV TWV OTTOLWV 1) TAPOLGLX TOLS WS GUHBOL-
AevTikd ko e€eTaoTikd péAN TG datplPng awtrg elvart Wixitepn TN Yo pévor Ko

TOUG OTTOLOVG OPEIAW VO EVYAPLOTHOW.

Kart’ apynv to peyadtepo pepidio evyaplotiov amevBovetol otov emPAémovra ka-
Onyntn g epyosiog k. Apioteidn [ayovptln yio Tnv okTdé)povn kot TAEOV CLVEP-
yooia oto TAaiclo TpdTa TOL petamtuylakod oto MIIAA kol 6Tnv cuvéxelx Kot
™ dwapketx tng ddaktopikng dratpPric. H Ponbeid tov nrav xabopiotiki, t6c0
0€ EMOTNHOVLKO eTimedo, apol TV AVTOG TTOL pe VONoe v o yoAnNO® pe Tig nAe-
KTPOVIKEG Ynoopieg divovTag EHeacT) otV WOOTIKOTNTA, OGO KOl GE TTPOCMITLKO
entinedo, amoTEAOVTOG EVa OTELD LoOPPOTTiNG ATEVAVTL G€ avTipporeg dvvapels. E-
TLOTG TOV EVYOPLOTE KOL YO TLG DTTOAOLTTES €VKALPLEG TTOV POL €dwaoe KOG Kot Yo

1 6LPPOAT ToL GtV oAOKA pwoT NG StatpPric.

ENHAVTIKEG eV OPLOTiEG oPeilovTal Kot oToV k. XTén Zdxo, o omoiog oTnv mp®-
TN HOG GLVAVTNOT, 6TV oLVEVTELET Y To MITAA eiye pio oAb Betikn avtidpoon
OTNV LTOYNPLOTNTA POV, KoL TOL 0molov 0 TpOTog didackaliog eival mapddelypo
yla péva kabmg emiong Kot yior To akodnpoikd meptPdAlov to omoio éxel dnpovp-
YNOEL 0TO epYyaaThpLlo To omoio dratnpeiton péxpt onpepo. EmmAéov, B nBeda va
evyoploTiow Wiaitepa Tov k. Anuntpn PwTdkn 1600 ylot TNV GUPUETOXT) TOVL GTNV
TpLeAT) emtpory) entifAredng tng datpiPrig 660 kot yia To Wdiaitepo evOoLoupéPov Tov

Kot TNV Gpeon Ponbela mov pov Tpocépepe dmOTE TOL TNV {HTNOQ.

ISwaitepeg evyoprotieg amevBovovtal otov k. [avaywwtn Toavaka, Tov omoio mpw-
TOGUVAVTNOQ WG TPWOTOETNG PoLtNnThG oo [lavemotrpio [etpand to 1996, kat puot-
k& otov k. Ayyelo Kiayu, Tov omoiov to pébnpa oto Mavemotripio ABnvov frav
1 TPATN et pov pe tnv Bewpnrikn Kpumtoypagio kot Tnv emiotnpovik tng Oe-
peAlworn. Me Tipd Wiaitepa eiong 1 cVpPETOXT) TV K.K. ZUpPovn, ITovAdxn, Znka

otV entopeln emitponn eEétaong NG StatpPrig OV, TOVG OTOLOVG KoL EVYOPLOTE.

H dwatpip) avtn) mepthappavel amotedéopata To omoia Tpoékv Yoy oTa TAALGLO G-

vepyaoiog pe tov k. AAEEavdpo Zoyoapakn, Tdpo voyrgLo diddktopa oto Universitat
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Pompeu Fabra. Tov evyaplotod diaitepo yLor TV e01K0SOUNTIKY) CUVEPYAG LR KO TLG
ToAEG oulnthoelg, Tov eiyav kaboplotikn GLpPoAT) oTo atotéheopa. Iwxitepeg ev-
XOPLOTIES KL 6TOV oLV-cLYYpaéa pog Bingsheng Zhang, yia tn onpovtikr BorOeia
OV TTPOGEPepPE, KBS emiong kal 6Tovg ocvvadélpouvg ad To CoReLab pe toug o-
TOLOVG CLVEPYAOTNKOHE G TPOTACELS, dLdaoKahieg Kot dAda Bépata kan Wiaitepo
otovg/otig k.k. Tdvvn Hanaiodvvov, ITétpo Iotikae, Pourandokht Behrouz, Ma-

pLévvo Zopakov kot Owpd ZovAloTr).

Télog, B N0eha va evyaploTrow TNV Apyvpd kot T Aéva yio v otiplén Kot v
TEPAOTIO KATAVONOT) TTOU €ELEQY YLOL TIG ATEAELOTES WPEG TTOV ALPLEPWT L O ALVTH TN
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1 Introduction

The medium is the message

Marshall McLuhan

Voting is a distributed decision-making process, where a set of agents select an op-
tion and reach consensus on the most preferred input. The result is binding for the
group, as everyone is expected to adhere to it until the process is repeated. The algo-
rithm to implement the basic process is remarkably simple; it involves two elementary
operations - comparisons and counting. Each input is compared to the available op-
tions and the respective counter is incremented. To deal with scaling issues many
technologies have been employed for assisting the realization of the process: from
pebbles and paper to lever machines and electronic computers. It is usually the case
that technologies affect deeply, to the point of total transformation, the process they

are assisting.

The simplicity of voting has cast it as a ubiquitous method to reconcile differing opin-
ions. Its use ranges from informally deciding where to hold simple gatherings to se-
lecting a national government. In all settings, the fact that the vote result is binding,
can motivate participants to influence the process to their benefit. Human ‘ingenuity’
has come up with many methods to achieve this. They can try to convince the voters
for their favored opinion before the ‘election’ begins by using (logically sound) argu-
ments or by spreading misinformation. If this fails, they can step up their game by
coercing the agents using threats or countermeasures. They can even try to affect the
process that computes the results itself, by changing the inputs in an unauthorized
manner or by tampering with the internals of the computations. In some cases, there
is no need to carry out an attack; the fact that there is a perceptible danger of inter-
ference casts doubt to the legitimacy of the results. As a result, the voting process
must be augmented with another goal: to compute the results in a manner that con-
vinces every participant and especially the ‘losers’, that the elections were conducted

according to the rules and their results indeed expresses the majority of the agents.

It is evident that since technology is used to realize the voting process, technology

can also be used to carry out the attacks. But technology can also be used as a means
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of defense in a twofold manner: by providing specific countermeasures and more im-
portantly by analyzing and modeling the process thereby contributing to its better
understanding. In electronic voting, the goal of any assisting technology must be to
eliminate (or greatly reduce) trust in particular agents or system components. This
results in making attacks more difficult as the possible targets have diminishing im-
portance. Even more importantly, reducing the trust required to accept the results

will reduce the perception of threat, which impacts the legitimacy of the results.

This thesis proposes cryptographic primitives and protocols that can be used to secure
the voting process. As one of the goals of modern cryptography is to reduce trust, it

provides a great match for electronic voting.

1.1 Election technologies

We begin by reviewing the most important technologies that have been employed to
implement elections. We use the term technology in broad terms; it does not refer
only to modern computer systems. A piece of paper, a wooden ballot box, a voting

booth separated by a curtain are all examples of technologies.

The simplest and probably one of the earliest methods of voting works by requiring
a show of hands from those who agree with the proposition put forth. Tallying takes
place by simply counting raised hands in the presence of all voters. This method,
while technologically primitive, has an important advantage; it requires no trust in
the tallying algorithm, as all is needed is the snapshot of raised hands. As a result,
everybody can verify that the result is correct, by self-tallying. This makes the show
of hands the definitive template for trustless voting systems, as they provide a central,
immutable and publicly available repository of cast votes that everybody can use to
compute the result on their own. On the other hand, such systems are not easy to
use because of scaling issues. They cannot be used in large numbers, as it becomes
more difficult to capture the snapshot of votes. Of course, they are also prone to
errors. However, the most important problem with this voting method is the same
as its advantage: The fact the everyone can check how everyone voted; this can help
coercers to actively force voters to select a particular option, by threatening them
with retributions if they don’t. The reason behind this, is simply that the coercers
can more easily monitor the process and check if their targets complied with their

directions and if not, carry out their threats.

The secret ballot The most important technological innovation in voting is the
introduction of the Australian or ‘secret ballot’ in the 1850s [Ben13], that aims to

counter the implication of revealing one’s vote. In such systems the voters mark
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their preferences on an anonymous token; nowadays a piece of paper is used where
the choices (candidate names) are preprinted. Ballot casting takes place inside an
isolated voting booth, where the voter is free to cast their vote from the prying eyes
of coercers. Additionally, the voting booth is a technology that protects elections
from malicious voters, as it prevents the latter from selling their votes and producing
relevant receipts to receive their rewards. After casting, the voters of a secret ballot
system create a ballot by enclosing their vote in an unmarked envelope and posting it
on a sealed box named ballot box. The envelope-ballot box combination makes votes
both anonymous, unlinkable to a real-world identity, as well as secret. After the voting

period ends the talliers unseal the ballot box, open the envelopes and count the votes.

Supervised voting In order to scale the secret ballot, to millions of users, an in-
frastructure is required. First of all the voters must go through a registration phase
that serves two purposes: to check if the voters are eligible to participate in the elec-
tions and, if this is the case, to receive an authentication token. These tokens can be
used for single or multiple elections and in some cases even as all-purpose identities.
During the actual elections these tokens are used to authenticate the voters, check
eligibility and prevent double voting. However, the credentials are not included in
the ballot. Authentication and tallying is performed by a group of individuals with
conflicting interests, typically representatives of different voting options, supervised
by a trusted third party. The voters are also supervised to adhere to the rules of pro-
cedure, e.g to enter the voting booth on their own, not to leave special marks on their
ballot. The voting infrastructure is distributed in a hierarchical scheme to reach mil-
lions of voters; the votes are collected and counted at the edges (tree leaves), where
each voting precinct computes and announces its tallies. The partial results are then
merged to create the final tally. Despite this distribution of labor, vote counting is a
time consuming and error-prone process especially in voting systems with complex
selection rules. In order to improve tallying times, the paper ballot has been replaced
with mechanical lever machines in large jurisdictions. This supervised infrastructure
must be set up and dismantled after every election, which incurs a large monetary

cost.

The threat model against supervised voting rests on two assumptions. To begin with,
an adversary needs to corrupt many partial tallies to affect the results. The same
applies to an adversary aiming to disrupt the elections. The distributed hierarchical
organization makes the scheme resilient. Furthermore, within a voting center, the
separation of roles to agents with conflicting interests creates self-enforcing motives
for each player to monitor the others. Additionally, such a voting system cannot op-

erate on its own but requires trusted third parties to monitor the process and enforce
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the rules. Many [Ben13; Wil17; KWV19] have noted, that the threat model of su-

pervised voting is safe against an adversary with limited technological capabilities.

But this might not be the case anymore. The proliferation of cheap ‘smart devices’,
everyday devices (like glasses and watches) equipped with microprocessors and I/O
sensors with network connectivity modules fundamentally changes the capabilities

of the attackers.

Remote (physical) voting In order to increase participation, many jurisdictions
have enabled remote voting, usually by employing the postal system (vote by mail).
The voters receive special ballots by mail, mark their choices and re-post their ballots
or deliver them directly to a voting center. During counting the ballots are stripped
of identifying information and tallied, sometimes using software components. Again,
counting is performed by agents with conflicting interests supervised by trusted third
parties, i.e. the back end remains the same. However, the voter experience is funda-
mentally different, as there is no supervision or privacy enforcing voting booths. As
a result, vote-selling and coercion becomes easier. Note that the attacker in these
threats is not an abstract formal adversary; these threats can easily be performed by
family members, employers, and associates. Vote by mail has been initially deployed
to serve a minority of voters whose employment required frequent mandatory ab-
sence from elections (e.g. armed forces, diplomatic personnel). This meant that the
percentage of votes cast remotely was a negligible percentage of the electorate, un-
able to affect the result. However, as the mobility of the modern workforce increases,
the application of vote by mail increases as well, exacerbating the problems of vote

by mail.

Electronic voting With the proliferation of computers, the Internet and the digi-
tization of all processes, it was expected that voting would follow suit. However, this
transition did not proceed with the speed and scale that was typical of other activi-
ties e.g. banking. Many researchers [Sch] claim that voting has some unique security
properties that cannot be satisfied by computer systems, because of their inherent

characteristics and must, therefore, remain (partly at least) paper-based.

The first way to integrate computers into electronic voting, replaces the paper ballot
and the talliers with computers while maintaining the rest of the infrastructure in
supervised procedures. This means that both the ballot and the ballot box are elec-
tronic. The voting booth remains physical and votes are cast using touch screens or
other input devices on DRE (Direct Recording Electronic) machines. Receipts can be
optionally printed and cast independently in ballot boxes, thus creating a paper trail.
Another alternative allows voters to mark their votes on paper ballots and digitize

them using optical scan machines. In both cases the votes are electronically stored
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and transferred to a computer functioning as a tabulator to produce the result. How-
ever, reusing the existing infrastructure with computers instead of human talliers is
not the only options. Information technology can transform the voting process by
enabling different or novel voting methods to be applied, that would be prohibitive

otherwise, because of scaling issues and other physical limitations.

The discussion around electronic voting usually revolves around the casting and tal-
lying phases. However, a nationwide supervised system has many more components
that can be digitized. For instance, in order to obtain registration information and
create the voter rolls, public databases of voter information can be used which are
often in electronic format. A simple way to affect the result of an election is to al-
ter the contents of these databases and exclude legitimate voters are add fake ones.
Furthermore, computers are also used after computing the local results at the voting
precincts, to transmit the partial tallies to the central authority for aggregation. The
vulnerabilities of using software also apply to these subsystems of electronic voting

as well.

In order to understand the problems with electronic voting, one must note that vot-
ing with computers is essentially, voting by proxy. As a result, voters delegate their
choices to third parties and trust them to record, transmit and count them correctly.
However, this trust is misguided as a computer might change votes simply because an
error occurred or even due to malice. The lack of trust is exacerbated by the universal
nature of computers and software. For instance, the computer could run variations
of the recording and tallying programs that correlate the order of the votes with the
order of authentication, thus linking voter identity with vote contents or randomly
alter votes. Proposed solutions such as open-source software and certification are
necessary but not sufficient conditions, as one cannot be sure whether the recording

or tallying machine runs the code that was examined.

[Riv08] observes that the result of an election should not depend on the computer
systems that is used to run it, so that software problems do not propagate to the
election results and defines the notion of software independence to characterize a

major desideratum of electronic elections:

Definition 1.1: Software independence

A voting system is (weakly) software-independent if an undetected change or
error in its software cannot cause an undetectable change or error in the elec-
tion outcome.

A voting system is strongly software-independent if it is software-independent
and a change or error in its software can be detected and recovered so that

rerunning the election is not required.
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A simple way to achieve software independence is by utilizing the paper trail that
some DRE machines leave and allowing the voter to verify it. The resulting system
is software-independent, because the software can be replaced by a hand count, in
the case the official results show discrepancies, or after a manual audit of a small
part of the ballots using statistical audit techniques, like Risk Limiting Audits [LS12].
In fact, experts argue [Ber+17], that currently this is the best way to vote, assuming
that certain rules are followed for the handling of paper ballots. While we agree that
this is currently the best way, it is tied to voting using the traditional supervised in-
frastructure. Another way to achieve software independence is to use cryptographic
methods. This thesis is built around the belief that cryptographic voting can (ulti-

mately) be as secure as traditional supervised voting.

Remote electronic voting The electronic analogue of vote-by-mail is Internet vot-
ing. The voters cast the ballot through their Internet-connected personal computers
or smartphones and the vote is relayed to the tallying computer through the com-
puter network. Unlike supervised voting, the voters can cast the ballot in the comfort
of their homes or their offices without any official being present. The software used

must be platform-independent, so it usually takes place through a web browser.

Internet voting has many advantages: Firstly, it allows people to make their choices
without having to physically visit the polling station, which usually mean waiting in
long queues. It can also be accessible from any part of the world, allowing greater
turnout and replacing the need for vote by mail. It can also be more usable, as the
voting software can provide guidance over the process. This is especially true for
voters with disabilities. As it is implemented in computer software it has significant
cost savings in the long run. The administrative costs of setting up an election are
also quite low, leading to frequent impromptu elections. The proponents of Internet
voting have even gone as far as claiming that it will bring back the direct democracy

witnessed in classic Athens 2500 years ago.

On the other hand, Internet voting has many disadvantages. The most important
one is that it sacrifices the mandatory imposition of privacy offered in voting booths.
Since voting is done without official supervision, it is open to coercion and vote selling
as the attacker can be present and oversee the voting process. Moreover, Internet
voting enables a weaker kind of coercion to take place: pressure from family or close
friends, as the voter is never alone. These are dangers present in all types of remote
voting. Another important problem is that its security depends on the security of
the voters’ computer. The security research literature is full of vulnerabilities and
attacks leading the safe conclusion that computer client software cannot be trusted for

security. Malicious software might alter votes, fail to submit them (without reporting
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it) and many other things can go terribly wrong. Things are not as bright on the
server side as well. As the voting server resides on an open network it is a target of
attacks as well, that are not restricted inside a country, but can come from external
opponents as well. Furthermore, the software used for voting might be inaccessible
to certain groups of people such as the elderly as they are not comfortable with using

a computer. We can see why many computer security and voting researchers think
that Internet voting is a bad idea [Sch].

There are indeed many hurdles that one must overcome and applying internet voting
to nationwide governmental elections seems terrifying. However, electronic voting in
a network setting can transform collective decision making and create scenarios that
would be impossible to implement at scale, otherwise. For instance, in [], anew
type of voting system is proposed: self-tallying elections where everybody (including
outsiders) can count everybody’s vote. Such a scenario would only be feasible on
a small time and space scale. To sum up, despite the fact the electronic voting is
not secure yet to implement nationwide governmental elections it can be applied for
issues of less importance and enable of new types of decision making. This is the

motivation behind this thesis.

1.2 Security properties of voting systems

The characteristics of computers that make electronic voting a hard problem to solve,
require a rigorous security analysis of any proposed e-voting scheme, beyond what is
standard in any software engineering problem. This process checks that the scheme
conforms to a set of security properties that any voting scheme must possess, either
electronic or physical. This makes electronic voting not merely a digital analogue for
traditional elections, but a somewhat improved version brought about by formally
defining, analyzing and seeking to satisfy difficult and conflicting security properties.
In this section, we provide a high-level overview of the security characteristics of any
voting system. In we will provide a formal analysis of these properties.

1.2.1 Verifiability

The main properties grouped under this section deal with the correctness of the result

of the election and the conviction of voters around it.

Correctness/Integrity The voting system must correctly compute the tally, by in-
corporating the choices of the voters into the results. This must take place irrespective
of the result function. However, this is not enough; elections shareholders must be

convinced that the announced result is correct.
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Verifiability This property aims to assure candidates and voters that all votes have
been considered. As a result, verifiability requires evidence that allow the voters
to verify that the output of the tally function corresponds to their collective desires.
Voters must check this evidence in order to make sure that their votes [Ben+15] were:

— Cast as intended: The user interface of the voting system should aid the voter
to express his choice without interfering to change it and help the voter verify
that it was correctly captured. As a result, there should be no doubt about what
the voter input to the voting system was and how it is being stored. One way
to achieve this is the cast-or-audit mechanism proposed in [Ben06]; the voter
creates an arbitrary number ballots, but eventually casts only one and audits the
rest. The election system does not know which ones will be eventually audited

so it is motivated to follow the protocol on all.

- Recorded as cast: The voting system should convince its users that their recorded
votes have been correctly transferred to the counting stage, by enabling voters
to pinpoint their own ballot in a list of ready-to-be-tallied ballots. This is usu-
ally done by providing voters with receipts to be compared with the list of cast
ballots.

— Tallied as recorded: Voters and all interested parties (e.g. external observers
and auditors, pro-democracy organizations) should be convinced that all valid

votes have been included in the final tally.

These checks together constitute the security requirement of End-To-End (E2E) Veri-
fiability . Cast as intended and recorded as cast verifiability are usually collectively
referred as individual verifiability, since the voter herself initiates the checks. Tallied
as recorded checks are performed by everybody so they are collectively referred to

as universal verifiability.

Another type of verifiability check is eligibility verifiability , where everybody must
be able to verify that all the votes coming from legitimate voters (i.e. that have the
right to vote) have been included in the tally. This is part of a tallied as recorded
check and aims to prevent ballot stuffing and double voting. Eligibility verifiability
requires a way to provide publicly auditable credentials to voters that allow for the
eligible voters to stand out. To receive them the voters must authenticate themselves
to a voting system. However, authentication requires some form of identification and
this might contrast the ballot secrecy requirement. To go around this limitation, the
voter cannot be individually identified, but instead associated with a set of specific
characteristics, which must be the largest possible for each participant (anonymity

set). The next step is authorization which makes sure that the participant behaves as
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expected so as not cheat the system. For instance, a voter should vote as many times

(usually one) as the election law mandates and no more.

In traditional supervised systems, all the checks that are required to satisfy the verifi-
ability requirements are delegated to trusted third parties observed by representatives
of all shareholders that have conflicting interests. The individual voter cannot verify
the process and the result herself but delegates these tasks. This type of verifiability
is called administrative verifiability . Typical electronic voting systems try to do away
with this type of verifiability. However, this is not always possible, because voters
must actively participate in the auditing both for their own votes as well as for votes
cast by others. In both cases this is not something that can be expected from them,
as research shows [KZZ15b; Ber+17].

Its close relationship with the integrity of the election process, its perception, and the
acceptance of its output, makes verifiability a very important property, extensively
studied [[Cor+16] and implemented in many protocols under computational assump-

tions or unconditionally.

Accountability This property is a stronger form of verifiability [KTV1(]. Instead
of simply producing evidence that something went wrong with an election (phase),
accountability seems to pinpoint the perpetrator of this malicious behavior. This can
be used as a counter-motive and force all players to execute the protocols honestly.
Accountability is a property that is extremely hard to get right and As a result, only
a few voting systems have been designed to possess it [Kiis+1¢]. Accountability is
sometimes described as collection accountability and dispute resolution [Ber+17].

1.2.2 Confidentiality

Privacy Since the invention of the secret ballot, the protection of its contents has
been encoded into law for all democracies, as a means to guarantee that the voter
indeed expresses her free will. Vote privacy aims to hide the choice of a voter from
the talliers, other voters, or external agents in order to free her from external pressure

and enable her to cast a ballot that represents her true choice.

It is particularly important to note that privacy is not absolute, as the election result
leaks information. For instance, one can infer that the probability of one voter having
cast a particular ballot is close to the percentage of total votes this particular choice
has received. If there is a partial (local) tally this estimation is more accurate. In
extreme cases, one’s preferences might be completely revealed. For instanced in a

unanimous result, everybody knows how everybody voted. If an election result is
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unanimous except for one vote, then this particular voter knows how everybody else

voted.

Furthermore, it is easy to observe that the secret ballot, hinders verifiability. The most
verifiable voting scheme is the ‘show of hands’ we described in where all
aspects of elections are publicly auditable. By hiding the contents of the ballots, we
also hinder the transparency of casting and tallying [Ber+17]. However, focusing
solely on verifiability without privacy makes no sense. If one assumes that the con-
tents of all votes are publicly known and linked to individuals, as in the case of a show
of hands, then they can in effect be dictated by external agents applying emotional,
personal, social and economic pressures. As a result, one cannot be sure that a vote
represents the true will of a voter, as the voter could have yielded to these external
forces. Thus, the vote cast would not be the one that was intended. In that sense, it
would not differ that much from a vote altered by a malicious entity, as is the case
with the verifiability threat model. The converse can also be shown at least for in-
dividual verifiability [CL1§]: By auditing ballots one can prevent malicious players
from changing ballots, by avoiding the attack where every vote is changed except for

one targeted vote. Then applying the tallying function can reveal its contents.

Vote privacy has been studied in many variations, concerning the capabilities of an

adversary, its relation to the voters and its intended duration.

Ballot secrecy A firstlayer of privacy protections aims to guard against passive ad-
versaries that want to learn the behavior of a particular voter (subset). This has been
implemented in two ways: by hiding the contents of the vote or by disassociating the
voter identity from the ballot. The former is usually achieved using a threshold cryp-
tosystem with homomorphic properties, while for the latter an anonymity primitive
such as mixnets [Cha81] or blind signatures [Cha83] is applied (cf. subsection 2.5.1]
and kection 2.7). The actual level of privacy offered depends on the implementation,

which usually rests on computational and trust assumptions, as it is generally as-

sumed that there will be an honest subset of participants that will follow the protocol
and not try to break the secrecy. This means that they will refrain from opening in-
dividual votes but will decrypt only the result of the final stage. Blind signatures, on
the other hand, can offer information-theoretic protection. The maximal protection of
the choices of the voters is the concept of Perfect ballot secrecy [KY0Z] proposed in the
context of self-tallying boardroom voting schemes, which guarantees that knowledge
about the partial tally of a subset of the voters can be computed only by a coalition
of all the remaining voters. This notion provides vote secrecy regardless of trust as-

sumptions on the talliers’ honest behavior.
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Receipt-Freeness This stronger form of privacy has been proposed by [BT94] pro-
tects the voters against ‘themselves’, providing privacy even if the voter does not wish
for it. To be receipt-free a voting system should not provide the voter with a receipt
that indicates how she voted, because such a receipt could be utilized as a proof if
the (malicious) voter wants to sell her vote. Its absence means that the potential
vote buyer will not be able to be convinced that his money was well spent. As a
result, receipt-freeness discourages vote selling. However, the conflict with verifia-
bility reappears; a generated receipt can function as evidence that allows the voter
to verify the election system and vice versa such evidence can be used as a receipt.
Receipt-freeness (and privacy) does not apply solely to electronic voting schemes.
Technological advances such as camera-equipped glasses [Ben13] or audio side chan-
nels [Wil17], allow a voter to effectively sell her vote and record the ‘transaction’ to
be traded as a receipt. In general in [Che+10] it is proved that a voting system cannot
achieve simultaneously universal verifiability and receipt-freeness, unless there are
private channels between the voters and the election authorities. Such private chan-
nels allow the voter to validate the receipt privately and deniably, in a manner that

casts doubt to the probable vote buyer, while allowing her to verify the vote.

Coercion resistance Another serious threat to voting schemes is an active adver-
sary that constantly monitors a voter. His aim is to fully to dictate the voter’s behavior
to his wishes with the goal to make the voter abstain or to vote randomly or to fully
impersonate her. To defend against such attacks, voting systems should possess a
property called (over the shoulder) coercion resistance. The general method to achieve
this property is to cast doubt on the coercer about the success of his attack, enabled
by the voter applying a deception strategy. For instance, in many voting systems
the voter is allowed to re-vote [MMO6; Adi08; Tso+13; LOAT20], so the voter can

obey when the coercer is present, but with a later vote can undo her previous choice.

The re-voting technique has been augmented and generalized in the Juels Catalano
Jakobsson coercion resistance framework [JCJ03], where the voter can vote multiple
times using anonymous credentials each time. One credential is registered as authen-
tic in a manner invisible to the coercer (e.g. during in-person registration), while the
rest of the credentials are considered fake and therefore the votes that accompany
them do not count. As a result, the coercer cannot be sure if his attack succeeded or
not, because he cannot tell if which credential is used, even if he monitors the voter
for the entire voting period. Fake credential-based schemes make assumptions about
the voter having a moment of privacy and that the registration is untappable (more
details in section 4.4). Furthermore, in order to apply the credentials the voter must
have a token that can perform cryptographic operations with Selections[UH12] being

the most notable exception. On the other hand, re-voting - based schemes, require a
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moment of privacy too, but make no assumptions about the presence of the adversary
during registration [LQAT20]. However, they make the strong and rather inflexible
assumption that the coercer can monitor the voter until the end of the voting period.
This can be achieved if the coercer is human, but it is more problematic in the case of

the coercer being a software program.

In any case, schemes that are based on multiple votes-per-voter (either through re-
voting or through fake captured), are yet not allowed in many jurisdictions and there
have been reports that users will have trouble understanding this functionality [Wil17].
Note that coercion resistance, largely depends on the voting method used. A voting
system that supports write-ins cannot be coercion-resistant as the coercer can force
the voter to include a vote for a random string and check that this random string is
included in the results. Furthermore, in schemes that voter selects or ranks a subset
of k out of m candidates the Italian attack can be mounted; the coercer can dictate that
a particular permutation of candidates appears in the results, in effect watermarking
each ballot with a specific pattern per voter. If such a permutation is not found, then
it is evident that his directions were not followed,and repercussions can follow. To
counter the Italian attack a short ballot assumption is sometimes used [KTV12a].

Everlasting privacy ¥ The variation of privacy, where the adversary is computa-
tionally unbounded is called everlasting privacy. Its study, formally initiated by Moran
and Naor in [MNO4], focuses on preventing secrecy attacks by powerful future ad-
versaries. It is motivated by the observation that in most cases, vote privacy is only

protected by a cryptosystem the security of which is based on computational assump-

tions such as the intractability of the Diffie-Hellman problem (cf. subsection 2.1.1)).

These assumptions, however, may be broken or rendered obsolete in the (not too)
distant future, as both the theory and the practice of cryptographic attacks always
get better. This means that votes encrypted with small keys are in danger of being
revealed, even without the computational assumption being broken. As famously
conjectured by Shamir, at the 2006 RSA Conference cryptographers’ panel, all cryp-

tographic keys used at that time would remain secure for less than thirty years (cf.
[IMNOG]).

The situation is made worse because verifiability requires utilizing public evidence
generated by the election system. These pieces of data are meant to be widely avail-
able and thus it is easy for an adversary to obtain them, even in part. However, one
must bear in mind that the adversaries against voting systems are potentially power-
ful state agencies with enormous budgets and without time constraints. As a result,

they have the capability to collect and store large amounts of election-related data.

Based on [GPZ19]
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Furthermore, as large-scale elections are organized by the government, these agen-
cies can be considered ‘insiders’, having access to even private parts of the election
transcript. Finally, these agencies can obtain information exchanged through com-
puter and communication networks, both through mass surveillance as well as with

the cooperation of telecommunication companies.

The problem of privacy is exacerbated, as the information concealed in voting does
not lose its value, contrary to protected messages in other common cryptographic
scenarios. Indeed, one can easily imagine a future authoritarian regime that tries to
gather evidence about its subjects based on past democratic elections in cooperation
with the state intelligence agency. This evidence might prompt actions ranging from
surveillance to questioning and even more severe repercussions. As noted in [MNO04],
such dangers constitute an indirect coercion attempt. In fact, since there are many
potential coercers the only rational reaction from a voter fearing all possible adverse
scenarios is to abstain. Everlasting privacy seeks to protect the secrecy of individual

votes in such scenarios.

Finally, a recent property the is in the crossroads of verifiability and privacy is partici-

pation privacy [Cor+14; KTV15]. In many jurisdictions, it is illegal to reveal if a voter

abstained or really voted. This is incompatible with eligibility verifiability, where
voter pseudonyms, that are linked to real-world identities accompany the votes. It
can also be considered a form of privacy, should we consider that abstention is a
special candidate to be chosen. The combination of eligibility verifiability with par-

ticipation privacy is called private eligibility verifiability.

1.2.3 Other properties

Except for variations of integrity and secrecy a voting system must satisfy other im-
portant security properties. We list some of them in this section. Note that the fact
that less space is devoted to them, has nothing to do with their importance; it is re-
lated to the focus of this thesis.

Fairness A voting system must not produce early or partial results, as such could
affect voters who have not yet cast a vote. The tally must be announced simultane-
ously to all voters. Fairness also implies that elections should not be repeated, as the
previous election sets a precedent, even if no result is announced. This means that the
voting system must be robust and that from the moment the election starts it must be
concluded. This is especially important for self-tallying schemes where - in a simple
implementation - the last voter might be able to know the partial result before casting

her vote.
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Enfranchisement All entities that have a stake in the result of an election should
participate. This is easier said than done. For example, in order to be authenticated,
voters should issue some form of credentials. These excludes the people that cannot
issue these credentials for some reason. In addition, voters should not be intimidated
by the voting system and be discouraged to participate. This is particularly true for
electronic voting, since technologically illiterate people might find it hard to use the
system. Cryptographic voting exacerbates the problem, since instead of general ICT

skills voters should now possess (general) knowledge of cryptography.

Enabling enfranchisement should not contradict properties such integrity or privacy.
Assistance in voting for example might help some voters, but ballot secrecy must be
maintained. Enfranchisement implies that voters trust the system to compute their
intent. Complex voting systems might succeed in implementing some or most of the
requirements but might fail in convincing the voters. We do not address, the question

if the solutions described in this thesis, actually convince voters.

Resiliency and Efficiency The voting system should always be available to re-
ceive input from the participants and it must output the result of the computation
in a reasonable time. Availability is crucial since the repetition of the vote casting
phase sheds doubts on fairness. Availability in the presence of an active and persis-
tent adversary is often called robustness. The adversary might pose as a voter or as
the authority or both. In addition, lack of availability hinders enfranchisement, since
a voting system that has *ups and downs’ in its operation, is perceived as untrustwor-
thy. It is important to point out that a voting system must be robust in its complete
lifecycle and not only on the vote casting stage. For example, a verifiable voting sys-
tem must have a detailed process to deal with ’alleged’ verification problems, or else

verifiability can be used against the system.

Efficiency is one of the reasons put forth by electronic voting proponents, especially
when the voting population is extremely large. It refers to the resources used by the
voting system in all its workflow. Such resources are referred to as cost and might be

time, money, requirements on infrastructure and people participation etc.

1.3 Contribution

This thesis builds on the basis that remote electronic voting using cryptographic
methods for software independence is a goal worthy to pursue. Despite, that we are
far from realizing this goal yet for national elections, voting is a ubiquitous process
that can benefit from such innovations, starting from smaller-scale elections. To this

end, we make three novel contributions:
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— A cryptographic primitive called Publicly Auditable Conditional Blind Signatures
(PACBS).

— The first-ever game-based definition of the property of everlasting privacy.

- Avoting scheme that provides coercion resistance and everlasting privacy with-

out sacrificing verifiability.

Other minor contributions are a comprehensive review of all the formal models pro-
vided in the literature for the security properties of electronic voting systems. We
express these models against a generic voting system that encompasses all function-
alities defined so far. The relations between these properties, as made evident from

their formal definitions, are also explored.

We now analyze the major contributions in more detail.

1.3.1 Publicly Auditable Conditional Blind Signatures

We define Publicly Auditable Conditional Blind Signatures, a standalone signature
scheme that connects the validity of a signature with a predicate applied on publicly
available data. More specifically, instead of creating a digital signature by solely ap-
plying a function parameterized with a secret key to a message, publicly available
data is embedded in a way that the signature is valid if and only if a predicate on
them is satisfied (and the proper keys have been used, of course). In this sense, the
validity of the signature is conditional, which means that the signature can be thought
of as carrying an extra bit of information that determines if it verifies correctly or not.
Furthermore, the signature verification is done by a designated verifier, recognized
by the possession of a secret verification key. These specifications are also captured
in Conditional Blind Signatures (CBS), a precursor of PACBS which is also presented.
The disadvantage of CBS is that a malicious signer or a malicious verifier could dis-
regard the predicate and the related public data and provide arbitrary signatures and
verification results. To defend against this weakness of CBS, PACBS include signa-
ture creation and verification audit functions. They produce evidence that can be
checked by anyone to verify that the predicate was correctly computed, embedded
and checked. PACBS supports blindness to increase the privacy of the user. A se-
curity model of PACBS is also defined that reflects its desired properties. To this
end, blindness and unforgeability - the standard properties of blind signatures - are
complemented with a new property, conditional verifiability, that incorporates the
predicate to the validation procedure. Moreover, a construction is provided based on
the Okamoto-Schnorr blind signatures [Oka92]. Finally, security proofs are presented
that reduce the security of PACBS to well-known cryptographic assumptions.
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1.3.2 Everlasting privacy

We also propose the first game-based definitions for everlasting privacy. Our defini-
tions are generic, which means that they do not consider the cryptographic primitives
that will be used in order to achieve this property. This has not been the case so far,

where everlasting privacy was defined only in the symbolic model of security.

More specifically, we consider the adversarial capabilities in terms of both data col-
lection and computational power. To model this, we assume two adversaries: The
first is contemporary to the election, where he can participate actively (using cor-
rupted voters) and passively (by monitoring communications between the voters and
the authorities). He is computationally bounded, though. The second adversary is
computationally unbounded but operates (long) after the election is over. The two
adversaries can communicate and As a result, the future adversary can obtain elec-
tion transcripts and auxiliary information collected in the present from corrupted

entities such as voters or even insiders to the election systems.

The motivation for this capability stems from the reasonable assumption that there ex-
ist powerful entities (e.g. governmental agencies) that might passively hoard election-
related data such as protocol and communication transcripts (among other things as
demonstrated by mass surveillance revelations such as Snowden’s). It is realistic to
assume that a future totalitarian regime will also take control of these agencies as

well and have access to their collected data.

By elaborating on the communication options between the present and the future

adversary we define three variations of everlasting privacy:

— weak everlasting privacy: There is no communication between the present and
the future. As a result, the authoritarian regime can only access generally avail-
able data, such as public bulletin boards. In effect, this scenario is the same as the

one contemplated in the definition of practical everlasting privacy of [Ara+13].

- everlasting privacy: The future adversary can only take advantage of corrupted
external agents to the election system. In reality, these agents are the present
cooperators of the oppressor that passively collect or take advantage of current
attacks to extract information in the future. This model can be viewed as a direct

extension of normal privacy against a more powerful adversary

— strong everlasting privacy: There is full communication between the present
and the future. This means that the totalitarian regime has insider access to
private election data gathered by agencies ‘internal’ to the election. These in-

clude election authorities, telecommunication providers, political parties etc.
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This model is motivated by the observation that usually power changes, bring

control changes for such agencies.

We express these adversarial models against a generic voting scheme to provide game-
based definitions of everlasting privacy. Our definitions are the first-ever in the com-
putational model, as the work of [[Ara+13] is based on the symbolic setting. We dis-
cuss the implications of our definitions and observe that perfectly hiding commitment
schemes do not offer the same levels of protection as anonymous channels, since they
cannot hide auxiliary communication information, that can be utilized by a powerful
future adversary with insider information. Our approach has the added side effect
that it associates everlasting privacy with contemporary privacy, which is a relation

that, to the best of our knowledge, has not been explored in the literature.

1.3.3 PACBS Voting

We propose a a voting protocol based on the architecture of FOO [FO09], one of the
most privacy-aware voting schemes in the literature, augmented with an efficient im-
plementation of the coercion resistance properties of JCJ [JCJ05]. In particular, we
take advantage of the fact that in [FOO92], voting occurs in two phases, namely au-
thorization and counting, and use it to overcome the performance bottleneck of JCJ.
We achieve this by using the idea of [GPZ17], i.e. marking the fake credentials during
the authorization phase where voter identification is available. By using the voter ID
the correct credential can be efficiently retrieved and compared to the supplied one
with no need to check all credentials. Of course, during this phase the ballot contents
must be blinded, as they can be correlated with the voter ID. The fact that the cre-
dential is invalid is conveyed to the counting phase by applying PACBS. The counter
receives the ballot and authorization in the form of a blind signature, that contains
a bit that specifies if the vote is valid or under coercion. The perfect blindness prop-
erty of the CBS scheme combined with an anonymous channel enable us to achieve
the everlasting privacy property, without residing to dedicated channels between the
authorities. Our protocol achieves verifiability, coercion resistance and everlasting

privacy with minimal assumptions.

1.4 Thesis structure

This thesis’ topic is how techniques from cryptography can be used to build electronic
voting systems that implement all the features described in this chapter, in a non-
conflicting manner. We introduce approaches to electronic voting by continuously

adding layers one on top of the other. A road map follows:
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- In we introduce the cryptographic building blocks that are utilized
in the building of PACBS and subsequently in the proposed voting scheme.
We cover basic notions such as computational security assumptions, public-
key encryption schemes, digital signatures, and their variations as well as zero-
knowledge proofs and verifiable shuffles. We examine such primitives under the
lens of voting systems focusing on how they can affect the security of elections.
We review security models and instantiations that we employ in our further

constructions.

- In we introduce Publicly Auditable Conditional Blind Signatures (PACBS)
which is the novel cryptographic scheme proposed in this thesis. Our exposi-
tion is based on its evolution from a first version, Conditional Blind Signatures
(CBS), that clearly shows the basic problem this primitive intends to solve but
has certain weaknesses. We define a security model and provide an instantia-
tion and variations. Then we refine the security models and constructions in

order to resolve the problems of CBS. Thus we arrive to PACBS.

- In we focus on formal security models for the most important prop-
erties of voting systems, namely verifiability, privacy, coercion resistance and
everlasting privacy. Each model is accompanied with example voting systems
that aim to justify it. In this chapter we also introduce our game-based defini-

tions for everlasting privacy.

- In we describe the voting system that is built around PACBS by pro-

viding detailed specifications of all voting phases. We also analyze its security

properties by adapting the security models introduced in chapter 4.
- In we conclude this thesis and describe important avenues for future

work.
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2 Cryptographic Preliminaries

Do not roll your own crypto

Anonymous

In this chapter we present the cryptographic building blocks of the work in this thesis.
We review basic cryptographic primitives such as public-key encryption schemes,
digital signatures, and their variations as well as (non-interactive) zero-knowledge

proofs of knowledge. Our emphasis is both on constructions and security models.
Our exposition follows [KL14; BS20; Sti19; Sch20; Gro14; GPZ15].

2.1 Basic notions

Cryptographic protocols protect the secrecy and integrity of data. All possible at-
tempts to circumvent these properties are carried out by an adversary .4, who can be
either passive but curious or active. In the first case A follows the protocol, but tries
to extract extra information from its transcript. In the second case, the 4 can deviate
from the protocol. The adversary can be computationally restricted, typically only
being able to perform probabilistic polynomial-time computations or he can be com-
putationally unlimited. Cryptographic schemes that defend against the first type of
adversaries offer computational security while the ones that defend against the second
offer information theoretic security. In this thesis we deal with both types of adver-
saries. In the case of schemes offering computational security, the guarantees rest on

computational hardness assumptions which we now detail.

2.1.1 Security Assumptions

Discrete Logarithm (DL) Assumption The discrete logarithm assumption intu-

itively states that it is difficult to retrieve x from y = ¢* in a g order group G generated

by ¢. More formally, it is expressed using the game in [Algorithm 2.1,

The discrete logarithm assumption states that it should be hard to win the game in

Algorithm 2.1.
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Algorithm 2.1: DL 4 Gp

Input : security parameter A
Output: {0,1}

(G, g,q) < Gen(1%)
y<sG
x < A(guess, G, g,q,h)
if y = ¢* then

| return 1

else
| return 0

end

Definition 2.1: DL Assumption

For all probabilistic polynomial time adversaries A:

Pr[DL 4,Gen(A) = 1] < negl(A)

Computational Diffie Hellman (CDH) Assumption Informally, the CDH as-
sumption states that given a g-order group G, a generator ¢ and two group elements

¢%,¢P, the value ¢? cannot be efficiently computed. More formally:

Algorithm 2.2: CDH 4 Gy,

Input : security parameter A
Output: {0,1}

(G,8,q) < Gen(1%)
a,b<sZ,
y < A(guess, G, g,9,8% &%)
if y = ¢" then

| return 1

else
| return O

end

Definition 2.2: CDH Assumption

For all probabilistic polynomial time adversaries A:

Pr[CDH 4Gen(7) = 1] < negl(A)

Decisional Diffie Hellman (DDH) Assumption The DDH assumption intuitively
states that triples of group elements (¢, g%, ¢%%) and (g7, g, ¢¢) of g-order group G
generated by ¢ cannot be efficiently distinguished.
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Algorithm 2.3: DDH 4 G,y

Input : security parameter A
Output: {0,1}

(G,g,9) < Gen(11)
b<s{0,1}
a,b,c<sZ,
if b =0 then

| y=g"
else

| y=g°
end
b’ < A(guess, G, g, q,g“,gb,y)
if b = b’ then

| return1

else
| return 0

end

Definition 2.3: DDH Assumption

For all probabilistic polynomial time adversaries A:

Pr[DDHA,Gen(/\) = 1] < = +negl(A)

N[~

There are many groups where the DEcistoNAL DIFrIE HELLMAN Assumption is be-
lieved to hold [Bon9§]. One such group is the g-order subgroup of quadratic residues

in Z;, where g, p = 2q + 1 are primes.

2.1.2 Communication channels

In every voting scheme there must be a way for the voters to communicate with
the various election authorities (EA, RA, TA) and other system components. In the

literature, the following types of channels have been used:

— Broadcast channel with memory: The message is relayed to all agents of the
system and is appended to their state. In the voting literature such a channel
is known as a bulletin board (BB). While the existence of such a channel is
‘folklore’ in the electronic voting literature its security properties were recently
defined [[CS14]. Except for the integrity of the contents, they include that this
channel should be append-only, meaning that if an item is posted then it can-
not be deleted or altered. Furthermore, only authorized participants should be

able to post items and everybody should reach consensus about the accepted
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contents. Many real-world systems [Adi08] utilize a shared database and a cor-
responding website; however, this requires trust in the database owner. In order
to distribute the trust into peers,one must solve a consensus problem between
these agents so that everybody agrees that a particular vote, for instance, is ac-
cepted and must be appended to the election log. This problem is difficult to
achieve in the presence of Byzantine (malicious players) and a definitive solu-
tion eludes computer scientists since its introduction in [LSP82] despite many
attempts. A distributed BB was proposed in [Kia+18]. Finally, the invention of
the blockchain [Nak08] and the proliferation of distributed ledgers has caused
many to propose blockchain voting schemes where the BB is implemented us-
ing a blockchain. Despite the technical similarities, such proposals do little to
capture the guarantees that would satisfy the conflicting security properties we
mentioned in section 1.2 [GP19].

Authenticated channel: The communication infrastructure provides message
integrity and authentication, thus the message contents cannot be changed en
route and the sender is known. It can be implemented using cryptographic prim-
itives such as digital signatures (cf. section 2.5). In this setting, known sender
actually means pseudonymous sender, as he can be associated to a pseudonym,
such as the public key of a digital signature scheme. However, all communica-
tions will be linkable to this pseudonym. A simpler, but not entirely secure, way

to implement an authenticated channel is through a username and a password.

Secret (Private) channel: The channel hides the contents of the message typ-

ically through the use of a cryptographic scheme.

Anonymous channel: The channel provides untraceability, so that a message
cannot be monitored through it and linked to a sender. This type of anonymity
is usually called sender anonymity. Other variations can also be defined, regard-
ing the receiver, the contents and the metadata of the communication (e.g. fre-
quency, direction and duration). In the case of electronic voting we are mainly
interested in sender and content anonymity since the receiver is well know (the
EA) and the communication occurs once or in general only a few times. As a
result, the anonymous channel is meant to hide the sender identity and the con-
tents of the message. We are also interested in schemes that protect the real-
world identity of a user or relevant information that can leak it (e.g. network
addresses). As the identity information cannot disappear, the main approach
of realizing such a channel is mixing the identity of a voter with other similar
identities so that it cannot be distinguished. Anonymous channels can be im-

plement physically (i.e. using publicly available computers in libraries, schools,
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internet cafes) or using general anonymity primitives such as mixnets (cf.
tion 2.7) and anonymous credentials (cf. subsection 2.5.1) or existing services
such as Tor [DMS04]. Formally, an anonymous channel can be considered an

external factor of uncertainty, so that an A is not sure about the behavior of

voters (e.g. if they abstained). Consequently, its existence is a minimal require-

ment for coercion resistance [JCJ05] and everlasting privacy [GPZ19] and As a

result, it plays an important part in this thesis.

— Untappable channel: The channel is information-theoretically secure against
eavesdropping. This communication mode has the strongest security require-
ments and is usually implemented without any use of technology i.e. in-person,
or using some physical medium (the postal system). As a result, protocols that
require such a channel suffer from scalability problems which in turn means
that it should be used infrequently (i.e. once for many elections). Alternatively,
an untappable channel can be the interaction of the voter using local tamper-
resistant hardware. [Oka97] considers an untappable channel, a channel that is
only used for the exchange of a single message - if an interaction is required,

the respective channel is named a voting booth.

2.2 Public Key Encryption

The protection of the privacy property of electronic voting systems usually involves a
public key encryption scheme. The voters use the public key of the election authority
to encrypt their votes. The EA then decrypts the result.

Definition 2.4: Encryption Scheme

A public key encryption scheme £S is a triple of algorithms (KGen, Enc, Dec)
and three sets IK,IM, C such that:
- (pk,sk) < £5.KGen(11), generates the public and secret key pk, sk € IK
- ¢:= ES.Encpi(m), encrypts the message m € IM using pk
- m = ES5.Decg(c), decrypts the ciphertext ¢ € C using sk

. v

Usually the encryption algorithm is randomized, which means that a message can
have many ciphertexts. We will denote such algorithms as Encp (7, m) where r is the

randomness used. The decryption algorithm is deterministic.

The basic security notion for any encryption scheme is IND-CPA proposed in [GM84],

which intuitively states that the cryptosystem must not leak anything about the ci-

phertext. Formally, it is defined using the experiment in |Algorithm 2.4, where m, m
are of the same length. Since the encryption key is public, the adversary is free to
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create encryptions of plaintexts of his choosing. We denote this by allowing the ad-

versary access to an encryption oracle.

Algorithm 2.4: IND-CPA 4 ¢

Input : security parameter A
Output: {0,1}

b<s{0,1}

(pk, sk) < £S.KGen(1%)

(mg,my) < AgS'E"CPk(')(issue, pk)
C <~ SS.Encpk(mb)

b/ « AES.Encpk(.) (guess, pk, C)

if b =

b’ then

| return 1

else

| return O

end

Definition 2.5: IND-CPA

A public key encryption scheme £S = (KGen, Enc, Dec) is IND-CPA secure if

for all probabilistic polynomial time adversaries A:

PI‘[IND-CPAA,gS(/\) = 1] L= negl()\)

N —

ElGamal A scheme that has the IND-CPA property and is used throughout this
thesis is the ElGamal cryptosystem proposed in [Gam85]. The key generation al-
gorithm selects a group G of order q generated by ¢ where the DDH assumption
holds, and computes pk = g%k where sk «<s Z,. A message m € G is encrypted as
Encp(m) = (g7, m - pk”) where r «<s Z,. To decrypt a ciphertext ¢ = (c1,¢) € G2, the

. . —sk
decryption function computes Decg(c) = c2 - ¢4

ElGamal encryption requires 2 exponentiations, while decryption requires 1 expo-

nentiation.

Malleability An interesting property of the ElGamal cryptosystem is that it is mul-
tiplicatively homomorphic. This means that if one multiplies (element-wise) two ci-
phertexts (encrypted with the same public key), one gets the encryption of the prod-

uct of the corresponding plaintexts:

Encpk(m1) - Encpe(my) = (g7, mypk'™) - (g2, mopk’)

= (§"7"2, mymy - pk'1*"?) = Encp(m1my)
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This implies that a ciphertext can change form (be reencrypted) without using the

secret key.

ReEnc(my) = Encpk(m1) - Encpi(1) = (87772, mypk™™"2) = Encpy(1m1)’

In this thesis, we abuse notation when it comes to computations between cipher-
texts. So for instance, we write c¢1c; to mean the element-wise multiplication of
two ciphertexts: c¢1¢2 = (c1,¢2) - (c3,¢4) = (c1€3,¢2¢4). By using the same rationale
¢ = (c1,62)° = (¢,¢3) and L = cre7L.

The notion of malleability was first examined in [[DDN91]. It implies that the ad-

versary can manipulate a target-message by transforming its ciphertext into another

ciphertext that somehow relates to the original. Formally, the property NM-CPA for

relation R can be defined using the game in [Algorithm 2.5 from [Bel+98], where ¢, 7

denotes a vector of poly(A) ciphertexts and plaintexts respectively and Decg(¢) is

the decryption of each item in the vector.

Algorithm 2.5: NM-CPA 4 ¢

Input : security parameter A
Output: {0,1}

b<s{0,1}

(pk, sk) < £S.KGen(11)

(mg, my) < A(issue, pk)

C < ES.Encpk(mb)

T <« AESEncp() (issue, pk, ¢, mg, my,m)

if c e ¢ then
| return L

end

m < Decg ()

b« R(mb,m)

if b = b’ then
| return 1

else
| return 0

end

Definition 2.6: NM-CPA

for all probabilistic polynomial time adversaries A:

Pr[NM-CPA 4 £s(A) = 1] < = +negl(A)

N~

A public key encryption scheme £S = (KGen, Enc, Dec) is NM-CPA secure if
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If ElGamal was additively homomorphic we could employ the homomorphic prop-
erty, to aggregate the votes to compute the tally (sum) of the votes. While this can-
not be done in the original version, a variation has been proposed in [CGS97], where
instead of encrypting a group element, m is selected from Z, and ¢’ is instead en-
crypted, i.e. Encpk(m) = (g7,8™ - pk”). In turn, decryption yields g which means
that in order to retrieve the plaintext one must computed the discrete logarithm of
g™. While this is assumed to be difficult in the general case, it is feasible for small val-
ues of m. Henceforth we will refer to this variation as exponential or lifted or additive
ElGamal.

This malleability of ElGamal, can also create problems in electronic voting, as reen-
cryption allows one to replay a vote ciphertext, without knowing its contents. The
notion of IND-CPA is not enough to protect against this attack. As aresult, a stronger
security notion, IND-CCA, is required.

There are many types of IND-CCA security that can be defined. In this thesis, we
consider adaptive IND-CCA or IND-CCA; formally defined in from

B 8]. The difference with Algorithm 2.4 is that the adversary has access to a

decryption oracle that can decrypt all messages of his choice except for the challenge

c. This oracle captures the intuition that A can learn (a function of) the plaintext.

Algorithm 2.6: IND-CCA 4 ¢5

Input : security parameter A

Output: {0,1}

b<«s{0,1}

(pk, sk) < £S.KGen(171)

(mO/ ml) - AES.Decsk,SS.Encpk(~) (issue, pk)
C < ES.Encpk(mb)

b’ < ASS.Decsk,SS.Encpk(-) (guess’ pk, C)

if b=

b’ then

| return 1

else

| return O

end

Definition 2.7: IND-CCA
A public key encryption scheme £S = (KGen, Enc, Dec) is IND-CCA secure if

for all probabilistic polynomial time adversaries .A:

Pr[IND-CCA 4 £5(A) =1] < = +negl(A)

L
2
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A similar game for NM-CCA can be defined based on Algorithm 2.5 and Algorithm 2.4.
Non-malleability implies indistinguishability both for CPA and CCA attacks [DDN91;

B 8]. The inverse does not hold, in general. For CPA, one can construct an

NM-CPA secure cryptosystem, by using the Enc + PoK transformation, that is equip-
ping a cryptosystem that is IND-CPA secure with a simulation-sound extractable
NIZK-PoK[BPW12] (cf. section 2.4.1)).

Distributed Decryption Homomorphic voting systems have an especially impor-
tant problem. Since the EA can decrypt the result, it can also decrypt each individual
vote, but it must be trusted not to do so. In order to reduce the amount of trust
required, the secret decryption key should not be controlled by a single entity, since
then this entity would have to be completely trusted. For this reason election schemes

with distributed decryption are used.

ElGamal can be made distributed by changing the KGen and Dec functionalities. As-
sume that there are t decryptors that must cooperate in order to decrypt a ciphertext.
In the KGen algorithm each decryptor selects sk; «<sZ; and computes pk; := gski.
The encryption public keys is pk = Hle pk; - which in turns makes the secret key
sk = Zle g?k. In order to decrypt a ciphertext ¢ = (¢1,¢y), each decryptor computes
and publishes cq; = Ciki. Everybody computes C; = [}, c1; and retrieves the cipher-
text by ¢3 - Cl_l.

While this version is distributed, it is not resilient, since a single decryptor can block

the process. This problem can be fixed by using threshold secret sharing schemes (cf.

section 2.6)

2.3 Commitment schemes

Encryption schemes deal with the hiding of a message. Furthermore, a ciphertext
computed from a particular message with a specific key and specific randomness is
binding to the message, as the sender cannot find another one that maps to the same
ciphertext (under the same parameters). As a result, they can be used for the user to
commit to messages, in a way that the messages are not changed and not revealed.

The same functionality can be realized by a dedicated commitment scheme, defined

in Definition 2.8.
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Definition 2.8: Commitment scheme

A commitment scheme CS consists of three algorithms (KGen, Commit, Open)
and three sets IK,IM, C such that:
— ck « KGen(1%), generates the public commitment key ck € IK

- (c,0) := Commitg(m), commits to the message m € IM using ck and
generates the opening value o

- {0,1} := Open(c,0,m), validates if the commitment c € C corresponds
tomeM

The security properties of commitment schemes are that they must be hiding and
binding, ensuring intuitively that a message cannot be leaked by the commitment

and that given the commitment the message cannot be changed. The hiding property

can be defined using a game similar to Algorithm 2.4, where o plays the role of the
decryption key, while the binding property is defined in

Algorithm 2.7: Bind 4 cs Game

Input : security parameter A
Output: {0,1}

ck « CS.KGen(l)‘)

(m11m2;01/02,0) <« A(Ck, guess)

if CS.0Openc(c,01,m1) =1 AND CS.Openg(c,02,m2) =1 AND my # m; then
| return 1

else
| return 0

end

Definition 2.9: Binding

A commitment scheme CS = (KGen, Commit, Open) is binding if for all adver-
saries A:

Pr[Bind 4cs(A) = 1] < negl(A)

A commitment scheme is computationally binding if the A in Definition 2.9 is prob-
abilistic polynomial time. If this is not the case the commitment scheme is perfectly

binding. Respectively, it can also be computationally or perfectly hiding.

Hash functions Cryptographic hash functions (denoted as H) take as input a bi-
nary string of arbitrary length m € {0,1}* and produce a fixed-length I output & €
{0,1}! in such a way that the following requirement is met [GPZ135]:

— Collision Resistance: It is computationally infeasible to find m1,m5 such that

H(my) = my



2.3. Commitment schemes 29

Some weaker requirements that are implied by coercion resistance:

— Preimage Resistance: Given F, it is computationally infeasible to find m such
that h = H(m)

— Second Preimage Resistance: Given h,my, it is computationally infeasible to

find m; such that h = H(my) = H(my)

We can instantiate a commitment scheme with a cryptographic hash function by set-
ting Commitg (m) = (H(m||ck),ck) and Openg(c,ck,m) := (¢ = H(ml|ck)). The
Preimage Resistance property guarantees computational hiding, while the Collision

Resistance property guarantees binding.

An ideal representation of a hash function is a Random Oracle (RO) [BR93], which is a
black box function that when given the input x (for the first time) returns a uniformly
selected string s. However, when queried again for the same x it consistently returns
the same s. The random oracle hypothesis is stronger than collision resistance, as

every random oracle is collision-resistant.

Pedersen commitments The most popular commitment scheme in the discrete
logarithm setting was proposed in [Ped91]. The key generation algorithm selects a
g order group G where the discrete logarithm assumptions holds and two random
generators ck = (g, ). In order to commit to a message m € G, the sender selects an
element 7 <5 Z; and computes ¢ = Commit (11, 7) = g"y". Opening the commitment

simply reveals the randomness r and the message m and checks if ¢ = g™h".

The Pedersen commitment scheme can be proved to be computationally binding and

perfectly hiding. To see the first property assume that the adversary can win the game

in |Algorithm 2.7 and produce myg, my such that ¢ = Commitg(my,r1) = g™h" =

g™2h". The the adversary can compute the discrete logarithm x, of y = g* as x =
1M1 —Mnip
=1

that Pedersen commitment is perfectly hiding note that V(c,m) € G 3!r = log, (cg"-1) :

which contradicts that in G the discrete logarithm assumption holds. To see

¢ = Commit(m, 1) = g"y". As aresult, the sender can always produce pairs m, r that

successfully open the commitment, thus fooling any adversary.

It is very important to note that the commitment key must be randomly (honestly)
generated in order for the binding property to hold. If that is not the case then the

sender can cheat. However, this has not always been the case, resulting in the break-

ing of real-world voting schemes [Cul+19].
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2.4 Zero-Knowledge Proofs of Knowledge

The vote copying vulnerability that occurs because of the malleability of homomor-
phic cryptosystems can be thwarted, if the voter could somehow prove that she has
access to the plaintext corresponding to an encrypted ballot, at the time of casting.
Of course, this proof must not reveal its actual contents. Such a situation exactly
matches the guarantees of a Zero-Knowledge Proof, introduced in [GMR85], where a
prover P uses an interactive protocol to convince a V about the validity of a state-
ment without disclosing anything else. Such a protocol must possess the following

properties:

— Completeness: Honest provers (i.e. whose statement is valid) always convince

honest verifiers.

— Soundness: Dishonest provers (i.e. who hold invalid statements) cannot con-

vince verifiers, except with negligible probability.

— Zero-Knowledge: Dishonest verifiers (i.e. who want to learn more than the va-

lidity of the statement) succeed with negligible probability.

The statement to be proved is formally modelled as a binary relation R = {(prms, w) €
P x W} where P is the set of public inputs available to both P,V and W is the set of
private inputs to the P (the anything else part that must not be revealed by the proof).
From R one can create the NP language Lg = {prms € P : Jw(prms,w) € R}.

So, zero-knowledge proofs can be defined more formally as:

Definition 2.10: Zero knowledge proofs

A zero-knowledge proof for a relation R and a language Ly is a protocol
(P(w),V(),prms) where (prms,w) € R between a prover and a verifier for
which the following properties hold:
— Completeness: Pr[(1,1) < (P(w),V(),prms)] =1, Y(prms,w) € R
— Soundness: Pr[(1,1) < (P*(w’),V(),prms)] = negl(A), Vprms ¢
LR, VP*,w’
— Zero-Knowledge: VV*, 3PPT Sim such that the probability distributions
of (P(w),V(), prms) and (Sim,V*(), prms) are indistinguishable.

If P* in the soundness condition of is computationally restricted then
the protocol is called a zero-knowledge argument. If the probability distributions
of (P(w),V(), prms) and (Sim,V*(), prms) in the zero-knowledge condition of Def]
are only computationally indistinguishable then the protocol provides

computational zero-knowledge. If the verifier in the same condition is honest then
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the protocol provides Honest Verifier zero-knowledge (HVZK). Note that in
the verifier is convinced for the existence of a witness. Zero-knowledge
proofs that also convince the verifier that the prover knows a particular witness for
the validity of the relation, are called zero-knowledge Proofs of Knowledge or ZKPoK.

They are formalized using an additional algorithm, called the Knowledge extractor

(see Definition 2.11))

2.4.1 2X-protocols

In this thesis, we extensively use a particular variation of ZKPoK, called X-protocols,
which are ZKPoK protocols with 3 rounds of interactions and an honest verifier. These

3 rounds consist of the following messages:

— Commit: The prover selects a random value and sends a binding commitment

for it to the verifier.
— Challenge: The verifier selects a random challenge.

— Response: The prover responds with a combination of the witness, the committed

value and the challenge.

After the response, the verifier executes a Verify functionality to accept the tran-
script of the protocol. As a result, the protocol transcript consist of triples (com-

mit,challenge,response). More formally [Sch2(]]:

Definition 2.11: 2-protocols

A X.-protocol for relation R is a protocol between a prover P and a verifier V
that consists of three messages (t,¢,r) satisfying the following three proper-
ties:

— Completeness: If both P,V follow the protocol then V always accepts.

— Special soundness: There exists an efficient algorithm & (extractor) which
given any transcript of two accepting conversations (¢,c,7),(t,c’,1")
with the same commit message, always produces a witness w such that
(prms, w) € R.

— Special honest-verifier zero-knowledge There exists an efficient algorithm
Sim (simulator) that Vprms € Lgr and V¢ € C can produce tran-
scripts (t,c,7) with the same probability distribution as conversations
(P(w), V(), prms) between honest prover and verifier for any w ¢ W, c €
C where (prms,w) € R. Furthermore, if prms ¢ Lg, Sim can produce ac-

cepting conversations for a given ¢ € C.
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A X.-protocol can be made non-interactive by replacing the random challenge of V,
with the output of a random oracle [FS86]. In practice, the random oracle is in-
stantiated with a hash function H. In this thesis, non-interactive X-protocols are
denoted as NIZK{(prms),(w) : (prms,w) € R} where w is the private witness of
the P that validates the relation R. As a result, a non-interactive .-protocol com-
prises two functionalities: NIZK.Prove(prms,w) = 7t that generates the proof 7t and
NIZK.Verify(prms, 7t) € {0,1} that outputs if a proof is valid.

Schnorr 2-protocol

The prototypical Z-protocol was introduced in [Sch89], and proves knowledge of the
discrete logarithm x of a value y = ¢* in a group G of order g generated by g. Such
a protocol can be used to prove knowledge of the private key, that corresponds to

a public key in the ElGamal cryptosystem. The Schnorr protocol 75 is depicted in

Figure 2.1,

NIZK{(G, g, q,),(x) -y = g*}

Prover Verifier
t<s$ Zq
T := gt
T
C<$ Zq

or in the random oracle model:

c:=H(T,y)
c
ri=t+cx
r
Accept if and only if:
g =Ty

FIGURE 2.1: Proof of knowledge of discrete logarithm (Schnorr protocol)

The proof can be simulated by anyone by pre-selecting the commitment as g"y~¢. It

requires 1 exponentiation from P and 2 exponentiations from V.
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The non-interactive version of 77g replaces the honestly generated challenge ¢ by

using a call to a random oracle H. As a result, NIZKgchnorr-Prove((G, H, g,9,y), x) =
(c,r) and NIZKschnorr-Verify((G,H, 8,9,v),(c, 7)) = (c =H(g"y 5, v))

Chaum-Pedersen 2-protocol

Another 2-protocol that is extensively used in the electronic voting literature was
proposed in [CP93] and is depicted in Figure 2.4. It can be used to show discrete
logarithm knowledge and equality. The Chaum-Pedersen can be equivalently formu-
lated as a proof that the tuple (g1,42,¥1,Y2) is a Diffie Hellman (DH) tuple, since
if y1 = g AND y, = g3, then since g» = gf for some a € Zy: (g1,82,¥1,Y2) =

(81,8181, 87°)-

NIZK{(G,q, 81,82, y1,¥2),(x) : y1 = §F AND y = g5}

Prover Verifier
t<sZ,
T1 =g
Tpi=g
T, T,
c<$Z,

or in the random oracle model:

c:=H(T1, T2, y1,¥2)

ri=t+cx

Accept if and only if:
g1 - Tiys AND
82=Toy

FIGURE 2.2: Proof of knowledge of discrete logarithm equality (Chaum - Ped-
ersen protocol)

The proof requires 2 exponentiations from P and 4 exponentiations from V. It can be

simulated in a similar manner as in section 2.4.1.
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The non-interactive version, 7Tcp outputs again a tuple (c,7) which must verify both

relations:

c=H(gy1y)
¢ =H(g5° y2)

Note that the Chaum-Pedersen protocol is essentially the Schnorr-protocol applied
to the homomorphism f; : G — (G x G). As a result, the same protocol can be used
to prove that an ElGamal ciphertext is raised to a known x power, by applying the
homomorphism f; : (G xG) - (G xG) x (G xG).

Y'-Protocol for Pedersen commitment

The protocol in to prove knowledge of the opening of a Pedersen commit-
ment, was proposed as an identification protocol in [Oka92].

NIZK{(G, g,q,,0), (m,r): 0 =g"y"}

Prover Verifier
t,tr <$ Zq
Ti=gy"
T
c<$Z,

or in the random oracle model:

c:=H(T,y,x)
e
1=t +em
1y =1y +er
r1,12
Accept if and only if:
grlyrz — T,UC

FIGURE 2.3: Proof of knowledge of Pedersen commitment openings

The proof requires 2 exponentiations from P and 3 from V. The non interactive ver-

sion 7Tp outputs again a tuple (c, rq, 2) which must verify the relation: ¢ = H(g"1y"2v7¢, y, ¢).
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Composition of X-protocols

Actually the protocol in is a special case of X-protocol composition. In
[CDS94] a complete framework is provided in order to combines X-protocol using
disjunction, conjunction, equality and more. The disjunction case (or simply OR-
PROOF) is particularly tricky since the prover must prove knowledge of any one wit-
ness in a possible set, while knowing only one. In order for the combined proof to be

valid, P must combine the actual proof with ‘fake” proofs for witnesses that he does

not know. In order to achieve this the simulator of Definition 2.11 will be used for
the fake proofs, as we described in the case of the Schnorr protocol in section 2.4.1.
The disjunction of two Schnorr protocols is depicted in Figure 2.4.

NIZK{(G,§ 9,y1,42), (x) : y1 = g1 OR y = g2}

Prover Verifier

t1,t2,c0 <82,

T1 = gtl
Tr:=y,8"
T, T,
c<$Z,4
or in the random oracle model:
C:= H(Tl/ TZ/yl/yZ)
c
c1=C—Cp
=1t +c1x1
rp =1ty
1,72

Accept if and only if:
" = Tyy] AND
8% =Ty

FIGURE 2.4: Disjunction of Schnorr Proofs

The proof requires 3 exponentiations from P and 4 exponentiations from V.



Chapter 2. Cryptographic Preliminaries

The non-interactive version 7ToRs is a tuple (¢, r1,77) that satisfies the relations:

c=H(g"y1y1)
¢ =H(g"y5 " y2)

Applications of 2-protocols to electronic voting

Using these tools one can construct many useful 2-protocols. In this thesis we utilize

the following:

— Proof of correct ElGamal encryption 7tg,. of a known message m in ciphertext
c l.e.

NIZK{(G, g, q,pk,c,m), (r) : ¢ = Encpi(m,7)}.

If ¢ = (c1,¢2) = Encpi(m, r) = (g7, mpk") then (c1,com™1) = (g, pk”). Proving
correct encryption of a message reduces to proving that (g, pk,c1,com™1) is a

DH tuple, which can be done using the 7t¢p of Figure 2.2,

— Proof 7tregnc that an ElGamal ciphertext ¢’ is a reencryption of c i.e.
NIZK{(G,g, q,pk,c,c’),(r") : ¢/ = ReEncpy (m, r’)}.

If ¢ = Encpi(m, 1) = (§",mpk’) and ¢’ = Encpi(m, r+1") = (g”r',mpk”r,) then
ccl = (g", pkr/) which reduces to 7tcp proving that (g, pk,g’’, pk’’) is a DH

tuple (Figure 2.9).

— Proof of correct decryption 7tpec of an ElGamal ciphertext ¢ = (cq,¢2) to a
message m. In order for the decryption to be correct, the correct private key

must be known and used by the prover, ie. ¢k = pk and ¢y = mcik. This

corresponds to the composition of two 7T or equivalently to 7rcp (Figure 2.2):

NIZK{(G, g, q, pk, c,m), (sk) : g = pk AND com-1 = c*

— Proof of knowledge 71, of plaintext encrypted in a lifted - ElIGamal ciphertext
c. To be more specific: NIZK{(G,g, q,pk,c), (m,r) : ¢ = Encpk(gm,r)}. This
proof is a combination of the Schnorr ¥-protocol and the X-protocol of the Ped-

ersen commitment openings. We can come up with the same proof by applying

the general pattern of [[Gro03] as described in Figure 2.5.
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NIZK{(G, g, pk,c), (m,r) : ¢ = Encok(¢™,7)}
Prover Verifier
mq <$ M, r1 <% Zq
Ccl = Encpk(gml,rl)
C1
e<$Z,
or in the random oracle model:
e:=H(c 1)
e
my = my +em
ryi=ry+er
my, 1
Accept if and only if:
Encp(g™,77) = ¢1- ¢

FIGURE 2.5: Proof of knowledge of plaintext in lifted ElGamal ciphertext

2.-protocol disjunction is of particular interest in the electronic voting scenario case,
since it can be used to prove vote validity, i.e that an encrypted vote belongs to a set
of valid options. For instance, if the possible candidates are 11, m5, m3 the voter must
prove that her encrypted ballot contains an encryption of 7117 OR m, OR m3. This task
can be performed by using a disjunction of 3 proofs of correct ElGamal encryption
TTenc for mq, my, m3 respectively. Using this technique, the proof size is proportional
to the number of elements in the set, which is impractical. Many techniques can
improve it DBLP:conf/acns/Groth05,Camenisch2008.

Use of strong Fiat-Shamir heuristic A final note concerns non-interactive X-
protocols utilizing the Fiat-Shamir heuristic. [B 2] notes two variants of the
heuristic, as far as the challenge step is concerned. In particular, in the strong vari-
ant, the challenge is computed on both the commitment and the full statement to be
proved. On the other hand in the weak variant only the commitment is taken into ac-
count. If the prover is malicious and can adaptively changes the statement, the weak
variant can yield unsound proofs. Recall, that use of the strong Fiat-Shamir heuris-

tic can create NM-CPA secure schemes from IND-CPA secure schemes accompanied

with NIZKPoK [BPW12].
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To better illustrate the weakness, assume that a malicious prover P* is allowed to
adaptively select 1 in = NIZK{(G, q,81,82,Y1,Y2),(x) : y1 = g¢ AND
/Y2 =85} of Figure 2.3

— P* selects a,b «sZ4 and commits to (T, Tp) = (gilrglf)

The challenge is computed only as ¢ = H(T7, T,), without including y1, y».

The response is computed as 7 = a + cx

The relation g7 = Ty verifies correctly.

P* selects yp = (ggTz_l)C_1

Note that the relation g7, = Tpy5 verifies correctly, despite the fact that with
overwhelming probability x = l0gg, y1 # [0gg, 2.

This weakness has been actively exploited even in voting systems [BPW12; Cul+19],

causing breaks in verifiability and privacy. To bypass this weakness all non-interactive
versions of 2-protocols should include the complete public input and the statement to
be proved. In the exposition in the following chapters, we omit for better readability,

but we note that a secure implementation must take this ‘detail” into account.

2.5 Digital Signatures

Encryption schemes deal with the secrecy of a message. Digital signatures, initially
proposed in [DH76] deal with the authenticity of the message, i.e. that a message
was sent by the claimed sender and that it was not altered in transit. Digital signa-
tures, can be constructed out of public key cryptosystems by using the private key for

signing sk and the public key for verifying (vk), also enabling the public verifiability

of these properties. However, as we shall see in subsection 2.5.2, the visibility of the

verifiability operations can be tweaked, giving access to many interesting and useful

schemes.

Definition 2.12: Digital Signature Scheme

A signature scheme DS is a triple of algorithms (KGen, Sign, Verify) and three
sets IK,IM, S such that:
— (vk,sk) < DS.KGen(1%), generates the verification and signing key
vk, sk € K.
- 0 :=DS.Signg (m), signs the message m € M using sk.
- {0,1} := DS Verify,, (m, 7), verifies the signature 0 on message m, out-

putting 1 if and only if the verification is successful.
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For the scheme to make sense, correctness must hold:

Vm e M, vk, sk € K
DS Verify,, (m, DS .Signg (m)) =1

The main security property of digital signatures is unforgeability, meaning that only
the signer S (identified by the possession of the signing key) can generate valid signa-
tures verified by the corresponding verification key. Since the signatures are public,

the aspiring forger can utilize previously signed messages. This is formalized in the

game Algorithm 2.8, where the forger can also generate his own messages.

Algorithm 2.8: Forge 4 ps

Input : security parameter A

Output: {0,1}

((sk,vk) < DS.KGen(1)

{(my, ) 2P APS S8 (issue, pk)

(m,0) < A(guess)

if DS Verify(m,c) =1 AND Vi m # m; then
| return1

else
| return 0

end

Definition 2.13: Unforgeability

A signature scheme DS is (existentially) unforgeable (under a chosen message

attack) if for every PPT A there is a negligible function of A where:

Pr[ForgeA,DS(A) = 1] < negl(A)

Okamoto-Schnorr Signatures Signature schemes can be created from >-protocols,
by applying the Fiat-Shamir heuristic [FS86]. Instead of supplying only the commit-
ment to the hash function, the signer provides the message to be signed and the public
key. In essence, the signature is a proof of knowledge of the private key and the mes-

sage.
The Schnorr signature scheme derives directly from the Schnorr -protocol [Sch91]].

This thesis proposes two signature schemes that are extensions of the scheme pro-
posed in [Oka92] also known as Okamoto-Schnorr signature scheme. The function-
ality is depicted in Figure 2.7.
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Common input: random primes p, q|(p — 1), g € g-order subgroup G of Z,
U’s private input: m € M

S’s private input : s € Z,

S’ public verification key: v = ¢7° mod p

Commitment Phase. The Signer:

— Picks 7 < Zq;

- Computes x := ' mod p;

— Sends x to the user.
Challenge Phase. The User:

- Sete:=H(m,x,v)

— Sends e to the signer.
Signing Phase. The Signer:

- Computes y := 7 + es mod ¢;

— Outputs signature 7 := (e, y).
(Public) Verification Phase.

- Accept if and only if e = H(m, Y0, v)

FIGURE 2.6: Schnorr Signatures

Common input: random primes p, q|(p - 1), g1, 82 elements of g-order subgroup G of Z,
U’s private input: m € M

S’s private input : (s1,82) € Z; x Z

S’ public verification key: v = g;"'¢," mod p

Commitment Phase. The Signer:

— Picks 1,12 «$2Zy;
- Computes x := g;'g5* mod p;
— Sends x to the user.
Challenge Phase. The User:
- Sete:=H(m,x,v)
— Sends e to the signer.
Signing Phase. The Signer:
— Computes y; =71 +esy mod g, Y2 := r2 + es; mod ¢;
- Outputs signature 7 := (x,e,y1,Y2).
(Public) Verification Phase.

e

— Accept if and only if x = ¢' ¢3*0° (mod p)

FIGURE 2.7: Okamoto-Schnorr Signatures
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The security of this scheme has been studied in [PS00]. Performance-wise the scheme

requires 2 exponentiations for the signer and 3 for the verifier.

2.5.1 Blind Signatures

In most signature schemes the signer has access to the message to be signed. In
[Cha83], David Chaum proposed a new type of digital signature, called a blind signa-
ture, which allows a signer to sign messages without having access to their contents,
thus protecting the privacy of the message contents. The user first blinds the mes-
sage and the signer signs it in this blinded form. The user subsequently unblinds the
signature, and retrieves a signature for the plain message. This unblinded signature
does not differ in anyway from a normal signature. Note that the signer essentially
creates an intermediate representation of the final signature, who is then ‘forged’ by
the user during unblinding to create the final signature. The motivating application,
behind this primitive is anonymous centralized electronic cash. A bank blindly signs
tokens created by the user to vouch for her capacity to spend a coin of particular
value. Blinding protects the user, as it stops the bank from linking signing requests
with signature verifications. Furthermore, the fact that the signer is impervious to
the contents of the vote, motivates its use for electronic voting as well. Here the elec-
tion authority authorizes the ballot submitted by the user without having access to

its contents.

Blind signatures inherit the unforgeability security property from plain digital sig-
natures. However, they must also express the signer should not be able to retrieve
the signed message (in the voting scenario) or associate signatures with protocol ex-
ecutions (in the e-cash scenario). As a result, their security also depends on having
blindness or unlinkability, formally defined in the game in which is
adapted from [SU1Z]. The goal of the adversary is to learn (a function of) the mes-
sage to be signed, which in blind signatures is a secret input of the user. As a result,
the adversary sets up the keys to his advantage and selects two messages. The user
executes the signing protocol with these messages in random order. In the end the
adversary must guess which message was signed first and which second, in effect
breaking the blindness property. Note that the signing is not simply an algorithm
executed by the signer, but an interactive protocol executed between the signer and

the user, where the output (i.e. the signature) comes from the user.

Definition 2.14

A blind signature scheme I1 is perfectly blind if for every (unbounded) .A:

Pr[BlindExp 4 ;(A) = 1] =

N[~
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Algorithm 2.9: BlindExp 4 1y

Input : security parameter A
Output: {0,1}

(vk, sk, mg, my) < A(find, 11)

b<s{0,1}

b’ < {0,1}

0 < Sign(A(issue,sk),U(my), (pk))

01_p < Sign(A(issue, sk),U(m1_y), (pk))

if Verify(my, 0y) =1 AND Verify(mq_y,01_p) = 1 then
| b’ < A(guess,0p,01)

end

if b = b’ then
| return 1

else
| return 0

end

The unblinding used to produce the signature has an important complication regard-
ing unforgeability: The final signature actually comes from the user now, and not the
signer. As noted in [PS96] this breaks the standard definition of forgery as described
in [Algorithm 2.8: The user herself creates the signature from an ‘intermediate’ repre-
sentation provided by the signer. As a result, the standard unforgeability definitions
do not make sense in this case. Instead, unforgeability is defined as the inability of
a malicious user to create more signatures than the number of interactions with the
signer, in direct reference to the e-cash and e-voting scenarios: the user cannot make
more coins (ballots) than the bank (election authority) approved. This interpretation
of unforgeability has been formalized in [PS00] with the notion of (1,1 + 1)-Forgery,
where for any integer / the forger A must produce [ + 1 valid signatures after at most
[ interactions with the signer S. One-More Forgery is a (I,1 + 1)-Forgery, where [ is
polynomially bounded, while Strong One-More Forgery is a (I, + 1)-Forgery, where [
is polylogarithmically bounded.

Algorithm 2.10: OneMoreForge 4 11

Input : security parameter A
Output: {0,1}

(sk,vk) < KGen(11)

{(m;, 7)Y} < Sign(S(sk), A("), (pk))7" ™)

if (Vi,j withi#j=m;#m;) AND (Vi Verify(prms, pk, sk, m;,0;) =1) AND k<1
then
| return 1

else
| return O

end
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Definition 2.15

A blind signature scheme I1 is one more unforgeable if for every PPT A there

is a negligible function of A where:

Pr[OneMoreForge arn(A) = 1] < negl(A)

The security of blind signatures has been studied in the random oracle model in
[PS96]. Their results were later refined in [PS0(] and revisited in [SU12]. A complexity-
based approach was presented in [JLO97], however the schemes analyzed are deemed
largely theoretical.

Our novel primitives CBS (section 3.1) and PACBS (section 3.1) are direct extensions of
the Okamoto - Schnorr (OS) blind signature scheme [Oka92], presented in Figure 2.8.

Common input: random primes p, q|(p — 1), g1, §2 elements of g-order subgroup G of Z,
U’s private input: m € M

S’s private input : (s1,82) € ZyxZ,;, be{0,1}

S’ public verification key: v = ¢;°'¢," mod p

Commitment Phase. The Signer:

- Picks 71,12 <$2Z;
- Computes x := g'¢7? mod p;
— Sends x to the user.
Blinding Phase. The User:
— Selects blinding factors 11, u, d <$ Z;
- Computes x* := xg}' ¢5>0% mod p,e* := H(m,x*),e = ¢* ~d mod g;
— Sends e to the signer.
Signing Phase. The Signer:
- Computes yq :=r1 +esy mod ¢, Y2 := 12 + es; mod g;
— Outputs blind signature B := (x,e,y1,Y2).
Unblinding Phase. The User:
- Unblinds by computing 07 := y1 + 11 and 03 := Yy + up;
— Outputs 7 := (x*,e*,01,072).

(Public) Verification Phase.

— Check if x* = g7 g7?v"

F1GUre 2.8: Okamoto-Schnorr Blind Signatures
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2.5.2 Designated Verifier Signatures

Blind signatures restrict access to the message being signed in order to protect the
privacy of the user. Another variation of digital signatures, Designated Verifier Sig-
natures (DVS) restrict their verifiability, for a similar reason. DVS originate from
designated verifier proofs, proposed in [JSI9¢]. These proofs are only verifiable by
an entity specified by the prover during their creation. From their inception, one of
their possible uses involved coercion resistance electronic voting; whether the vote is
counted would not be a publicly available fact, so that a coercer could check it. Only

the voter would be convinced about the validity of the vote or a credential.

More concretely, assume that the prover wants to prove the statement R(prms, w)

where w is a private input known to P. To make the proof designated by a specific ver-

ifier, the statement to be proved becomes R (prms, w) ORI know the private key of the verifier.

When the verifier receives the proof, she can be convinced of R(prms, w), assuming
that her private key has not leaked. However, a third party is not sure whether he is

viewing the original proof or a proof simulated by the verifier.

More formally [LWBO035]:

Definition 2.16: Designated Verifier Signatures

A designate verifier signature scheme DVS is a tuple of algorithms
(KGen, Sign, Sim, Verify) and three sets K, M, S such that:
— (vkg, ske, vky,sky) < DVS.KGen(11), generates the verification and
signing key for the signer and the designated verifier respectively.
- 0= DVS.Signskslvkv(m), signs the message m € IM using skg. Note that
the algorithm is parameterized with the public key of the verifier.
= 0 = DVS.Simy sk, (M), simulates a signature for the message m € M
using sky,. Note that the algorithm is parameterized with the public key
of the signer.

- {0,1} = DVS .Verifyvkslvkv(m,ﬁ), verifies the signature ¢ on message

m, outputting 1 if and only if the verification is successful.

\. y

Correctness implies that:

Vm € M, pkg, skg, vky,, sky, € K
DVS.Verifyka,VkV(m, DVS.Signskslka(m)) =1 AND
DVS.Verinykslka(m, DVS.Signvks’skv(m)) =1

According to the game in Algorithm 2.8, a simulated designated verifier signature is
a forgery since it is not created using the private key of the signer. However, this
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forgery is useful in DVS, so the game in Algorithm 2.8 must be updated, so that the
forger has access to the simulation functionality:

Algorithm 2.11: Forge 4 pys

Input : security parameter A
Output: {0,1}

(vkg, ske, vk, sky, ) < DVS.KGen(1%)

{(ml’ 5_1) }f:lly(A) - ADVS'SignSkS,VkV’DVS'SigndS’SkV (issue, VkS/ Vkv)

(m,7) < A(guess)
if DVS.Verify(m,7) =1 AND Vi m # m; then
| return1

else
| return O

end

Definition 2.17: Unforgeability

A signature scheme DVS is (existentially) unforgeable (under a chosen mes-

sage attack) if for every PPT A there is a negligible function of A where:

Pr[ForgeA,DVS(/\) = 1] < negl(A)

In electronic voting, designated verifier signatures have been used is schemes that
provide receipt-freeness and coercion resistance. Their main use is that they provide
deniability through their simulatability. All voters possess key pairs and when the
EA wants to provide proof that a credential or ballot is valid, it includes the public
key of the voter inside. As a result, when a coercer demands proof that the provided

ballot is valid the voters simulates it using her private key.
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SreEnc = DVS{(G,§,9,y,¢,¢',pky, Pkea), (1) : ¢’ = (¢}, c}) = (§"c1, pkc2) = ReEnc(c) }

Prover (7) Verifier (sky,)
tl/ t2/ t3 <$ Zq
Ty = g™, Ty = pki, T = g"2pk{

11,15, T3
c<$Zy4
or in the random oracle model:
c:= H(Tll TZ/ T3/ pkEA/ pkv)
c
s:=t+r(c+t)
S, t2/ t3

Accept if and only if:
Ts = g"pky
g = (ci/c)™"Ty

pkip = (c2/c2)"2 T

FIGURE 2.9: Designated verifier proof of correct reencryption from [HS0(]

A designated verifier proof of correct reencryption dregnc (i-€. a variation of 7TRegnc),
that is used in voting systems of interest [CCM08] in this thesis was proposed in
[HS0d] and is depicted in Figure 2.9. If the voter has kept sky, secret, then he can fake
the value T3 by selecting ¢, t5: t5 + skyt3 = t} + skyt; to provide a different ballot to

the coercer (vote buyer) that satisfies dRegnc.

In strong designated verifier signatures, also defined in [JSI96], verifiability is not
public, and the private key of the verifier, must be used for verification. The simplest
way to create them is to encrypt the signature with the public key of the verifier. In
the proposed voting scheme, we use strong designated verifier signature in a "reverse’
manner: The voter embeds the public key of the EA in the ballot, to allow the tallier

to check if a credential (signature) is valid, without the coercer being able to do so.
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2.6 Threshold Secret Sharing

Knowledge/possession of the secret key in asymmetric cryptosystems yields signifi-
cant power, as the holder can read encrypted messages or create signatures. In elec-
tronic voting, this can have the effect that the election authority can have access to
the plain contents of an encrypted ballot. Combined with available identity informa-
tion on the voters, this would mean that the election authority is aware of the voter
- vote correspondence. Consequently, the EA must be trusted not to make use of
this power. In order to reduce the required trust and the likelihood of such a sce-
nario occurring, one could share the secret key between different agents so that the
execution of the signing-decryption operations requires the cooperation of either all
or a subset of them. In fact, by selecting agents with conflicting interests one can
insert game-theoretic dynamics into the situation, thus making deviating behavior
more difficult. This is achieved with the use of secret sharing schemes that give rise

to threshold cryptosystems.

A secret sharing scheme, where all participants must cooperate to decrypt an ElGamal
ciphertext was presented in section 2.7, Now we relax the participation requirements.

In a (t,n) threshold secret sharing scheme, an agent called the dealer has a secret s
that wants to share between n participants called the players in such a way that at

least t of them can reconstruct it, but no less.

The prototypical secret sharing scheme was presented in [Sha79] and is based on
polynomial interpolation using Lagrange coefficients for sharing of element of s in
IF, where p is a prime. The idea of the scheme is that a t -1 degree polynomial F
can be uniquely reconstructed using t points {(x;, p(x;))}!_,, as there are infinite ¢
degree polynomials that contain these ¢ points but a single t — 1 degree polynomial.

xij

t t ]
Let F(x) = i1 Yi I—[j=1,j4ti Xi=Xj

As a result, in order to share a secret s:

The dealer chooses a random polynomial of degree t — 1 so that F(0) =s

Distributes 7 pairs {(x;, F(x;))}" xi#0

i=1"

t players can reconstruct the polynomial (and recover s), but f — 1 players can-
not. In fact, we are not interested in reconstructing the polynomial but only in
retrieving F(0)

,j:#i xi—xj

Each player i computes the Lagrange coefficients A;(0) = ]'I]t-zl mod p

t players compute F(0) = ¥'1_; F(x;)A;(0) mod p
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The scheme above assumes that all the players are honest. However, this might not

always be the case [Ped91]:

— The dealer might give out incorrect shares to all or part of the players. As a
result, the secret will not be reconstructed. To deal with this threat the players

must be able to validate them.

— The player might not present their correct shares during reconstruction. To deal

with this threat the shares need to be checkable by everybody.

These issues are dealt by verifiable secret sharing which combines secret sharing with

Non-Interactive zero-knowledge Proofs of Knowledge and commitment schemes [[Fel87;

Schog].

2.6.1 'Threshold cryptosystems

Secret sharing schemes can be combined into cryptosystems to split the decryption
and signing functions in order to reduce the power of a single authority. Note that
this should not be done naively, by reconstructing the secret key, since this will be
useful only for a single encryption/signature, as the participants will afterwards learn
the key. In fact, the sharing function needs to be embedded into the signing and

decryption functions.

As an example, consider the threshold version of the ElGamal cryptosystem (sec
tion 2.2), where the key generation functionality KGen is modified, so that it outputs
shares of the private key sk except the public key pk. This shares are distributed to the
authorities that will have power of decryption. The encryption function takes place

without change.
Decryption of a ciphertext ¢ = (c1,¢p) proceeds in two stages:

— Each player P; creates a decryption factor using its share of sk by computing:
- = o Fxi)
Si =1

— t ‘decrypted’ shares are combined by:

Hsl{\i(o) _ HsiF(xi)?\i(O) =
i i

0y Zi FEDMA0) — o FO) _ 5

— Decryption follows by computing c; - CISk
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2.6.2 Plaintext Equivalence Tests

A Plaintext Equivalence Test, henceforth referred to as PET , is a cryptographic prim-
itive introduced in [JJ00] which aims to convince a set of t participants that two ci-
phertexts indeed encrypt the same plaintext. It is meant to operate in a distributed
setting, which means that the decryption key is shared among the participants. To
avoid cheating [JJ0] assumes that at least one of the participants must be honest, i.e.
truthfully follow the protocol. However, some part of the secret key must be provided
to the functionality as the PET would otherwise violate the IND-CPA security prop-
erty.

Definition 2.18: PET

A Plaintext Equivalence Test is a cryptographic protocol such that:

PET (Encpk(ml), Encpk(mz)) =1 miq = myp

In the case of ElGamal encrypted ciphertexts, the inputs to the protocol are two tu-
ples ¢ = (¢1,¢2), ¢ = (c],c}) and the output is true if they encrypt the same plain-
text and false otherwise. The main idea employed is that the equivalent ciphertext
CPET = (%, E—z) will be the encryption of 1 if the ciphertexts encrypt the same plain-
text. Otherwise it will decrypt to arandom integer. The PET functionality is depicted
in Algorithm 2.12:

All players blind cpgt and create the proof 771 that they know the blinding factor.
Then all players create a common blinded ciphertext and a decryption factor ; along
with a proof of knowledge of the private key share. Then everybody pools together
the values of ¢; and decrypt the ciphertext. If the plaintext is 1, it means that ¢, ¢’
encrypted the same message. Otherwise, decryption returns a random group element,

which means that the test is unsuccessful.

Each participant in PET performs 6 exponentiations to create the values (3 for the
values of the algorithms and for 3 the proofs). The verification of all the generated

proofs requires 6¢ exponentiations.

[MPT20] note that if all players collude then they can falsely prove either that two
ciphertexts do encrypt the same plaintext (when they do not) or that two ciphertexts

do not encrypt the same plaintext (when in fact they do).

As a simple way to cheat in the former case consider the following simple scenario:

All colluding players agree to z; such that ¥;z; = 0. As a result, in Algorithm 2.12

¢ = (1,1), so a trivial encryption of 1 is presented, which is valid even if my # m.
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Algorithm 2.12: PET functionality for ElGamal ciphertexts
Input :G, 9.9,

pk; such that: Hf pk; = pk,

c = (cy,¢2), ¢ =(c},c)) encrypted under pk
Private Input: sk; € Z; such that Zf sk; = sk

Output :{0,1}
[ C
CPET = & = (j,é

CiPET = CéiET = (ci1,cin) = ((%)Z"/ (E—E)Zi)
i1 < NIZK{(G, g, 9, pk, cpeT , i peT ), (2i) : CipET = Cpgt |

Publish (¢; peT , 77i1)
Wait until all players have posted
Verify the proofs 77;; posted from other players

¢ =TT ciper = (TTic1i ITico) = (Cliizifczziizi) = (x,y)
l/]i = xSki

7in < NIZK{(G, g, 9, pk, ), (sk;) : p; = x°i }

Publish (l[)i, 7'(1'2)
Wait until all players have posted
Verify the proofs 77j, posted from other players

0:=y/TI} ¢i
if p =1 then
| return 1

else
| return O

end
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The probability that this happens by accident is negligible. In order to thwart this
attack, a check must be added so that if [; ¢; pet = (1,1) then the protocol aborts.

A more subtle way from [MPT20] to cheat and prove that 711y = m, utilizes the attack
against the Fiat-Shamir heuristic from [BPW12], where the full statement has not
been included in the call to the random oracle (cf. section 2.4.1). This allows the
ciphertexts to be selected after the proof is created, in a way that make the proof

hold, regardless of whether the plaintexts are equivalent.

There are two ways to fix this vulnerability which has been found to affect most
electronic voting systems that use fake credentials to achieve coercion resistance
[MPT20]. The first way, makes the assumption that there is at least one honest player.
However, if applied to electronic voting, it is in conflict with the universal verifiabil-
ity property, where the EA is assumed to be corrupted. In order to deal with this
problem, it must be ensured that the prover creates the proof after the ciphertexts
have been selected. To do this both ciphertexts must be present in the call to the hash

function implementing the Fiat-Shamir random oracle.

Whenever we use the PET primitive in this thesis, we refer to the version with the
strong Fiat-Shamir transform. As a result, the distributed equivalence test can take

place with all members corrupted, and provide a plaintext equivalence proof.

2.7 Verifiable Shuffles

In we remarked that there can be two ways to implement the ballot secrecy
requirement. The one involves the secrecy of the ballot contents, implemented by an
IND-CPA secure cryptosystem such as ElGamal. However, there is another possible
solution: to disassociate the ballot contents from the voter identity, thus achieving
vote unlinkability. In more detail, the users submit their votes to an anonymizing
functionality and they emerge transformed without any identity information, in ran-

dom order, stripping away network addresses and timing data.

However, since such a functionality directly processes ballots, there is much room
for adversarial manipulation. For instance, ballots could be dropped or replaced with
altered contents. As a result, an anonymizing functionality should also provide evi-
dence that its operations followed the protocol correctly. We shall call such a func-

tionality a verifiable shuffle or a verifiable mixnet i

Verifiable shuffles have been used in many politically binding elections (e.g. in Switzer-

land as described in [Cul+19]). Formally, they are defined in adapted
from [Boy+18]:

I Typically a mixnet is a sequence of shuffles, but we use refer to a shuffle as a collective functionality
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Definition 2.19: Verifiable shuffle

A verifiable shuffle or mix is a tuple of algorithms Shuffle =
(Gen, Submit , Mix , Verify) such that:

— (pk,sk) « Shuffle .Gen(11), generates the public and secret keys.

— ¢; < Shuffle .Submit py(m;) is an algorithm, parameterized by the pub-
lic key, that allows the users to input their messages. The vector of mes-
sages is denoted 1 = (m;)",. After all inputs are submitted the output
is produced denoted ¢ = (¢;)7,

— (M, 7tspure ) < Shuffle .Mix (¢) is an algorithm that performs the actual
shuffling of the n submitted messages and outputs the same underlying
messages in a different form and order accompanied by a proof of correct
operation.

- {0,1} < Shuffle .Verify(7\ix ) checks the proof of correct operation of

the functionality.

Internally, Shuffle uses an encryption scheme and a proof of knowledge system in
order to implement and generate the Shuffle .Mix , 7tpix respectively. In particular
Submit p(m;) = Encpi(m;, r;) where the randomness 7; is selected by the user. The
Verify functionality may also provide evidence that pinpoint the culprit in the case of
malicious behavior, thus providing accountability as well. For instance, it can be used
to prove that a particular sender submitted an invalid ciphertext (e.g by duplicating
another already submitted input) or that a specific mix server did not follow the spec-
ification of the Mix functionality. The various types of mixnets are differentiated by

how they perform the Shuffle .Mix functionality and how they create the 7Ty

Shuffles have a 40 year research history in the literature, during which they have
been proposed as a general uses anonymity primitive with application in anonymous
browsing, email, auctions, electronic voting and more. They originally appear in
[Cha81]]. This initial version does not include the Shuffle .Verify functionality and
TTmix hor does it take advantage of encryption malleability. The Shuffle .Mix func-
tionality is distributed into m entities called mix servers each equipped with its own
key pair (pk, sk)].”il. Behind the scenes the Chaumian mixnet uses the RSA cryptosys-
tem [RSA78] where Shuffle .Submit y (11;) = {Encpk],}]l.zm(mi), that is, the users en-
crypt their inputs with the public keys of the mix servers in reverse order. During
processing each mix server, sequentially batch processes all ciphertexts, by removing
each layer of encryption using its private key after applying the random permutation.
In the end the mixnet outputs the original plaintexts in random order via the last mix
server. The communication between the mix servers takes place using a BB (broad-

cast channel with memory), implemented in practice with a central repository. As a
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result, these first generation mixnets are also called Decryption mixnets. Each sender

has access to the BB and can identify the output of each mix server.

Second generation mixnets were proposed in [PIK93]. They are also called Reencryp-
tion mixnets, as they utilized the malleability properties of the underlying cryptosys-
tem. There is one common public key, while the secret key is distributed to all the
mix servers. Each of them simply permutes and reencrypts the ciphertexts. In the
end the ciphertexts are threshold decrypted. As a result, reencryption mixnets are

usually combined with a threshold cryptosystem.

Mixnets in these categories are secure under a threat model were the adversary is
passive. In fact a single honest mix server suffices for privacy under this setting. The
need for verifiable mixnets was made evident after the discovery of tagging attacks
in [PP89; Pfi94]. An active adversary can use the malleability to his advantage by
injecting a tag to the message he wants to track. For example, in the case of ElGamal
encryption, in order to track the message m encrypted as c, the adversary chooses
x < Z4 and with the help of a corrupted participant injects c*. Because of the ho-
momorphic properties the output will contain both m, m* which the adversary can
check. This tagging attack is ubiquitous the security literature and can be used to
break many properties of cryptographic voting systems. More attacks can be per-

formed by the mix server who process all the messages from all users.

An overview of verifiability in shuffles is presented in [HM20]. In general, there
are two types of verifiable mixnets: the first enable individual or sender verifiability

[Wiko05] where each sender can check that her own message was correctly shuffled.

— Message tracing: Each sender keeps the randomization and all intermediate ci-
phertexts used to produced the input of a decryption mixnet. Subsequently she
compares the output of each mix server with its own intermediate ciphertext

and posts an anonymous complain if she cannot find it.

— Verification codes: Each sender includes a random code with its message be-
fore submission to the functionality. After processing, the sender checks if the

verification code appears in the output.

The first universally verifiable mixnet was proposed in [SK93], where a cut and choose
protocol was proposed to check the correct operation of the mixnet. Each mix server
creates a secondary shuffle (permutation and randomization values). When chal-
lenged it reveals with equal probability the second shuffle or a combination of the

primary and secondary shuffle. The scheme was improved in [Abe98]. It is the basis

of the Zeus fork of Helios [[Tso+13].
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There are two types of universally verifiable mixnets: Shuffles in the first category
provide proofs for the correctness of the complete shuffle operation, with overwhelm-
ing soundness and without sacrificing message privacy. They employ what is known
as proof of shuffles which apply mostly to reencryption mixnets. They utilize the
malleability of the encryption scheme by reencrypting the shuffle inputs after they
have been randomly permuted. That is: Mix (77) := ReEnc(¢(71)), where ¢ is a per-

mutation selected uniformly at random.

In general the proof of shuffle 7gp e is provided by each mix server and is the non-
interactive version of a proof that the permutation and reencryption operations have

been correctly executed:

Tshuftle = NIZK{(pk, €, "), (¢,7) :
Ci) = ReEncpk(cg;l(i),r,-),

Vie[n],rier,ciec,c; e?}

In the end, all mix servers prove correct decryption. There are many works on proofs
of shuffle in the literature [FS01; Nef01; Wik09; TW10; BG12] to name a few. Their

main drawback is that they are computationally demanding.

To improve the performance of universally verifiable mixnets, other methods have
been proposed. The performance trade-off is the loss of soundness and in some cases
some loss of privacy. For instance, in Randomized Partial Checking [JJR0Z] the ver-
ifier asks the prover (each mix server) to reveal the correspondence between half of
the inputs and outputs of the shuffle. As a result, a mix server is caught cheating
with probability % Despite the fact that some portion of the output is revealed the
probability that a message is traced end-to-end decreases with the number of servers.

Other variations are presented in [HM20].

2.8 The road to PACBS

The main ideas of PACBS originate from blind and designated verifier signatures.
They aim to protect the votes cast from the signer and to protect the verification
of the signatures from the coercer. However, we also use many ideas from many
different variations of digital signatures found in the literature, that fiddle with the
roles and actions of the participants in the basic setting (section 2.5) to enable dif-
ferent usage scenarios with different security properties. For instance, we were in-
spired from group [CH91)], ring [RST01] and designated confirmer signatures (DCS)
[Cha94]. Moreover, ideas from cryptographic primitives such as partially blind signa-

tures [[AO00], plaintext equivalence tests (PETs) [JJ00], designated verifier proofs (DVP)
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[JSI96] and conditional disclosure of secrets (CDS) [Ger+00] are utilized.
Group signatures [CH91] aim to provide signer anonymity within a group. This means

that the signature is validated as coming from the group as a whole, without giving
evidence as to which member of the group actually signed. Of course in the case of
a dispute, the traceability property allows the group manager to specify which group
member actually signed. The problem with group signatures is that they do not allow
ad-hoc group creation, as the members must be predefined. This predicament is dealt

with ring signatures.

The idea of a designated verifier originates from [Cha94] before being applied to
[JSI94]. Its original use was to solve the problem of signer unavailability of undeni-
able signatures [CA89], by introducing another party to the protocol that can confirm
a signature in case the signer is unavailable. The use of a group/ring signature scheme
with a designated verifier signature is equivalent to the signer sending a message to
the verifier through the signature. For instance, if the group members are treated as
possible responses to the message to be signed, a designated group signature is equiv-
alent to sending a particular response to the verifier. This resembles again conditional
disclosure of secrets [Ger+0(]], which was proposed as a way for a client to obtain a
secret held by a server if and only if the input of the client satisfies a certain condi-
tion. The client may hold a secret key and encrypt the input using the corresponding

public key that is known to the server.
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3 Publicly Auditable Conditional
Blind Signatures

Doveryay, no proveryay (Trust, but
verify)

Russian proverb

We are now ready to combine the primitives we discussed in to present one
of the three main results of this thesis, Publicly Auditable Conditional Blind Signatures
- (PACBS), a blind signature scheme, where the validity of the generated signatures is
conditional to a predicate on publicly available data. However, they are not publicly
verifiable. Their validity is decided by a designated verifier i, who is identified by
a private key. To counter the actions of a corrupted signer or a corrupted verifier,
that do not respect the predicate during signing or verification and produce arbitrary
signatures and results, we equip the scheme with the capability to produce evidence
that can be later audited, by anyone, in order to verify its security. This evidence, is
intended to make up for the loss of public verifiability. Blindness provides stronger

privacy guarantees towards the signer.

The main goal of PACBS is to implement the functionalities that are usually found in
coercion-resistant voting protocols. The general idea is that the predicate expresses
the real-world condition of whether the voter is coerced or not. Its result is embedded
in the signature creation by the signer, which will be valid if and only if it evaluates
to true. The election tallier then, instead of comparing all possible credentials, can
simply check the validity of the signature and decide whether to count the vote or
not. The application of PACBS in a voting protocol is detailed in chapter 5.

We begin the exposition by detailing a simpler version, Conditional Blind Signatures -
CBS, from [GPZ17], that lacks the auditability properties in order to clearly illustrate
the operation and security model of the primitive. We then equip CBS with auditable

evidence, arriving to PACBS from [Gro+20].

Based on [Gro+20]
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3.1 Conditional Blind Signatures

3.1.1 Definitions

In Conditional Blind Signatures (CBS) the signer has a private input bit b on which
it bases the validity of the signature, which is verified by a designated verifier. It is
valid if and only if b = 1. No evidence is produced from signing or verifying in this

simpler version.

Definition 3.1: Conditional Blind Signatures

A conditional blind signature (CBS) scheme is a triple (CBS.Gen, CBS.Sign,
CBS.Verify) such that:

— ((skg, pks), (sky, pky ), prms) < CBS.Gen(1%)

- (-, 0p) < CBS.Sign(S(sks, b),U(m), (prms, pk))

- {0,1} < CBS.Verify(prms, pk, sky,, m,0p)

CBS.Gen is an algorithm that outputs two pairs of keys, (skg, pkg) for signing and
(sky, pky,) for verification, the message space M and the signature space S, described
by a set of parameters (e.g. group generators) collectively denoted as prms. For con-

venience both public keys are grouped together and denoted as pk = (pkg, pky,).

CBS.Sign is a protocol executed between the signer and the user. The secret input
of the signer is the signing key skg and the secret information bit b, while the secret
input of the user is the message m to be signed. The public input consists of the group
parameters and the public keys. The protocol output for the user is a signature o, of

m, while the signer receives no output.

CBS.Verify is an algorithm which outputs a single bit representing the validity of
the signature. A valid signature is one for which CBS.Verify(-) = 1. Correctness
must hold, that is CBS.Verify(:,m,0}) outputs 1 if and only if 7, is the output of the
execution of the protocol CBS.Sign on message m and the secret information bit of S

is b = 1, except with negligible probability.

3.1.2 Security Properties

The security of CBS is captured using the Blindness, Unforgeability and Conditional
Verifiability properties. These properties are defined using the respective games for
plain blind signatures [SU12] extended to accommodate for the secret conditionality
bit and the separate keys of the verifier.
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Blindness

The blindness property is formally defined using the game presented in Algorithm 3.1,
which states that a malicious signer cannot tell which of the two messages m, 111 was

signed first, except with negligible probability. Note that the signatures on which the

adversary is challenged are forced to be valid (b = 1)

Algorithm 3.1: CBS-BlindExp 4 cgs

Input : security parameter A
Output: {0,1}

(prms, pk, skg, sky, g, mq) < A(find, 14)
b<s{0,1}
(- 0p) < CBS.Sign{A(issue, skg,1),U (my), (prms, pk))
(,01-p) < CBS.Sign(A(issue, skg,1),U(m;_y), (prms, pk))
if CBS.Verify(prms, pk, sk, m,05) =1 AND
CBS.Verify(prms, pk, sky,, m1_p,01-p) = 1 then
| b’ < A(guess)
end
if b = b’ then
| return 1

else
| return O

end

Definition 3.2: CBS Blindness

A conditional blind signature scheme CBS is perfectly blind if for every (un-
bounded) A:

Pr[CBS-BlindExp 4 cgs(A) = 1] =

N[~

Unforgeability

The unforgeability property is captured using the notion of One More Forgery of
[PS00], which states that, if [ is an integer, polynomial in the security parameter
A, an attacker can produce [ + 1 valid signatures, after at most / successful interac-
tions with the signer. The Strong One More Forgery [PS0(] is a variation of the above
case, where [ is polylogarithmically bound to the security parameter. More formally,
in the game CBS-OneMoreForge, A can obtain both valid (b = 1) and invalid (b = 0)

signatures after k successful interactions.
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Algorithm 3.2: CBS-OneMoreForge 4 cgs

Input : security parameter A
Output: {0,1}

((ske, pks), (sky, pky ), prms) < CBS.Gen(1%)
{(-, (m;, 7))} < CBS Sign(S(sks, b), A(-), (prms, pk))Po ™)

/* k:

the number of successful protocol interactions x/

if (Vi,je[l+1]withi#j=m;+m;) AND (Vie
[l +1] CBS.Verify(prms, pk, sky,m;,0;) =1) AND k <[ then

return 1

else
return 0

end

Definition 3.3: CBS unforgeability

A conditional blind signature scheme CBS is one more unforgeable if for every

PPT A there is a negligible function of A where:

Pr[CBS—OneMoreForgeA,CBs()L) - 1] < negl(A)

In order for the verification of the signatures (and thus the checking of the forgeries)
to be trustworthy, the verifier (identified by the possession of sky,) should be trusted.
Consequently, in [Algorithm 3.2, the adversary does not receive sky. In effect this
makes forgery a concern only against outsiders, i.e. everybody except the real signer
and the designated verifier. This is consistent with the security model for designated
verifier signatures [LWBO05; Li+07], where signature simulations by the designated

verifier are not treated as forgeries, but as aids towards the protocol’s goals. In fact,

in the applications of CBS, such simulations are utilized in order to make the scheme

more versatile (cf. section 3.4, section 5.1)).

Conditional Verifiability

For CBS, an extra property is described, called Conditional Verifiability, which states
that an adversary cannot guess the validity of a signature without the secret verifica-
tion key. The adversary is assumed to be an external entity, i.e neither the signer nor
the verifier. This is justified as the signer must already know the value of b to cre-
ate the signature, and the verifier learns the value of b by executing the verification

functionality.

This is defined using the CBS-CondVerExp game presented in |Algorithm 3.3, which
intuitively resembles the IND-CPA property of public-key encryption, as it is meant

to ‘hide’ the conditional bit of the signatures.
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the adversary can adaptively obtain a polynomially restricted number of valid or in-
valid signatures (denoted by - in the input of S) by submitting messages of his choice to
the signer through the CBS.Sign protocol. Then the adversary submits the challenge
and is presented with a signature whose validity is decided by a random coin flipped

by the challenger. The adversary can then continue to submit signing requests. In

the end, he must guess the coin toss.

Algorithm 3.3: CBS-CondVerExp ACBS

Input : security parameter A
Output: {0,1}

((sks, Pks), (sky, Pky), prms) < CBS.Gen(1*)
b <s{0,1}
{(,—l)}poly()\) « CBS.Sign(S(sks, "), A(m;), prms, pk>poly(A)
m < A(challenge)
(-,0) < CBS.Sign(S(skg, b), A(m), prms, pk)
{(- ’—l)}Pon(A) « CBS.Sign(S(skg, "), A(m;), prms, pk)poly()\)
b« A(guess)
if b = b’ then
| return 1

else
| return O

end

Definition 3.4: CBS Conditional Verifiability

A conditional blind signature scheme CBS is conditionally verifiable if for ev-

ery PPT A there is a negligible function of A such that

1
Pr[CBS—CondVerEpr,CBS(A) =1] < = +negl(A)

. v

N

Note that no verification oracle is provided to the adversary and he can only make
signing requests. This is better suited to the intended usage of the primitive, where
publicly revealing the validity of the signature would also reveal the value of the
secret bit. In real-world applications, when a scheme that utilizes CBS needs to reveal
the validity of a signature, it can do so by employing anonymization or obfuscation

techniques, thus rendering the knowledge of the result of the predicate useless.

3.2 Okamoto-Schnorr CBS construction

A construction of the CBS primitive can be based on the Okamoto - Schnorr blind

signatures [Oka92].
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The parameter generation procedure, depicted in Algorithm 3.4, creates a group G
with prime order g (211 < g < 21) and generators g1, g2, where the DDH assumption

holds. The existence of a random oracle H : M x G — Z,; is assumed. The secret
signing key comprises the values s1,5; € Z; with corresponding public signing key

v. The secret verification key is s € Z,; with public counterpart k.

Algorithm 3.4: OSCBS.Gen(1%)

Input : security parameter A
Output: sk, pk, prms

(9,G) < GroupGen(11)
(81/82) <sG

51,52,5 <% Zq

= g;ﬁgz_sz

k:=g3

prms := (G/glng/ H)

skg := (51,52); pkg := 0

sky, = s; pky = k

return ((skg, pkg), (sky, pky ), prms)

The signing protocol is presented in Figure 3.1. It proceeds through four phases as
in [Oka92]. The signer commits to an element x. The user blinds the message along
with the commitment and the signer produces the blind signature. Finally, the user
unblinds the signature. In summary, in the case of valid signatures, the OSCBS in-
stantiation, is a direct adaptation of the Okamoto-Schnorr blind signatures from
ure 2.8, with the only difference being the ‘lifting’ of Bl and o respectively. Invalid

signatures, consist of randomly sampled values.

In the verification stage (Algorithm 3.5), the verifier checks the hash of the message

and the commitment using the secret key s € Z,. If the signer’s secret bit is 1, then
the signature will be valid, otherwise the verification equation will not hold. Thus

the verifier, implicitly learns the secret bit of the signer.

Algorithm 3.5: OSCBS Verify(prms, pk, sky, m, )

Input : prms,pk = (v,k), sk, =s,m,0 = (x*,e*,01,07)
Output: {0,1}

e* :=H(m,x*)

if x*5

=0 ,82(72-5 ,ve*s then

| return 1

else

| return O

end
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Common input: prms, pk = (pkg, pky,) = (v, k)

U’s private input: m e M

S’s private input : b € {0,1}, skg = (s1,52) € Zy x Z,
Commitment Phase. The Signer:

— Picks 1,72 «$Zy4;
- Computes x = g1'§5%;
- Sends x to the User.
Blinding Phase. The User:
— Selects blinding factors uy, u, d < Zg;
— Computes x* = xg}' g5>v", e* := H(m, x*), e = e* - d;
— Sends e to the Signer.

Signing Phase. The Signer:

Computes Y1 := 11 + €81, Yo = 2 + €52;
If b = 1 computes (B1, B2) = (K1, y2);
If b = 0 selects random (B1, B2) <3G x Zy;

Outputs 8 := (x,e, B1, B2)-
Unblinding Phase. The User:

— Unblinds by computing o7 := B1 - k"' and 02 := B2 + uy;

— Outputs 7 := (x*,e*,01,072).

FIGURE 3.1: The protocol OSCBS.Sign(S((s1,82),b),U(m), prms, pk)
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Performance Signing requires 3 exponentiations if the signature is valid and 2 if
not. This means that a valid signature requires more processing by the signer. This
can be fixed, by first selecting a random element of Z,; and then performing an extra
exponentiation to receive a random element of G even if b = 0. The user requesting
the signature must perform 4 exponentiations. Verification requires 3 exponentia-

tions.

3.3 CBS Security Analysis

Correctness

Theorem 3.1: OS CBS Blindness

The Okamoto-Schnorr CBS scheme is correct.

Proof. Correctness follows from straightforward computations on the equation checked

in Algorithm 3.5. Indeed:

01§27 0° S =
Vg . g§y2+u2)-s . (g{slg£s2)(e+d)s _

ri+esy+uy o (ratesa+iin)s 51 _—spy (e+d)s
k 1 1 1 .gz gz ) —

(81
g1 (r1+esq+11)-s 'g§r2+esz+u2)~s ) (gl—eslggesz)s(gidslggdsz)s _
(ro+un)-s —dsq

_ s
gl(r1+u1)'s .g2 . (gl gzdSZ) =
(511927 §1192" - (g,%14,%%))° =
(x'glulgzuz . Ud)s _

x*S

Blindness

For the blindness property the arguments of the original Okamoto-Schnorr scheme
in [Oka94] and [[AO00] hold. More specifically, the commitment is blinded in exactly

the same way in both schemes and the second parts of the signatures are identical in

both cases. In addition, the message hash is hidden using the value d exactly as in
[Oka92]. The first part of the signature is ‘lifted’, but the mapping from y; to k1 is

one to one and onto.

Theorem 3.2: OS CBS Blindness

The Okamoto-Schnorr CBS scheme satisfies perfect blindness.
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Proof. Let S be the unbounded adversary in the blindness game in
and view; = (x;,¢;, B;) for i € {0,1} be the view ¥ of S*. There exists a unique tuple
(u1,u2,d) that maps view; to signature o; for both cases of 7, € {0, 1}.

uy =logr(oj1 - Bi') = &1 = i1 - Bils

Uz =0pp - Pio,

d:e]*—ei

This tuple causes both signatures to be valid:

*° - uy Uy _d\s _ Sr St SU1 _Sup_sd

Xj = (xi81'8,°0")" = 818,781 '8 'V
— oS82 .. -1 S(‘sz—ﬁ’iz) s(ef—e;)
=818 (01Bi1)8, v

TS ge* _sB.
_ (. U258 se sr1 St p—1_—SBin, —se;
= (0318 v'7)-81'8 B & v

TinS ge* _ . _ A ) .
_ (. UjS_se; sry _srp _—s(ri+ejs1) —s(ra+eisy) sise; s»se
= (0718 077 ) 818,78 8 8 &

OinS  op*
_ (O.jlgzﬂ 05¢ )

As a result, in the blindness game in Algorithm 3.1, the view of the adversary and

the signatures are statistically independent for both cases of the coin flip. So the
probability that an unbounded adversary succeeds in linking two protocol executions

to the corresponding messages and signature pairs is exactly 1/2.

Strong One More Forgery

The scheme is also secure against the strong version of the One More Forgery def-
inition [PS00]. Note that an adversary can create invalid signatures by randomly
choosing y, € Z; and a random element of G. As a result, in the security proof, an
interaction with the signer for an invalid signature does not provide any advantage,
so it can be assumed that the adversary only interacts with the signer to obtain valid
signatures. demonstrates that the scheme is secure under the strong one

more forgery definition.

2For simplicity, both components of the blind signature as are collectively referred as B; i.e. B; = (Bi1, Bi2)-
The same applies to 0; as well.
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Theorem 3.3: OS CBS unforgeability

Suppose there exists a PPT adversary A that wins the OneMoreForge exper-
iment, for ! polylogarithmic in the security parameter A, with non negligible
probability. Then there exists a PPT algorithm B that solves the CompuTa-

TIONAL DIFFIE HELLMAN problem with non negligible probability.

Proof. Let A be a PPT adversary that wins the game in with non-
negligible probability. This means that it can produce [ + 1 valid signatures of the

form (x*, e*,(fl,(fz)ﬂ after [ interactions with the signer S and the random oracle H.
The transcript of each interaction of A with S is the blind signature tuple (x, ¢, 81, B2).
The transcript of each interaction of .4 with H is the tuple (m, x*,e*).

A PPT adversary B will be constructed, that impersonates S to make A produce valid
signatures o = (x*,e*,07,00) and T = (x*,¢€*,d;,0>) with the same initial message
x* and yp — spe # 1o — sp€. These two valid signatures will allow B to break the CDH

Assumption.

51,52 ex Zyg :
v g—slg—sz |
= I
g1.82,k =g 1l ’ 8
S L

A

A

I+1

* *
{ (e onom)

FIGURE 3.2: Breaking the CDH Assumption by forging OSCBS

The construction is presented at a high level in Figure 3.4. In more detail, B receives
a triple of public group elements g1, g2,k where k = ¢} with unknown s € Z; and

3To be exact the signatures should be denoted as {(x*,e*,(fl,(fz)}lel, but for simplicity the indices are

omitted
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$2 = g7 for some unknown a € Z;. To break the CDH Assumption 3 must compute
¢1° = §5. To setup the OSCBS forgery, B selects s1, 5, € Z,; and computes the public
signing key v = g "'¢," and sets the public verification key as k. BB replays .A until it

outputs the two valid signatures ¢, #; with the same initial message x*.
Since the verification equation in |Algorithm 3.5 holds for valid signatures:

078 . *s

(x) =01 3" 0 028 s

s =
and (x*)°=d1-g,
As x* is the same in both cases:

025 (02-02)s v(é*—e*)s

028, e*s _ = e*s ~ -1 _
0'1-g2 -0 —0'1-g2 [ = 0101 —g2

All values except s are known to B. For simplicity set:

- T=0'1'071_1
- p=02-02
_ (P:é?e_e*

Next, the public signing key v is analyzed:

T= ggszﬂ)s - ggs (gl—slgiﬁ)cps _ g;P .gislfl’sg;z‘l’S _ k—sltng(P—SﬂP) -
Tkﬁ¢:(g@0F%@

Now, BB can compute gi as:

g = (Tks1#)(0-29)"" (3.1)

It remains to be proved that such valid signatures ¢, can be efficiently produced
with non-negligible probability. This, however, is a direct consequence of the Oracle
Replay Attack used to prove the unforgeability of the blind Okamoto - Schnorr sig-
natures in [PS00]. Assume that A succeeds with probability at least € in producing a
(1,1+1) forgery for message m. The techniques of [PS0(] require that I be polyloga-

rithmic in the security parameter.

B executes the signing protocol with B until a forgery is produced (or at most 1/¢)
times. Let k < I be the actual number of times that A has interacted with the signer
S and Q the actual number of times that A has interacted with H. Assume that
(m, x*) was sent to H on query j. Then each of the k signing interactions, is rerun
with the same random data, except for H, which is replaced by H such that both
oracles agree on the first j — 1 answers to queries. It is proved in [PS00], that with a
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polynomial overhead at most a forgery will be produced on the same (m, x*) with
non-negligible probability. Note that the data submitted to H in both OSCBS and the
original Okamoto - Schnorr blind signatures follow the exact same distribution (cf.
Figure 2.8). In fact, the only difference of the two protocols for valid signatures is
that the first part of the blind signature in OSCBS is the group element k%1 instead of
the index y; € Z;. Despite that the mapping between these values is one to one and
onto, the difference occurs after the oracle call. As a result, the probabilistic analysis
of the Oracle Replay Attack of [PS00] applies verbatim to OSCBS as well. ]

Conditional Verifiability

Finally, it is shown that the system is conditionally verifiable by a reduction to the
DDH Assumption:

Theorem 3.4: OSCBS Conditional Verifiability

Suppose there exists a PPT adversary A that wins the CondVerExp with non
negligible probability. Then there exists a PPT algorithm B that solves the DE-

CISIONAL DIFFIE HELLMAN problem with non-negligible probability.

Proof. B will be constructed (Figure 3.3).

I
51,52 €4 Zq :
81,82 = 81 v=¢,"9," i c=as
—— .. S
k=gi 8 ey Pre Zy X
Br=k"g1 g, kg |

____________________________

o, valid

F1GURE 3.3: Breaking the DDH Assumption by utilizing a break in Conditional
Verifiability
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Its input will be the tuple g, g%, ¢°, ¢¢ and the output will be a bit indicating whether

¢ = as or ¢ is a random element of Z,4. To do so, it proceeds as follows:

- Bsets g1 = ¢ g = g"and k = ¢§ = ¢° and randomly chooses sq,s; for
v = g,"1¢,". It gives g1,82,k,v to A. According to the threat model of AL
the signing keys s1, s, are not given to A.

— Using the secret key (s1,52) B can answer A’s valid signature requests.

— When B gets a challenge request from A it randomly chooses r1, 77 and sends

x:=g1'gy to A.
- A responds with e.
— Bchoosesrandom 35 := y» € Z; and sets: B1 = kY1 := (°)"1(g¢)"2(g%) ¥2(g%)*1¢(g*)%*

— B sends the signature pair (f1,B2) := (k¥1,12) and A executes the unblinding

phase to produce the signature 0.
— As before, B responds to A’s signing requests using the secret key (s1,s2).

— B outputs 1 (the input is a DDH tuple) if and only if A outputs 1 (the signature

is valid).

According to the signature 0 = (07,07) is valid if and only if: (x*)% =

078 *
0'1 .gz . Ue S

By replacing the relevant protocol transformations from Figure 3.1:

(xg;llglézvd)s = Bikt _géﬁzﬂlz)s plerd)s o

s Suy Sty _sd _ suy _SP2 _sup, se. sd

X°g1 8 v =18y & & VU

xS = ‘Blg;ﬁzvse P

pr - vy o =

kY1 = xsg;yzv—se <

(gs )r1 (g(:)r2 (gC)—yz (gS)Sle(gC)Sze _ xsg;yzv—se P
gST1gC7’zg—Cy2gSS1€gC52€ _ gsrl gzi‘zg;yzg
(gC) (ro-y2+s2e) _ (gaS)(rz—y2+sze)

sspe
ssleg22 Py

Provided that 7 — 2 + spe # 0, the signature is valid if and only if g¢ = ¢%°, which
means that the input is a DDH tuple. Since y; is chosen randomly, 7 — 12 + spe = 0
holds with negligible probability which yields the result. ]
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3.4 CBS Variations

The following variations of the OSCBS construction aim to make it more versatile
and, as a result, easier to be incorporated as a building block into other protocols.

The design of PACBS, this work’s main result, will be based on these two variations.

In this section, we abstract on some key ideas that are made concrete in section 3.6.

First of all, the communication rounds of OSCBS signing protocol can be reduced, by
removing the commitment phase in Figure 3.1, yielding the reduced round scheme
OSCBS;. This means that x can be replaced with a random element of G, generated
by a predetermined method. For instance, a random oracle could be used. But this is
not the only option, as x could be the output of a trusted setup or a secure multi-party
protocol. We only require that a common x is available to both ¢/, S in the beginning
of the protocol. As a result, the protocol can omit the commitment message and
the first round. Furthermore, this enables the verifier in possession of s to generate
signatures herself, by using a random group element as v. The value of B will be

computed in this case by reversing the relevant part of the verification equation as

(x- g;ﬁz -07¢)*, where B, is a random element in Z;.

The reduced round OSCBS; is | one-more unforgeable if the three round OS-

CBS scheme is | one-more unforgeable.

Proof. We will first describe the case where the predetermined method to compute
X is a random oracle H; its programmability can be used as an advantage for the
adversary. Assume that A is a reduced round (OSCBS;) forger. We will construct an
algorithm B that forges OSCBS signatures without having access to the signing key
s. In order to answer A’s requests, B can (by assumption) request signatures from

the 3-round OSCBS signer S.

The input of B will be the public input of OSCBS namely G, g1,82,v,k. When A
requests the commonly available x from H, then B intercepts the request and initiates
a signing session with S who computes it. 3 stores x and forwards it to .A. Note that
x is, by construction (Figure 3.1), a random element of G. A executes the blinding
phase of and sends e to B who in turn forwards it to S to create the blind
signature E = (x,e,B1, B2). Since invalid signatures do not aid the forger we assume

that the signature is always valid. Note that ; is a random element in Z,, since s, 12

are sampled uniformly at random by Algorithm 3.4 and Figure 3.1 respectively. Since

the signature is valid, it is easy to see that 81 = (x- g, & -v7¢)S. As a result, the tuple

B received from S is indistinguishable from a valid OSCBS, blind signature. This, by
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assumption, means that 4, after an upper bound of / interactions, will generate a one-
more forgery for OSCBS, with non-negligible probability. By Figure 3.1, this forgery
is valid also for OSCBS.

In order to generalize the proof, we can assume that B initializes signing sessions
with S requesting an upper bound of poly(A) commitment values x which are then

made available for A to use, before the latter selects its messages. [ ]

Moreover, OSCBS can be easily combined with a homomorphic encryption scheme
like ElGamal [[Gam85]. To this end, an encryption key pair (z, h7) must also be cre-
ated during the parameter generation phase. The encryption secret key z is in the
possession of the designated verifier. In the signing phase of Figure 3.1, S generates
the first part of the blind signature as 1 := EnCh»‘{ (k¥1). The user then unblinds it by
computing oy := B1 - Enchi (k"1). Due to the multiplicative homomorphic properties
of the underlying cryptosystem the unblinded version of the signature is the same as

CBS, albeit in encrypted form. To verity, V follows after decrypting o
with z.

Finally, these two variations can be combined with the signature becoming Enchi ((x-

-B

8, -v7¢)%) where B, is a random index again.

The details and security of these variations depend on the actual protocol instantiating
the predetermined method to generate the first round message. As a result, their

presentation in the current section should only be viewed as a stepping stone for the

PACBS primitive, where a complete analysis will be presented (cf. section 3.6).

3.5 Publicly Auditable Conditional Blind Signatures

In the CBS.Sign protocol the conditional bit b is a private input of the signer. As a re-
sult, a malicious signer can disregard it and provide an arbitrary signature. Moreover,
since the verification of a CBS signature is performed by a designated verifier, the user
cannot check the validity of the signature herself. This, while counter-intuitive, is one
of the design goals of the primitive, justified by its initial application to coercion re-
sistant electronic voting. However, such a goal must not come at the expense of the
signature’s verifiability. In particular, the user must be protected both against a ma-
licious signer that outputs an arbitrary signature, without taking b into account and
against a verifier that does not consider 0, and outputs a validity result of his liking.
As a result, CBS must be augmented with a mechanism that will allow the user to

verify that she was not cheated by the signer and the verifier.
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This mechanism is introduced in Publicly Auditable Conditional Blind Signatures, a
form of CBS that provides auditable evidence for the signing and verification func-
tionalities. In particular, the Sign protocol is augmented with audit information to
ensure that the signing operations were carried out correctly and Verify is augmented

with evidence that verification operations conform to their specification. In order to

check this evidence, two extra functionalities called PACBS.AuditSign and PACBS.AuditVrfy

are proposed, that use this audit information and output if the corresponding oper-
ations are compatible with a correct protocol execution. Moreover, in order to im-
plement the auditability requirement in a more realistic way, it is assumed that the
secret input b used in CBS is replaced by a predicate function, the input of which is
provided externally - e.g. b = pred(Cy, C;) where Cq, C; are credentials and pred is
a function that checks their equality. The signer S, accompanies the signature with
evidence that he correctly followed the protocol, which means that the signature va-
lidity depends only on the result of pred on the given input. This in turn, allows an
honest user, in possession of some extra secret information (for example her own
credential), the definition of pred and the evidence to verify protocol compliance and
be sure that the signature she holds is a valid one. On the other hand, the public (or
an adversary) lacking the secret information can only check that the protocol was

followed faithfully, but cannot extract the signature validity.

A useful (but not exact) intuition for the distinction between the purpose of the pred-
icate and the PACBS.AuditSign and PACBS.AuditVrfy is the between semantics and
syntax. The predicate determines the semantics of the signature, while the generated
proofs and the corresponding functionalities PACBS.AuditSign and PACBS.AuditVrfy
concern the syntax of the signature. Everybody can verify syntax, however, the se-

mantics are only unlocked by the holder of the secret information.

3.5.1 Definition

Definition 3.5: PACBS Definition

A publicly auditable conditional blind signature scheme is a tuple (PACBS.Gen,
PACBS.Sign, PACBS.PACBS.AuditSign, PACBS.Verify, PACBS.AuditVrfy)
where:

— ((sks, pks), (sky, pky ), prms) < PACBS.Gen(1%)

~ (- (Op, 7tsign)) < PACBS.Sign(S(skg),U(m), (prms, pk,d))

— {0,1} < PACBS.AuditSign(7tsign, (prms, pk,d))

- ({0,1}, Tverify) < PACBS.Verify(sk,,, m, 0y, prms, pk)

- {0,1} < PACBS.AuditVrfy(m, 0y, result, TTyerify, prms, pk)
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PACBS.Gen is an algorithm that takes as input the security parameter 1* and out-
puts two pairs of keys (skg, pkg) for signing and (sky,, pky,) for verification, denoted
as pk = (pkg, pky/) and sk = (skg,sky,). Moreover, PACBS.Gen outputs the message
space M, the signature space S and the public input space ID which defines the inputs
that determine the validity of the signature. These sets are described by some param-
eters (e.g. group generators) collectively denoted as prms. Finally, the PACBS.Gen
algorithm produces a predicate function pred : ID — {0, 1} that will extract the con-
ditional part of the signature with the help of some public input.

PACBS.Sign is a protocol executed between the signer and the user. The public input
consists of the parameters and the public keys as well as d from ID. The secret input
of the signer is the signing key skg. The signer takes into account the output of the
U algorithm on m and outputs a signature oy, H that is conditional to some public
data d, along with evidence 77gq, that the signer operated correctly. This evidence
contains the transcript of the protocol along with proof that the internal operations

were carried out correctly.

PACBS.AuditSign is an algorithm, which receives the transcript of the signature cre-
ation protocol 7Ts;g, to output a bit indicating if the signing operations were carried

out correctly.

PACBS .Verify is an algorithm which outputs a single bit representing the validity of
the signature along with proof 7Tyif, that the verifier followed the protocol.

PACBS.AuditVrfy is an algorithm which receives the signature 7, the result of the
verification, result, and the evidence 7tyerify, produced during verification and outputs
a bit indicating if the algorithm operations are correct with respect to the signature

and the result.

Correctness must hold, which means that PACBS.AuditSign (o7, -, d), PACBS . Verify(-, 7, ),
PACBS.AuditVrfy(-, 0, ) output 1 if and only if 7}, is the output of the execution

of the protocol PACBS.Sign(-,d) on message m with public input d € ID such that
pred(d) = 1 except with negligible probability.

3.5.2 Security Properties

PACBS extends the blindness, unforgeability, and conditional verifiability properties
of CBS to take into account the predicate function. Furthermore, since the signing
and verification operations output evidence, they are also available to the adversary,

who might take advantage of them to break the security of the scheme.

“The notation 7}, is maintained, despite that there is no explicit b, in order to stress the fact that the
signature is conditional
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Blindness

The experiment in is identical to the CBS one, except for the involve-
ment of the predicate and the audit functionalities to check the correct operations.
Furthermore, the adversary is choosing the values dy, d1 to be used during the PACBS.Sign
protocols with the restriction that pred(dy) = pred(d;) = 1 as imposed by the require-
ments of CBS that the two outputted signatures are valid. Note that the signing tran-
script and proofs in 7Ts;e, are either generated by, or are available to the adversary
(signer) and as a result, provide no advantage during the guessing stage. On the other
hand, A can use the verification proofs along with the signatures to guess. However,
as 7lyerify Will be a function of the signature, they will provide A with no more in-

formation than what can be obtained from the signature itself. For completeness,

however, they are handed to A in Algorithm 3.6.

Algorithm 3.6: PACBS-BlindExp 4 1

Input : security parameter A
Output: {0,1}

(prms, pk, sk, mg, m1,dg,dq) < A(find, 17)

b<s{0,1}

(-, (Tp, TTsign,p)) < PACBS.Sign(A(issue, skg),U (my), (prms, pk,dy)))

(, (01-v, TTsign,1-5)) < PACBS.Sign(A(issue, sk), U (m1-p), (prms, pk, d1-p)))
(resultverify,b, TTverify,6) < PACBS.Verify(prms, pk, sky,, 11, 0 )

(resultverifyll,b, nVerify,lfb) <« PACBS.Verify(prms, pk, SkV, ml_b,ﬁl_b)

if resultyerify,p = resultyerify,1-p = 1 then

| b’ < A(guess)
end
if b =0’ then
| return 1
else
| return O
end

Definition 3.6: PACBS Blindness

A publicly auditable conditional blind signature scheme IT is perfectly blind if
for every (unbounded) A:

Pr[PACBS-BlindExp 4 11(A) =1] =

N —

Unforgeability

To capture unforgeability, the corresponding game for CBS (Algorithm 3.2) is slightly
modified.



3.5. Publicly Auditable Conditional Blind Signatures 75

Algorithm 3.7: PACBS-OneMoreForge 4 1;

Input : security parameter A
Output: {0,1}
(sk, pk, prms) < PACBS.Gen (1)
{( (mi, T, 7sign,)) Y21 < PACBS Sign(S (sks, ), A(), (prms, pk, )75
/* k: the number of successful protocol interactions */
if (Vi,je[l+1] withi#j=m;#m;) AND k<l AND
(Vie[k]: PACBS.AuditSign(prms, pk, Tsign ;) = 1) AND
(Vie[l+1]: (result;, Tyeriy,i) < PACBS.Verify(prms, pk, sky, m;,0;);
result; = 1 AND PACBS.AuditVrfy(prms, pk, 112, 0, TTyerify,i) = 1) then

| return 1

else
| return O

end

In the game the aspiring forger chooses input d in each oracle request. If the adversary
can find d for which he knows pred(d) he can get valid and invalid signatures at will.
Using this oracle, the adversary tries to obtain more than k valid signatures where k

is the number of interactions resulting in valid signature output.

Definition 3.7: PACBS Unforgeability

A publicly auditable conditional blind signature scheme I is one more un-
forgeable if for every PPT A there is a negligible function of A where:
Pr[PACBS-OneMoreForge arn(A) = 1] < negl(A).

Conditional Verifiability

Slight modifications are also needed to capture conditional verifiability. In particular,

b needs to be replaced with the value of the predicate function.

In the game, the adversary has access to a signing oracle of his choice and can ask for
signatures with auxiliary values that he chooses. A also selects the messages that will
be signed. He is challenged on a signature which is either valid or invalid depending
on a coin flip on random auxiliary values. His goal is to determine the result of the
coin flip or equivalently the value of the predicate. Note that, since S is assumed
honest, it follows the protocol in both cases. As a result, while TTSign. will be valid in
all interactions, the collected proofs might leak information about the predicate, so

they are handed to A in the guessing stage.
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Algorithm 3.8: PACBS-CondVerExp 4 1

Input : security parameter A
Output: {0,1}

(sk, pk, prms) < PACBS.Gen(1%)

b<s{0,1}

Let Ro = {d | s.t. pred(d) = 0} and Ry = {d' | s.t. pred(d’) =1}
a* <~$ Rb

{(, (@, Tsign,)) 1P ™) PACBS Sign(S(sks ), A(m;), (prms, pk, d;))PoY M)
m < A(challenge)

('/ (Eb/ nSign,b)) < PACBSSIgn<S(SkS)1A(m)/ (prms, Pk/ d*)>

{(, (@5, Tsign)) )72 ™) PACBS Sign(S(sks), A(m;), (prms, pk, ;)P ™)

_ — ly(A ly(A
b" < A(guess, Oc, nSign,br {O—i}lp:olﬂ )/ {nSign,i}?fl)I( ))

if b = b’ then
| return 1

else
| return O

end

Definition 3.8: PACBS Conditional Verifiability

A publicly auditable conditional blind signature scheme IT is conditionally
verifiable if for every PPT A there is a negligible function of A such that
Pr[PACBS-CondVerExp 4 (1) = 1] < 5 + negl(A).

Note that for the definition of a PACBS construction to be meaningful, the predicate

pred should be infeasible to compute on random values of its domain.

Public Auditability

Public auditability for PACBS is defined with respect to the signing and verification

functionalities.

In the case of PACBS.AuditSign, the desideratum is the property that the user’s out-
put of the protocol respects the value of pred(d) even when executed against a ma-
licious signer. This means that if 7} is the output of PACBS.Sign on secret input
m, then it is valid if and only if pred(d) = 1. In other words, if (result, 7Tyeriry) =
PACBS Verify(prms, pk, sk, m,0p) then result = pred(d). For this the PASignExp
experiment is used, which is defined in |Algorithm 3.9.

In this experiment, the adversary generates all the parameters and the secret keys of
the PACBS scheme and he chooses the values which he wishes to be challenged on.
A PACBS.Sign protocol is executed with these values and the goal of the adversary
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Algorithm 3.9: PASignExp 4 11

Input : security parameter A
Output: {0,1}

(prms, pk, sk) < A(find, 11)

(d,m) < A(prms, pk, sk)

(Tp, TTsign) < PACBS .Sign{A(skg),U(m), (prms, pk,d))

(result, 7Tveriry) < PACBS.Verify(prms, pk, sk, m, 7)

if PACBS.AuditSign(prms, pk, 7Tsign) = 1 AND result # pred(d) then

| return1

else
| return 0

end

is to output a signature and evidence, such that PACBS.AuditSign accepts and the
signature validity is different from the first output of the algorithm PACBS.Verify.

In the case of PACBS.AuditVrfy the aim is to ensure that when the designated verifier
reveals the validity of a signature the result is accurate with respect to PACBS.Verify.
This is necessary since the recipient of the signature does not know the value of the
predicate when the inputs are randomly chosen. For this, the PAVrfyExp experiment
is used, defined in |Algorithm 3.10.

Algorithm 3.10: PAVI{yExp 4 11

Input : security parameter A
Output: {0,1}

(prms, pk, sk) < A(find, 11)

(m, oy, TW/erify s b) < A(prms, pk, Skv)

(result,-) « APACBS.Verify (prms, pk, sky, 1, 0p)

if PACBS.AuditVrfy(prms, pk, b, 0, 7tverify) = 1 AND result # b then

| return 1

else
| return O

end

In PAVr{yEXP the adversary is given all the parameters and the secret keys of the
PACBS scheme and his goal is to output a message, a signature and evidence such
that PACBS.AuditVrfy accepts b as the validity of the signature while PACBS.Verify
outputs 1 - b.
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Definition 3.9: PACBS Public Auditability

A publicly auditable conditional blind signature scheme I1 is publicly auditable
if for every PPT A there is a negligible function of A such that

Pr[PASignEpr,H(/\) = 1] + Pr[PAVrnypr’H(A) = 1] < negl(A)

3.6 Okamoto-Schnorr PACBS construction

In this section, a construction for a PACBS scheme is presented. It extends the Okamoto-
Schnorr CBS scheme (section 3.2), using the variations presented in section 3.4. In
particular, since this construction is meant to be used as a building block in a co-
ercion resistant electronic voting scheme, there is a benefit in reducing the rounds
of interaction between the user (voter) and the election authorities. As a result, the
presented construction is built on the reduced round OSCBS;, where the first part of
the issued signature is encrypted using ElGamal [Gam85] encryption and the verifier
can issue signatures. However, this is not necessary. A PACBS construction could be
built on any of the variations of CBS presented in or in [section 3.4. As a
proof of concept, another PACBS construction is presented in section 3.8, which is a

direct extension of CBS and where the signer and the verifier do not share a key.

The PACBS scheme works in a group G of prime order g 2}~1 < g < 2%), where
the DDH assumption holds. During the parameter generation phase random group
elements (g1, g2, v, h1) are selected. The signature message space consists of pairs of

group elements (ElGamal ciphertexts).

In order to make the signature conditional to public data, a function embed is used

that implicitly inserts a value that acts as the ‘secret bit’:
embed : (G% x G?) - G?

where:

embed(Cy, Cy) := (C2/C1)* - Ency,(1,7) (3.2)

The values a, y € Z are blinding factors selected by the signer. The predicate pred is
defined as:
pred : G2 x G2 - {0,1}

where:

1, if Dec;(C7) = Dec;(Cy)

(3.3)
0, otherwise

pred(Cy, Cy) := {



3.6. Okamoto-Schnorr PACBS construction 79

The predicate function receives some group elements and some auxiliary information
and checks that they are equal to the values embedded inside the signature, which
means that the ciphertexts are equal. Note that in both cases there is no restriction
in the amount of public and auxiliary information to be used. For simplicity and to
correspond with the usage scenario in two pairs of group elements were

chosen for the exposition.

3.6.1 OSPACBS parameter generation

The parameter generation algorithm selects the appropriate group generators and
instantiates the predicate functions, as described in the previous section. A signing
key s € Z; and a decryption key z € Z; are also selected. These secret keys are
collectively denoted as sk. Note that s plays the role of the secret signing key sks,
while the tuple (s,z) plays the role of sky in Definition 3.5. The corresponding public
keys are k := ¢ and h := hj, denoted as pk. Two random oracles Hy : G*xG -
G, Hy : mxG — Z,; are assumed.

Algorithm 3.11: OSPACBS.Gen Algorithm

Input : security parameter A
Output: sk, pk, prms

(81,82,0,h1) <G

s<sZ,

Z «$ Zq

k:=g3

h:=h3

| 1,if Decy(Cq) = Dec,(C2)
pred(Cy, C2) = 0, otherwise
prms := (9, G, g1, 82,7, pred, Hy, Hp)
sk :=(s,2)

pk := (k, h)

return (prms, sk, pk)

Note that the validity of the signature is based on the value of the predicate, regardless

of how it was constructed and embedded.

3.6.2 OSPACBS signing
The PACBS signing protocol is shown in Figure 3.4. Note that each algorithm in the

protocol is explicitly named for easier reference.

NIZK proofs for signing The proof 711 is generated as a standard Chaum-Pedersen
[CP92] proof for valid encryption. The proof 773 is generated as a composition (cf.
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Common input: prms, pk, C1, C; € G2
U’s private input: m € M
S’s private input : skg =s € Z,; s.t. k= ¢

U executes the OSPACBS.Blind Algorithm on input (prms, Cy, Cp, m):
- Compute x := H1(Cq1, Cp);
- Pick uy,up,d «<$Z; and compute x* := xgi“ggzvd, e*:=Hy(m,x*) and e := e* - d;
- SendetoS.

S executes the OSPACBS.BlindSign Algorithm on input (prms, skg, C1, C;, €):

- Compute x := H{(Cy, Cp);

Pick y, <$Z; and compute 7 := xggyzvfe;

Pick t «<$Z,; and compute N := Ency,(n;t);

Pick blinding factors a,7y € Z; and compute W := embed(Cy,C;) = (Co/Cr)" -
Ency,(1,y) and apply signing key to compute B := (N - W)?® with:

m <« NIZK{(h1,h,n,N),(t): N =Ency(n;t)}

M« NIZK{(C1, Co, W), (,7) : W = (C2/C1)" - Ency (1) }

3« NIZK{(h,k,N,W,B),(s):B=(N-W)° AND k=gj}

Set B = (((n,N,W, B),y>), 11, 2, 73) and send B to the U.

U executes the OSPACBS.Unblind Algorithm on input (prms, pks,m,B,ul,uz,x*,e*):
— Verify my, 12, 713;
— Unblind by computing 1 := B - Ency,(k*1) and 07 := ya + us.

- Set o := (x*,e*,01,02) and output (m,7).

Ficure 3.4: OSPACBS.Sign Protocol



3.6. Okamoto-Schnorr PACBS construction 81

115 = NIZK{(C1, Co, W), (&,7) : W = (C2/C1)* - Ency(1;7) }

Prover Verifier
DC,, r)/, <$ Zq
W' := (C2/C1)" Ency(1,7')

wl

c<s$Z,

or in the random oracle model

C:= H(Cl, Cz, W, W’)

c
o =+ o
,Y/I = o+ ,)//
DC”, ,)/I/
_

Accept if:

o' +a” AND

7"+ 9" AND

WW' = (C2/C1)" Ency,(1,9")

FIGURE 3.5: The proof 71 in OSPACBS.Sign

[CDS94]) of a Schnorr proof [Sch91] for the relation k = ¢} and Chaum-Pedersen
proof for knowledge and equality of discrete log s for the relation B = (N - W)3. The

techniques to construct them are detailed in section 2.4.1.

The proof 71, is generated as detailed in Figure 3.5 (cf. [Gro05]).

Theorem 3.5: Properties of 71,

The protocol described for proof of knowledge 71, is a X-protocol.

Proof. Completeness is straightforward.

For special soundness, assume two valid interactions (W', ¢, a”, ") and (W', ¢, a’, v'"),

with ¢ # ¢:

The witness («,) can be extracted by setting: a = (¢’ — &’ )(c - &)L and y = (79" -
Y (e-o)t
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Indeed:

(Co/C) @ D™ Eny, (1; (7" = 7Y (c - &) L) =
(Cy/Cy) aera’=ae-a) (=2 Enc, (1; (ye+ ' - yE— ")) (c- &) ) =
(C2/Cy)* -Ency(L;7) =W

For honest verifier zero-knowledge it is easy to see that the distributions (W, ¢, a”, ")
where W/ = (Cp/C1)* Encj,(1;9') for uniformly distributed a’,7/,c from Z,; and
& = ac+a!, " = yc+ " and ((Cp/C1)* Ency(1;9" YW=, c,a”, ") for uniformly

distributed a/, ", ¢ from Z; are identical. [

The proofs 71, 712, 713 can be AND combined into a single proof, detailed in

tion 3.6.3.

OSPACBS auditing for signing The PACBS.AuditSign process (Algorithm 3.12) is

straightforward for the Okamoto-Schnorr instantiation. The auditor needs to verify

the proofs issued by the signer.

Algorithm 3.12: OSPACBS.AuditSign Algorithm
Input : prms, pk, Trans = ((Cy,C2),n,B, N, W, y, 111, 712, 713)
Output: d € {0,1}

if n # Hy(Cy, C2)g, v then
| return 0
end

if 711, 715, 713 are valid then
| return 1

else
| return 0

end

3.6.3 OSPACBS verification

The OSPACBS verification procedure is given in |Algorithm 3.13. The verifier V, given

a message, a signature, and a secret key, outputs whether the signature is valid or
not and provides NIZK proofs that the verification operations were done correctly. In
more detail, the verifier computes the verification equation and checks if it matches
the first part of the signature, by blindingly dividing them. If the signature is valid,

the result will decrypt to 1. In any other case the result will be random.

The proofs 711, 715, 773, 774 standard Chaum - Pedersen [CP92]. Their construction is
detailed in section 2.4.1. Efficiency improvements can also be achieved from their

AND combination detailed in section 3.6.3.
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Algorithm 3.13: OSPACBS.VerifyAlgorithm
Input : prms,pk,sk,m,c = (x*,e*,01,07)
Output: d € {0, 1}, 7Tyerify
if Hy(m,x*) + e* then

| return L
end

Y2y

validity = x* - g, - v~¢
M := Ency,(validity; 1)
V= M*

gt
=(X
R:= (%)
result := Dec;(R)

711 < NIZK{(h1,h, M, validity), (r1) : M = Ency,(validity; r1) }
1, < NIZK{(V,M),(s) : V = M*}

3 < NIZK{(V, 71, R), (1) : R - (£)")}

o1
7ty < NIZK{(hy, h,result, R), (z) : result = Dec;(R)}
d:= (result=1)
Tlverify := (validity, M, V, R, result, 711, 71, 773, 714
return (d, TTyerify)

OSPACBS auditing for verification Finally the PACBS.AuditVrfy procedure is
presented in Algorithm 3.14.

Algorithm 3.14: OSPACBS.AuditVrfy Algorithm
Input :prms,pk,m,c = (x*,e*,01,02),

TlVerify = (validity, M, V, R, result, 711, 717, 713, 714 )
Output: 4 € {0,1}

if Hy(m, x*) # e* OR validity # x* - ¢,”2-07¢ then
| return 0

end

if 711, 71, 713, 714 are valid then
| return1

else
| return O

end

Note that the scheme is auditable by everyone, meaning that everyone can check
the actions of the verifier. However, if the auditor has knowledge of the conditional
information, then she can also check that the predicate was correctly computed and
checked. This is the key property that will utilized in the design of protocols around

this primitive.
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AND Combination of OSPACBS.Sign proofs 711, 712, 773

Prover Verifier
Lt —sZ,

Ty:=hi, To=H

W’ := (C2/C1)" - Ency(1,1)

T3:=(N-W), Ty:=g

Ti, T, Ts, Ty, W'

c<$Z,

or in the random oracle model:

c:=H(hy,hk,n,N,B,Cy, Co, W, W, {T;}1,)

c
ay=t+cr
ap:=t+ac
as =t +yc
ag:=t+cs
ay,az,as, a4

Accept if all the following relations hold:
hit = Th X°

= T (Yn b)e

WW' = (CZ/C] )aZ . Ench(l,a3)
(N-W)™ =T;-B°

gla,l _ T4kc

FIGURE 3.6: AND( 711, 712, 713) in OSPACBS.Sign

Performance The performance requirements of PACBS are more extensive due
to the increased security guarantees it provides, both on the back end as well as
on the front end (user). Signing (OSPACBS.Sign) requires in total 15 exponentia-
tions - 8 for the main operation and 7 for the generation of 711, 715, 713. Verifica-
tion(OSPACBS. Verify) requires in total 15 exponentiations - 7 for the main operation
and 8 for the generation of 711, 772, 713, 714. The auditing of the signature generation
costs 12 exponentiations, while the auditing of the signature verification costs 18 ex-
ponentiations. Minor performance improvements can be achieved from the AND

compositions of the proofs.

AND composition for proofs in OSPACBS.Sign and OSPACBS.Verify
The AND composition of 711, 772, 713 from is described in where:

7ty = NIZK{(h1,h,n,N), (r) : N = Ency,(n;r) = (X, Y) = (b}, nh")}
73 = NIZK{(C1, Co, W), (&,7) : W = (C2/C1)* - Ency,(1;7) }
713 = NIZK{(,k, N,W,B),(s) : B= (N-W)* AND k=g3}
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The AND combination of 711, 715, 713, 714 from Algorithm 3.13 is straightforward (
ure 3.7). Efficiency improvements can be gained by reusing T from 711 in 774. Recall
that:

T = NIZK{(hl,h, M, validity), (r1) : M = Ency,(validity; 1) = (Al,Bl)}
5 = NIZK{(V, M), (s) : V = M*}

73 = NIZK{(V,@1,R), (7) : R = (%)7}

7ty = NIZK{(h1, h,result, R = (A4, By)), (2) : result = Dec.(R) }

AND Combination of OSPACBS.Verify proofs 71y, 713, 713, 714

Prover Verifier
t<$sZ,
Tl = ha, Tz = ht
T; := M!

1%
Ty := f)t

o1
T5 = AZ

T, T2, T3, T, T5
c<$Z4

=t+crn
=t+cs
=t+cy

=t+cz

or in the random oracle model:

¢ := H(I, h, M, validity, V, &1, R, result, {T;}3_;)

ay,az,as, a4

Accept if all the following relations hold:

B = Ty AS
h™ = Ty(By - validity 1)¢
M = T3V°¢

\4 az c
2 ys -1, R
(F)" =T
hi* = T1h¢
At = Ts(By -result 1)°

F1GURE 3.7: AND( 711, 712, 713, 714 ) in OSPACBS. Verify

3.7 PACBS Security analysis

3.7.1 Correctness

The predicate is invariant in the algorithms that comprise the PACBS scheme.
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Let B = (((n,B,N,W),y5), 711, 72, 713) and x = H{(Cy, C3) be the output of
OSPACBS.BIlindSign algorithm executed by S in the OSPACBS.Sign protocol.
Then:

Dec,(B) = x°g,"* 0% < pred(Cy, C;) = 1

Proof. The result follows from straightforward computations and the homomorphic

properties of the underlying encryption scheme:

Dec.(B) = x°g," v <

Dec.((NW)®) = x°¢,""07% <

Dec,(N*)Dec,(W)* = x°¢,"*v™® «

n*Dec,(W)* = x°¢,""v™® «

x°g, "0 %Dec,(W)* = x°¢,""v™® «
Dec,(W)* = 1<

Dec(C/C1)™

|
—_

Now since a # 0, Dec;(Cy/C1)% =1 < Dec,(Cy/C1) =1 < Dec,(Cy) = Dec,(Cq)
which gives the result. u

Let (x*,e*,01,02) be U’s output of the OSPACBS.Sign protocol on message m
and on predicate input (Cy, Cy). Then it holds that

Dec, (1) = x*5, 07" < pred(Cy, Cy) = 1

Proof. Following the protocol description in Figure 3.4:

Dec,(c1) = x*sgfzsv‘e*s RN
DecZ(BEnch(kﬁ‘)) _ xsg;llsg;lzsUdsggyzs—uzsv—es—ds P
Dec.(B)k! = xk"1g,"0 % <
Dec,(B) = x°g,"*v™®

and from it holds that Dec;(B) = x°g,"*"v¢ < pred(Cy, ) = 1. m

Using Lemma 3.3 correctness can be proved.



3.7. PACBS Security analysis 87

Theorem 3.6: OSPACBS correctness

The Okamoto-Schnorr PACBS scheme has correctness.
Proof. Tt always holds that Hy(m,x*) = e*. Following the PACBS. Verify
algorithm outputs 1 if and only if Dec,(R) = 1 and since the blinding factor 7y # 0:

Dec;(R) =1 Dec,(V/oq) =1

Dec;(M?) = Dec;(01)

Dec; (Ency,(validity)®) = Dec; (1)
validity® = Dec; (1)
x*sg;_”sv‘e*s = Dec,(71)
pred(C1, Cy) =1

U T T

which concludes the proof. [

3.7.2 Blindness

The proof follows [Sch01]. Note that Tlerify i /Algorithm 3.13 depends solely on the

signature.

Let E = (((n,B,N,W),y,), 11, 713, 713) be an output of the OSPACBS.Sign
protocol with public transcript (e, B,7) and public input x = H; (Cy, C,) where

0 = (x*,e*,01,07) is avalid signature on message m. Then there exist a unique
tuple (u1,up,d,r) such that Uanind(B,ul,uz,d,r) = 0 where Unblind is the
algorithm issued as the last step of the OSPACBS.Sign protocol, u1,uy,d are

the blinding factors and r is the randomness used to encrypt k*1.

Proof. Since 0 is valid, yields about B:

B = Ency,(x°g,"”v ™% 1) = Dec,(B) = x°g,"* 0% (3.4)

Furthermore, the validity of ¢ means that in OSPACBS.Verify (Algorithm 3.13):

o1=M° = Ench(x*sgg@sv‘e*s) (3.5)
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It is immediate from the Blind and Unblind algorithms in that the only
possible tuple (uq,up,d, r) for a valid signature must satisfy:

uy =log; (Dec, (1) - Dec;(B™)) (3.6)

and up = 0p ~yo, d = e* —e, r = r5, —rp, where rp is the encryption randomness of

B and rz, the randomness in 0.

The value x* computed when unblinding with these values equals x*. From
tion 3.4 and Equation 3.6:

g1 =k = Dec, (1) Dec, (B) = Decy(71)° x 1ghor

From Equation 3.5:

= Uy U — \sbo.—1. Y2 T2=Y2,_ o*_ — \g1 0y o*
x*:xgllgzzvd:x(Decz(al)s X 1gg v°)g, P2p¢"~¢ = Dec,(771)° &0 =x* m

As a result:

Theorem 3.7: OSPACBS Blindness

The Okamoto-Schnorr PACBS scheme satisfies perfect blindness.

Proof. Let S* be the unbounded adversary in the blindness game in |Algorithm 3.6
and view; = (ei,Bi) for i € {0, 1} be his view in each case. From it follows
that there exists a unique tuple (u1,uy,d,r) that maps view; to 7; for both cases of

i,j € {0,1} and the unbounded adversary can always compute it. This means that the

view of the adversary and the produced signatures are statistically independent. As

a result, in the blindness game (Algorithm 3.6) both signatures 7y, 71_ are perfectly
indistinguishable for S* and his advantage in the PACBS-BlindExp is zero. |

3.7.3 Unforgeability

Theorem 3.8: OSPACBS Unforgeability

If the OSCBS scheme is I one-more unforgeable then the OSPACBS scheme
is | one-more unforgeable under the assumption that no signatures with the

same input C to the predicate are requested.

Proof. It will be shown that if there exists an .A that wins the PACBS-OneMoreForge
game with non-negligible probability, an algorithm B can be constructed that wins

the CBS-OneMoreForge game with non-negligible probability.
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The role of B will be to simulate a PACBS signer for A, by responding to his requests

for signatures without having the signing key s.

If the conversation between .4 and B is indistinguishable from a conversation be-
tween A and a real OSPACBS signer then .4 will issue a forgery with non-negligible
probability (by assumption). Then B can utilize it to issue an OSCBS forgery when
interacting with the OSCBS signer S.

H]| |S

CBS Signer

A - 1
:B n=xg," v |
init |

: N = Ency(n, 1)

CBS Forger e
! g X W = Ency,(1, r2) L o
G/glrngvrk 1 hi=r 72 1 X,€,01,02

—», W, Zg, Zq :— ————— Bl B= (kwrlﬂurzl Jelwrtwra)z Dﬂfz(ﬁﬂ) :—.CBS

1 I 1

forge

h=hi_ 441 : | lorgen

1 ! E ! 1 1 : I

: AL GGl - :

| T AT T T T T T T T T ATt (nz BJ N/ W); ﬁz !

U - — —_—— - - - - . L L L e e e e - - - Kl

x*,e*, 01,0
PACBS
v G/ 81,820k, h |PACBS Forger forgery

P>

FIGURE 3.8: Forging OSPACBS by using OSCBS

An overview of the reduction is presented in Figure 3.8.
The input of B will be the public input of OSCBS namely G, g1,¢2,v,k. The CBS

signing oracle S is initialized with s by the challenger in order to be able to answer
signing requests. In order to simulate a PACBS Signer, 5 generates a random w € Z,
and computes /1y = gi” € G. Moreover, he selects z € Z; and computes 1 = h € G. B
must know the decryption key z in order to be able to check the value of the predicate
and properly derive the validity of the signature generated by A. B initializes .4 with
G,81,82,v,k,hi,h. A can query the two random oracles Hi,Hy and B with C =
(C1, Cp) of his choice. As a PACBS-signer, B should be able to answer these requests
indistinguishably from a real execution of the experiment. To do so, B utilizes the

random oracle H and the signing interactions with S.

For the Hy queries that A makes, B queries the random oracle H on the same message

and forwards the response.
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For the Hy queries that .A makes on input C, if Hy(C) is not yet defined, B can check
the validity of the predicate since he can decrypt C = (Cy, C;) by utilizing z and
check if pred(C) =1 or equivalently if Dec,(Cy) = Dec;(Cy). After the decryption

B proceeds as follows:

— If pred(C) = 1, B begins an interaction (which he might continue or abort later)
with the valid OSCBS signer S and receives the first message x. He sets H1(C) =

x and responds to A with x.
— If pred(C) = 0, B responds with a uniformly selected element of G.

Without loss of generality, it can be assumed that whenever 4 queries B with C he
has queried Hq(C).

To answer the signing queries of A, B proceeds as follows:

When receiving C, e from A, if pred(C) = 1, B continues the interaction started with

S when answering Hq(C) by forwarding e.

Breceives an OSCBS signature 8 = (B, B,) from S where B, <s Z.;and B, = Ench((xggﬁzv‘e)s).
Then B must compute 1, N, W, B as specified in Figure 3.4. B proceeds as follows:

)

— nis computed as specified by the protocol: n = xg, ?v~¢. This is straightforward

since all values are known. Indeed, v was provided by the challenger, x, Bz were
provided by S and e by A.

~ B can also compute 7° = Dec; (). Note that B, = Ency,(1°) (cf. and
Figure 3.4). Since B knows the decryption key, decryption is straightforward.

— N is computed normally as N = Ency,(n,71) = (h}},nh"1) = (h{,nhi'"). B also
generates the proof 771 in the normal manner, as he knows the randomness used

in the encryption.

- W is computed as an encryption of 1 since the signature will be valid. B selects
r,(a,7v) and computes 1, = ar +y and W = Ency,(1,72) = (h}?, h'2) = (h{?, h7'?)
which is a valid reencryption of % = Ency,(1). B simulates the proof 715.
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- To compute B as (NW)?, B must use s, which he does not possess. But he can

compute B using k, n%, r1 and r; as follows:

kwr1+wr2 k(wr1+wr2)z S) _

s(wry+wry) gs(wrﬁwrz)z 5) _
1 =

hSi’l hsrlz s)(hsrz hST2Z) —
BB ) (B2, B =
Ency,(n;71)°Ency,(1;12)° = (NW)?

(
(&1
( wrl) s(wrl)z S)(gs(wrz) gi(wrz)z) _
(
(

The proof 713 is simulated as B does not possess s, but the equation holds.

If pred(C) = 0, B does not use S and must construct an invalid signature for A on its

own. This can be done in the following manner:

— B randomly selects B, ¢ Z,.
B2,

B computes 1 = xg,

- N is computed normally as N = Ency,(n,71) = (h}!,nh"1) = (h}',nh]""). m is

generated as before.

— W must contain the encryption of a random group element. B chooses 13 € Z;

and computes g\*n~! for this reason and sets W = Enc;,(¢7°n71,12) = (b2, g’ n~1h").

- B is computed using k as: (k®ri+wrz f(wri+wr2)zkrs) It is easy to see that B =
(NW)s.

— Proofs 71, 713 are simulated by B.

Assuming that no signing requests with the same predicate input C are issued by
A, all the interactions are indistinguishable from interactions with a real OSPACBS
signer. Using it follows that every valid message-signature outputted by
A is also a valid signature for the OSCBS scheme. Furthermore, if A queries for /

valid signatures then B completes exactly / interactions with S. So:
Pr[PACBS-OneMoreForge A OSPACBS = 1] = Pr[CBS-OneMoreForgeg’OSCBS = 1]

which concludes the proof. ]

Note that the security guarantees for this instantiation hold against adversaries who

cannot ask for a signature with the same challenge more than once. A larger protocol
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that utilizes this scheme should make sure this restriction holds and deny issuing
signatures on challenges that are already used.

3.7.4 Conditional Verifiability
A malicious user, without any access to either the verification key or the encryption
key, not knowing the decryptions of C1,C; cannot decide the value of the predicate
to determine whether a received signature is valid or not. This can be proved by a
reduction to the indistinguishability of the underlying encryption scheme.
Theorem 3.9: OSPACBS Conditional Verifiability
The OSPACBS scheme has conditional verifiability.
Proof. Suppose there exists a PPT algorithm A that breaks the conditional verifiability
of the OSPACBS scheme, by winning the game in Algorithm 3.8. Then, there exists
a PPT algorithm B that breaks the indistinguishability of the underlying encryption
scheme.
IND-CPA Challenger
my, My C
G h=h; _, b

! I >

: 81,80 €G IND-CPA Breaker |

|k = g5, 57, |

: pred(Cy, Cy)  pred(E;(my), C) !

A i--

(X, € B, 0)preac,.Cy) (%, € B, O)pred(E, om;),0)
v G/81,82,0,k h, h |PACBS CondVer Breaker b |

FIGURE 3.9: Breaking the IND-CPA by utilizing a break in Conditional Verifi-
ability

The interactions of B are:
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B gets as input the parameters and public key of the underlying encryption
scheme G, i1, h where h = hf for some z.

B creates keys and parameters for the PACBS scheme. In particular B chooses
random g¢1,$2,0 € G and s € Z; and sets k = ¢7. He hands the parameters
G/glngIZ)/ k/hllh to A.

B computes the signatures requested by A by using the OSPACBS.Sign protocol
from [Figure 3.4. Note that for signing only the private key s is required. So B

can create signatures without knowing the secret encryption key z.

When A asks to be challenged on a signature, B selects two group elements
my, my and hands (Ency, (1), Ency,(m57)) to the challenger of the IND-CPA prop-
erty of the encryption scheme as his own challenge. He receives C as a response.
B hands the pair (C,Encj(m7)) as the public input for the challenge predi-
cate pred(C, Encj,(m7)) and receives e as a response. He computes a signature
(((n,B,N,W),y2), 1, 712, 7t3) with public input (C, Ency (1)) and hands it
to A.

- A responds with 0 (valid) or 1 (invalid). In the first case B outputs 1 and in the

second 0.

First, the signatures A receives are identically distributed as real ones since they are
computed in the exact same way. In the case C = Encj,(m) the view of A is identical
to a real interaction for a valid signature request and in the case C = Ency,(my) it is
identical to an invalid request. It is clear that the advantage of A in distinguishing be-
tween the two cases is identical to the advantage of 5 against the indistinguishability

of the underlying encryption scheme. ]

3.7.5 Public Auditability for signing and verifying

Using the correctness of the protocol, it can be seen that if the statements of the
proofs presented hold, a signature is valid if and only if pred = 1. This means that
for a Signer/Verifier to win one of the two Public Auditability experiments one of the
proofs presented must not hold and he must convince the auditor that it does. Thus,

at least for one proof soundness must not hold, which is a contradiction.

3.7.6 Performance

We now calculate the performance of our scheme. During the signing phase, the

user performs 3 exponentiations for signing and 3 exponentiations for unblinding.
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The signer performs 10 exponentiations to compute the functionality and 8 exponen-
tiations for the proofs. For the auditing of 75z, 18 exponentiations or 12 + 6 are

required.

To verify the signature, if the verifier consists of a single entity 9 proofs are required
for the functionality and 8 to generate the proofs. If the verifier consists of f members,
5t + 4 exponentiations are required to implement the functionality and 4f + 1 for the
proofs. To audit the proof 16 exponentiations are required for 1 member and 8(¢ + 1)

for t members.

The results are summarized in Table 3.1. PACBS is quite performance-intensive, but

this justified from the increased security guarantees.

H Functionality Entity Exponentiations H
PACBS.Sign U 6
PACBS.Sign 1 member S 18
PACBS.Sign t members S 12t +6
PACBS.AuditSign U 18
PACBS.AuditSign t members U 12t +6
PACBS.Verify 1 member Vv 17
PACBS .Verify t members Vv 9t +8
PACBS.AuditVrfy 1 member U 16
PACBS.AuditVrfy t members U 8(t+1)

TABLE 3.1: Performance of PACBS in exponentiations

3.8 Alternative OSPACBS instantiation

An alternative PACBS instantiation is provided, OSPACBS,, where the signer and the
verifier do not share a key. The key generation algorithm is the same as in
along with 11, h; from Algorithm 3.11. The function embed is defined as in

Equation 3.2. The predicate pred is defined as in Equation 3.3.

The signing protocol is presented in Figure 3.10. The proofs 7y, 7T, 714 are standard
Okamoto [Oka92] proofs. The proof 713 is similar to the one in Figure 3.5.

The verification algorithm is presented in |Algorithm 3.15. The proofs 711, 7, 713 are

similar to the ones from Algorithm 3.13.

The algorithms for OSPACBS.AuditSign, OSPACBS.AuditVrfy are similar to
rithm 3.12 and |Algorithm 3.14 respectively.

Theorem 3.10: OSPACBS Correctness
The protocol OSPACBS; is correct.
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Common input: prms, (C1, C), pk

U’s private input: m € M

S’s private input : skg = (51,52) € Z, x Z, such that v = ;"1 ¢,
Commitment Phase. The Signer:

— Picks rq, 72 «$Zyg;
- Computes x = g1'§5%;
— Sends x to the user.
Blinding Phase. The User:
— Selects blinding factors uy, ua, d < Zg;
- Computes x* := xgi”ggzvd,e* = H(m, x*),e:=e* —d;
— Sends ¢, C1, C; to the signer.

Signing Phase. The Signer:

Computes Y1 := 171 + €81, Yo := 12 +€52;

Computes B1 := embed(Cy, C1) - Ency, (k¥) and B2 = y2;

Computes:
ys|
T2
73

Tty

NIZK{(g1,82, ), (r1,72) : X = g} g%}

N|ZK{(g1,g2,U), (s1,82):0= gislggsz}

NIZK{(C1, Ca,k, B1), (y1,&,7) : B1 = embed(Cy, C1)Enc, (K1)}
NIZK{(g1, 82, %,0,€), (y1,42) : /' g3" = xv™°}

Outputs 8 := (x, ¢, B1, B2, (711, 2, 713, 714 ).

Unblinding Phase. The User:
— Verifies 711, 712, 713, 7T4;
— Unblinds by computing 71 := B1 - Ency,(k"1) and 0y := By + up;

— Outputs 7 := (x*,e*,01,02).

FIGURE 3.10: The protocol OSPACBS.Sign,(S(s1,52),U(m), prms, (Cy, C2), pk)
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Algorithm 3.15: OSPACBS Verify,(prms, pk, sky,, m,7)

Input :prms,pk = (v,k),sky, = (s,z),m, 0 = (x*,e*,01,072)
Output: {0,1}

Y <sZyg
M := Encp,(x* - (g520¢ )1)
V= M?°
—\7
(3

result := Dec;(R)
1y < NIZK{(V,M),(s) : V = M*}
— =\
7y < NIZK{(V,@1,R), (1) : R= ()}
713 < NIZK{(hy, h, result, R), (z) : result = Dec;(R)}

d:= (result = 1)
Terify = (M, V, R, result, 11, 772, 773)
return (d, Tverify)

Proof. Starting from Dec, (V) straightforward calculations yield:

x*s. (ggzve*)—s _ (xg;llg;lzvd)s . (ggz _g;lz)fs ] Uﬁs(‘%d) _
xSkt _ggsyz p5e = ging;rz ki .ggs(r2+e52) . (gl—slggsz)_se _

gyt ki (g7t = g e <

Then: Dec,(R) = (k-(W1+1) . (embed(Cy, C1) - k¥1 - k*1))7 = (embed(Cy, C1))7.

From there it is evident that Dec,(R) = 1 <> Dec,(C7) = Dec,(Cy). |

The security analysis of this alternative instantiation is similar to [section 3.7.

3.9 A note on the ROS attack

In [Scho01], Schnorr proposed a new attack against interactive blind signature schemes

([Sch91); (Oka92]) and a new problem to characterize their security. Recently, [FPS20;

B 0], this attack became practical. Since our scheme indirectly builds on Okamoto

- Schnorr blind signatures, we analyze the effects of this attack on our scheme.

The variation of this attack on the Okamoto - Schnorr blind signatures (cf. Figure 2.8)
with sk = (s1,57) and pk = v = g;"1¢," is as following:

— Abegins I parallel signing sessions with S.
T2\l

’
- S selects {ril,riz}gzl € Z4 and computes {x; := g;" ¢,%}i ;.

- A selects t > | and messages {mj}§:1.
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- Aselects {aj; € Zq} and computes {x]* = ngl x?ﬁ §:1 and {e H(m],x )}] 1

j=1,i=1

- Aselects [ + 1 out of t equations from the system 25:1 ajie; = e]’.* and produces /

solutions {¢;}!_

A sends the solutions {ei}gzl as challenges to the S.

S sends the responses ;1 = 1j1 +€;51, Yjp := F'ip + €;52.

From the solutions A computes a new signature:

! ! !
0j = (mj, e} = Y. ajiei, Ox1 = ) 4jili1, Ok = ) AjilYi2)}
i1 i-1 i-1

The forgery is valid since:

Tr1 UkZ Zz 14iYi1 Zz 14jiYi2 Z aie;
81 &2 =81 iy =
I I
_ Siaap(rates) Yiaj(rptesy) —s1Yig ajie; sy Sioy ajie;
=8 82 81 81
Zl 1 ]17’11 Z; 1 ]1”12 ]1
= g1 H " =x;

The difficulty of the attack is abstracted in the intractability of the following Random
inhomogenities Overdetermined Solvable system of linear equations modulo q - ROS

problem proposed by Schnorr:

Definition 3.10: ROS; problem from [Sch01]

Given an oracle random function H : Zé — Z4 find coefficients ay; € Z, and a

solvable system of [ + 1 distinct equations with unknowns ey, ..., e; € Z;:

I
Z;ajiei =H(aj1, - aj1), jet],t>1
i=

The ROS problem does not reduce the unforgeability of a blind signature scheme to

one of the assumptions of subsection 2.1.1, but only on the length of the (prime) group

order.

In [FPS20] it is proved that the blind Schnorr scheme is unforgeable if the One-More
Discrete Log problem [Bel+03] is hard assumption holds and the ROS problem is hard.
However, the second assumption, was found to be weak by [Wag02] and a practical
attack was given while this thesis was being written [Ben+20]. This attack is polyno-
mial in time when [ > l0g,q and subexponential when [ is O(log29).
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This attack applies to all the schemes we presented in chapter 3. First, in OSCBS

since B1 = k¥1, the forger must select:
l l l
5]'1 = Hkaﬁyﬂ and 5’]'2 = Zaﬁ-ﬁiz and 6; = Zaﬁei (3.7)
i=1 i=1 i=1

to produce a forgery for a valid signature (b = 1) (Figure 3.1) for a specified verifier
with public verification key k. In the reduced round OSCBS, where B = (x-g, Pa.
v7¢)® the forger computes again Hf’:l ,Bgl and 02, e]? as in Equation 3.7. In the en-
crypted reduced round OSCBS, where the signer computes B1 = (g, B1h") the forger

must employ the homomorphic properties of the ElGamal cryptosystem and produce:
e l rifji l Bjipriaji i1 riji l %Gi pYi i
N e A O L e
1= 1= 1=

In both previous cases, the forger must also select random group elements {xz’}Ll

and make the signer apply them to the protocol.

Finally, in OSPACBS, the forger must issue a signing request with predicate input
(C1,ReEnc(Cy)) so as to force the signer to compute a valid signature. As a result,
W will now contain an encryption of 1. Then 7j; is computed exactly as Equation 3.8.

While this attack is applicable to our primitives it does not contradict our unforgeabil-

ity analysis of [Theorem 3.3 and [Theorem 3.8, where we proved that our proposals are
unforgeable for O(polylog(A)) parallel sessions, while the attack of [Ben+20] uses
Q)(A) such sessions to solve the ROS problem. B

Additionally, since our primitives are part of larger protocols we can employ mech-
anisms at a higher level to compensate for the lack of efficiency that the bound on /
entails. For instance, in the case of forgery, the number of blind signature requests,
will be less than the number of signatures, which can be detected. This check can
be accompanied by further ones to detect duplicates. Finally, in order not to allow
the adversary to take advantage of existing requests, a proof of knowledge of the

plaintext encrypted by C;, C, must be also provided.

Finally, note that this attack does not apply to Clause blind Schnorr signatures pro-
posed in [FPS20]. For each requested signature by the user, the signer creates two
parallel sessions with commitments xg, x1. The user computes two challenges e, €.
But at the last step, the signer flips a coin b «s{0,1} and if b = 0 aborts the signing

session, while if b = 1 generates the signature and concludes the session. Neither the

attack of [Wag02] nor the attack of [Ben+2(] are practical now since A must guess

>To be exact, for our schemes to be secure we require [ < l0goq < logrq parallel sessions where Q is the

number of queries to the random oracle (according to the analysis of [PS00]).
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which session will lead to a valid signature. This is impractical since for ! sessions
there are 2! possible selections. The coin used, resembles the conditionality bit of
our signatures. As such, the latter could be used to create a more realistic version of
Clause blind Schnorr signatures, where the signer produces a single commitment and
the user computes a single challenge. Instead of aborting, though, the signer could
generate both a valid and an invalid signature and return them both, in random order,
to the forger. The conditional verifiability property, would hide which one is valid
and which is not, so the forger would have to select one at random in order to pro-
duce the forgery. However, this change would entail modifications to the rest of the
protocols as the user would have to submit both signatures to the signer. We leave

this for future work.
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4 Electronic Voting Systems and
Models

All models are wrong, but some are

useful

George Box

In we informally described the most important security requirements of
electronic voting systems. In this chapter, we present a more rigorous analysis of the
sought properties, by using game-based formal models. To do so, we investigate the
relevant literature. We accompany these definitions of security by example voting
systems that are of interest in our thesis such as Helios [[Adi0g], the FOO [FO094]
and [JCJ05] along with their many variations. In the end, we propose our novel game-
based definitions of everlasting privacy and explore the relations between the security

requirements as made evident by the formal models.

4.1 Voting System Syntax

We begin by describing the components of an abstract voting scheme VS that incor-
porates functionalities from many proposals in the literature. The aim is for it to be
as generic as possible. The formalization is built, by having in mind, election schemes
that are initialized once and reused in many elections. As a result, many functionali-
ties and parameters involved are not present in the analyzed voting schemes. In our

syntax we denote optionality with ?.

VS is associated with three parameters, the security parameter A, the number of vot-
ers 1 and the number of possible candidates m. The voters are collectively denoted
by V and express their preferences by possibly using voter supporting devices (VSD),
i.e. software-hardware combinations that allow them to interact with the election
system. The scheme is controlled by an Election Authority EA, which is stateful and
its state is updated in every step of the protocols. In all algorithms we omit the state
update for simplicity. The EA consists of 3 sub-entities the registration authorities

RA, the tallying authority TA and the bulletin board BB. The latter two are always
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part of VS, while the former appears only in schemes that explicitly deal with inter-
nal registration options. The alternative is that a scheme uses an external registration
service. The BB denotes the public transcript of all executed protocols. It contains
all the election-related data (ballots, parameters, proofs etc.) As we described in
it is append-only. Therefore, whenever it is used, it contains all the data
already written to it. Thus, the BB would suffice as the public input in the definitions
of the functionalities of VS. However, when we wish to emphasize the use of such
parameters, we also include specific public data. When we would like to refer to the
bulletin board as functionality and not as a data store we use a method invocation-like

syntax and we write BB().

Definition 4.1: Voting scheme

A voting scheme

VS =(Setup, Register, SetupElection, Authorize,
Vote, Valid, VerifyBallot, Tally, Verify)

is a tuple of algorithms and protocols executed by the election authority EA =
(RA, TA), the bulletin board BB and the set of voters V = {V1,...,V, } param-
eterized by A, n, m € IN such that:

— (prms, skga, PKeas TTsetup) = VS.Setup(17)

— (pk;5, (sk;, pPk;),) = VS.Register, (RA(skga,), Vi())

- (Vg1,CS) := VS.SetupElection, (skga, 1, m, prms, L)

= (L, (bj, 1, 1i7)) := VS.Vote(EAs (skga,), Vi(vty, sk;,), prms, pkya, pk;s, VEL

— BB «= VS.Cast»(BB(), Vi(b;, 711,.))

~ {0,1} = VS.Valid(BB, b)

- {0,1} = VS.VerifyBallot(r;,b;, BB, prms, pkg,, L)

— (T, 7tr) := VS.Tally(skya,, CS,BB)

- {0,1} = VS.Verify(T, rtr, prms, pkgp, BB, CS, Vi)

We now detail the various functionalities found in Definition 4.1
— (prms, skga, Pkga, TTsetup) = VS.Setup(17)

Setup is an algorithm executed by the EA which on input 11 outputs public
parameters of the VS and a key pair of the EA (skg, pkga ). The bulletin board
transcript BB is appended with (prms, pkg, ). Note, that if the scheme consists
of both RA, TA then distinct key pairs (skra, Pkta), (Skgra, Pkra) are generated.

— (pkj5, (sk;, pk;),) = VS.Register, (RA(skga,), Vi())

Cs)
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Register is a protocol executed between a voter V; and the RA. We assume that
the voter id, is public i € [n]. The output is a voter public key pk; (available to
both parties) and a secret key sk; as a private output of the voter, which takes
the role of a voter credential. The values (i, pk;) are appended to the BB. We
must stress here, that Register is optional, as the voters could be identified by
an external service or by non-electronic means (in-person). Furthermore, even
if it is used, it is not obligatory for voters to have a key pair. The RA might use
its secret key as a signing key and sign each voter credential, or it might use it
to ensure the authenticity of the election roll when it posts the public list in the
BB. Registration is an important part of remote voting schemes, however, and
as such it is included in our model. In such protocols the registration phase is

meant to be executed once and used for multiple elections.
- (Vg1,CS) := VS.SetupElection; (skgp,, 1,1, prms, L)

The EA creates a new election using as input its secret key skg,, the number of
voters 711, the number of candidates m and additional election information (e.g.
start and end times). The SetupElection functionality outputs the set of identities
of eligible voters for the particular election Vg; € [n], along with their public
keys and the candidate slate CS which contains encodings of the choices. The
tuple of lists (VEy, CS) is posted to the BB. Note that if there is no need for the

EA to sign the output of this functionality, its secret key is not required.
- (&, (b, 11, Tjp)) = VS.Vote(EA7(skEA?), Vi(vt;, i, ski?), prms, pka, PK;5, VEL, CS)

Vote is a protocol executed between the EA and a voter V; which aims to cre-
ate and authorize the ballot. The voter’s private input is her choice of candidate
c; € CS and the public voter identity 7 which could be the legal name of a voter or
an email address. Optionally, in systems like [JCJ05] that require private creden-
tials for voter authentication, her secret key sk;. The EA can play an active role
in the protocol, by authorizing ballots created by the voter. This is typically done
by signing ballots as in [FOO92]. The EA checks voter identification informa-
tion and creates a signature. Everybody can verify it for the scheme to provide
eligibility verifiability. In that case, the EA requires a private input like a secret
key skg,. The public input consists of the system parameters, the correspond-
ing public keys pky,, pk;, the set of eligible voters Vg1 and the candidate slate
CS. The protocol outputs the ballot b;, which is a transformation (encryption
or commitment) of vt; and a proof 71}, of the correctness of this transforma-
tion, usually a NIZK (cf. section 2.4.1). Optionally, it outputs a receipt, so that
the voter can check if her vote will be later counted or not. In voting systems,

where the ballot is created by encryption of the voter choice, the receipt could
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be the randomness used to encrypt the vote. The election authority receives no
output from this functionality. We again assume that the protocol transcript is
appended to the BB. Coercion resistant voting schemes, also use an extra func-
tionality that allows the voter to evade coercion. In some systems, this func-
tionality is a simple repetition of VS.Vote, while in others it is combined with
fakekey - a credential generation mechanism. Finally in vote-and-go schemes

the VS.Vote protocol can be replaced by an algorithm VS.Vote(vt;, 7, sk;, ).
BB < VS.Casty(BB(),Vi(bi, 7Tb,-))

Cast is a protocol executed between the voter V; and the bulletin board BB.
The voter V; essentially appends a transformation of the authorized ballot b; to
the election transcript. The transformation must not render the authorization
information obsolete. One such possible transformation is the unblinding of
a signature as in [FO092], but other might be applicable too. In most voting

schemes the Vote and Cast functionalities are merged into a single functionality.
{0,1} = VS.Valid(BB,b)

Valid is an algorithm executed by the BB when the ballot b is to be appended.
It performs various checks in order to make sure that the ballot conforms to
the specifications set by the EA. For instance, it verifies the proofs of correct
ballot formation. Additionally, to avoid some attacks, it might check that there
are no exact copies of the encrypted contents of the ballot inside the BB. This

functionality is sometimes executed by the EA, but it can also be embedded into

the BB.
{0,1} = VS.VerifyBallot(r;,b;, BB, prms, pkgs, L)

VerifyBallot is an algorithm executed by the voter with input the receipt r; re-
ceived during voting, her ballot b;, the contents of the BB. It is meant to support

individual verifiability, where a voter verifies that her ballot will be counted.
(T, tp) == VS.TaIIy(skTA?, BB)

Tally is an algorithm executed by the election authority with input the parame-
ters of the scheme prms and the transcript BB of the bulletin board which con-
tains the ballot and outputs the election tally T and a proof 7tr. The output is
appended to the bulletin board BB. In case, the ballots are decrypted the TA
provides proof of correct decryption. If the ballots are not decrypted, then ev-

eryone can perform this function.

- {0,1} = VS.Verify(T, 7tr, prms, pkgp, BB, CS, VE1)
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Verify is an algorithm executed by any interested party (voters or public interest
organizations) with input the election tally T, the proof of correct computation
Tl the parameters of the scheme prms, the public key of the pky,, the contents
of the bulletin board BB, the candidate slate CS and the set of eligible voters
for the election Vg;. The output is a bit representing the result of the election
verification. Verify can be executed by any interested party using all the ballots,

for universal verifiability purposes, since all inputs can be found in the BB.

Every voting protocol is associated with a function result that computes the tally
based on the plaintext of the ballots, i.e. result : CS — R where R is the set of all possi-
ble results. The purpose of this function is to present the ‘correct’ tally of the election
in order to compare it with the output of the Tally algorithm. In some schemes, the
voter identity might play some part in the result function. For instance, if it repre-
sents a credential, only votes with correct credentials will be counted. Consequently,

a more general representation of the result function would be result : V x CS — R.

A voting scheme is intrinsically correct if result({vt;}" ) = Tally(,BB) where BB =
{bi}?:y

4.2 Helios Case Study

Helios [[Adi08] can be considered a reference voting system. Much of its workflow
is used in other election systems. It also serves as a model for the property of ver-
ifiability, as it provides this property without the need to trust the members of the
TA. Its initial version is very closely based on a well-known voting protocol from
[CGS97]. The main addition concerns mechanisms to capture voter intent. It works
in the unsupervised setting allowing remote voting through the internet. However,
as it is designed for low coercion environments the only way to defeat a coercer is
by re-voting. Initially it supported both tallying using mixnets and homomorphic en-
cryption. However, currently only the homomorphic tallying is maintained. A fork
of Helios, Zeus [Tso+13] enables tallying using mixnets. It has been used in many
binding elections as described in [MPQ09] and it has been widely analyzed both for
verifiability and privacy leading to many variations [BPW12; Cor+14; CGG19].

Main workflow

The entities comprising the system consist of voters, election administrators EA and
tellers TA. The BB is a centralized database controlled by the EA. Both the EA and
the BB do not participate in the cryptographic protocol but perform helper functions.
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Helios does not support all functionalities from section 4.1 In fact, in the basic ver-
sion:
VSHEeLIos = (Setup, Vote, VerifyBallot, Tally, Verify)

Newer variations have added a registration authority RA and the relevant function-

alities.

Setup. The EA selects the members of the TA and generates the cryptographic pa-
rameters prms = (G, g,q) of the election as well as the keys of the TA (pkya,skra)-
The sk, is shared among the tellers, by using the scheme of section 2.4, Each teller

must also post a proof 7Tse,p, of correct share construction, i.e. aproof N IZK{ (G, g,pk;),sk; :

pk; = gSki}iETA which is a Schnorr proof 75 (cf. section 2.4.1)).

The cryptographic parameters, the election public key and its shares are posted in the
BB joined with 7Tsc,,. The EA creates the candidate list CS. This setup is repeated
for each election. As a result, there is no SetupElection functionality. A list of eligible
voters Vg is selected by the authorities. Similarly, in the most used version, there is
no registration authority. It is assumed that the eligible voters are authenticated using
external services. The EA inputs all these parameters to a hash function to create the

election fingerprint and post it to the BB.

Vote. Voting takes place through a web browser, which connects to the BB and
downloads the election public data and recomputes the fingerprint for validation. All
computations are performed locally on the client browser, which can be considered
the voter VSD. When the voter wants to cast her vote, the Helios client software
simulates a voting booth, by disabling all network connectivity. The voter creates her
ballot by encrypting her candidate choice using exponential ElGamal (section 2.7).
When there are multiple candidate choices each voter must input either 0 or 1 to
indicate that she prefers the particular voter. If homomorphic tallying is to be used,
then the voter must prove that her vote is valid, i.e. that each candidate received
a preference that consisted either of 0 or of 1, and that each voter voted for only
one candidate (that is the sum of the preferences equals to 1). This is performed
through a disjunction of L-protocols from [CGS97] that a voter has produced a correct

encryption of a message from a known set (cf. section 2.4.1).

Then the voter decides whether she will cast or audit the vote. In the latter case,
the randomness used to encrypt the vote is revealed and the voter can re-compute
the ballot using a tool of her choice to check if it matches with the encryption per-
formed by the system. An audited vote cannot be cast. After all voters have cast their
ballots, they are posted to the BB together with the voter identities, by the Helios

server, in order for the voter to check if the ballot will be counted. Note that the
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auditing protocol does not use the voter identity. As a result, the ballot consists of:
b = (i,vt, 7Tgne, 7 ), where vt contains an encryption of m € {0,1} for each candi-
date, 7Tg,c contains the non interactive PoK for the correctness of each encryption

and 71y, is the proof of correctness for the entire ballot.

Alternatively, in [MPQO09] voter aliases are provided by a registration authority RA.
One of the reasons for this variation, is that if a ballot is accompanied with the voter
ID, then it leaks which voters abstained, which might be illegal in some jurisdictions.
A further variation is to post the ballots to the BB without names or aliases. As a
minor coercion countermeasure, the voters can re-vote. Only the last ballot is counted

per voter.

VerifyBallot. The EA provides as a receipt for voters to check their votes, the ran-
domness used to create the encryptions posted on the BB. For individual verifiability
the voter can create encryptions of their choices using third-party tools and pinpoint

the exact bits on the BB (under their names or by using a search algorithm).

Tally. In the original mixnet-based version, when the voting phase has concluded,
the ballots are run through a verifiable shuffle and then jointly decrypted by the mem-
bers of the TA, who then produces the result. In the homomorphic version, all the
ballots are multiplied, and the result is decrypted, are partially decrypted. All de-
cryptions are accompanied with a proof of correct decryption 7rpec from [CGS97] (cf.

section 2.4.1). The EA combines the partial decryptions to create the decryption of
the complete tally.

Verify. In order to verify the election every interested participant can check the

proofs generated by the various authorities 7Tsetyp, { (7TEnc, 7Tb) } VR, TDec-

This main workflow described in this section is included in Helios 2.0. The currently
deployed Helios 3.0 expands this functionality with practical additions that make reg-

istration of the system easier.

Attacks and Variations

There have been numerous attacks on Helios’ verifiability, both concerning the im-
plementation details and the general security model. The former can take advantage
of programming errors and oversights as well as the difficulty of implementing se-
cure functionality over an insecure medium. Furthermore, they can be caused by the
selection of cryptographic parameters, such as groups and candidate encodings. They

have been studied in detail in [ED10; CE16]. While they are by no means of negligible

importance, here we focus on attacks on the model of the Helios voting scheme.



108

Chapter 4. Electronic Voting Systems and Models

Clash attacks Clash attacks were discovered by [KTV12b]. The corrupted EA pro-
vides voters with identical ballots. When they try to verify their receipts the verifica-
tion is successful, however they are verifying the same ballot and not their individual
ones. As a result, the BB is free to modify the rest of the ballots, to candidates of
its liking. In the original Helios variant, this attack cannot be mounted, because of
the unique ciphertext produced by the ElGamal encryption. So, if two distinct voters
discover next to their names an identical random string, it means that the EA has

performed the clash attack.

In the Helios variant with aliases [MPQ09] this attack can be performed if the cor-
rupted VSD colludes with the RA issuing the pseudonyms. The RA issues the same
alias to some voters that will choose the same candidate with very high probability
(e.g. members of the same party). The VSD always uses the same random coins for
these voters (in all audits). As a result, when the voter verifies their vote, all the
voters with the same alias will successfully pass the verification. The BB can now
replace the identical ballots with the ones of its liking. According to [KTV12b], the
clash attack will not be detected in the audits, as the audit procedure checks that the
encryption of the candidate using the specified randomness always produces the au-
dited ciphertext. This attack will not work, if the random coins used in successive

audits are revealed to the voter.

To perform the clash attack on the variation of Helios where only the ballot contents
are posted on the BB, exactly the same sequence of random coins must be used by
the VSD. This means that all the voters that perform a single audit will be provided
with randomness rq, all the voters that perform two audits will be provided with
randomness 77 etc., resulting in a series of identical ballots. The malicious BB can
intercept the identical ballots in constant time, using a hash table, and inject ballots

of its own.

Both attacks of [KTV12b] can be deterred if the ballot is posted on the BB immediately
after voting and not when the voting period has expired. Another solution is to let

voter contribute their own randomness.

Weak Fiat-Shamir transform (Helios-BPW) A more serious attack was noted in
(B 9] and was briefly mentioned in section 2.4.1. The [CGS97] protocol on which
homomorphic Helios is based, employs several 2-protocols for the voter to prove that
she cast a correct vote, for the members of the TA to prove that the public key shares
have been correctly computed and for the TA to prove that the result is correctly
decrypted for the homomorphic product of the votes. These 2-protocols have been
turned non-interactive, by using the weak version of the Fiat-Shamir heuristic [],

where the random oracle is applied to the commitment message only.
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The voters and the TA can exploit this weakness and adaptively change the NIZK of
correct vote encryption, by altering the public key to construct a proof that their vote
encodes vt € {0,1}, when in fact they encode a vote vt ¢ {0,1}. This will mean that
an arbitrary number of votes will be added to the tally, in an undetected manner. The
proof will verify correctly, as the real public key is not an input to the random oracle

call.

The same technique can be used by a malicious member of the TA to create a proof
of correctness of its public key share, even though that it does not correspond to
the correctly assigned private key. As a result, when the shares are combined from
the decryption of the result, the malicious teller will contribute a random private key
share, which will make the result decrypt to arandom element of Z,. Ifleft unchecked
(e.g. against the maximum number of voters) this will result in a brute force search

for a large discrete logarithm, causing a Denial of Service attack.

A simple fix for these attacks, is to use the strong Fiat-Shamir transform as proposed
by [BPW12] and include the complete statement to be proved into the random oracle
call. Similar attacks have been made against the privacy of the Helios system, and will
be discussed in the next section. The variation of Helios with the strong Fiat-Shamir

heuristic is referred to the bibliography as Helios-BPW.

Helios with credentials A takeaway from the clash attack is that a corrupted BB
can alter votes. In the original variant of Helios, this was not applicable as the cor-
rupted BB should indicate to which (real-world) voter identities these votes corre-
spond. As a result, if a voter saw a vote under her name, when in fact she was ab-
sent during the election, she would probably complain. However, as mentioned in
[Cor+14], posting the real-world identities of voters is not always legal and many
voters that abstain have no interest in the election anyway (although many of their
acquaintances might). In order to control the BB ability to stuff ballots [[Cor+14] pro-
pose to use a registration authority RA, that issues credentials, i.e. voter pseudonyms
that allow voter authentication and are disassociated from real-world voter identities.
This variation of Helios is called Helios with credentials or Helios-C. The credentials
for Helios-C consist of a public and private counterpart. The voters receive their pri-
vate counterpart (through an offline phase) and use it to sign their ballots (encrypted
votes) in the Vote functionality. The public keys are made available in a list and can
be used to validate the signature ballots. This functionality can be executed indepen-
dently from voters for individual verifiability, during tallying from the members of
the TA and during the auditing for universal verifiability. The existence of an inde-

pendent RA changes the trust assumptions and leads to two variations of verifiability
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which will be explored in the following sections. A system that bears many similar-
ities to Helios with credentials is Belenios [CGG19]. Another variation of Helios to

add eligibility verifiability is proposed in [Sri+14].

Lack of ballot independence and ballot weeding Ballot independence is a prop-
erty that does not allow a voter to replay another voter’s interaction with the voting
system either exactly or in a related manner. For instance, a violation of ballot inde-
pendence would be for a voter to cast an exact replica of a ballot on the BB. Helios
does not provide ballot independence and this fact has been employed in [CS13] to
break ballot secrecy.

For instance, in an election with 3 voters, assume that V{ and V, have already cast

their ballots. The BB will contain the following tuples:

(ID1,b1) = (Vt1, TTEnc 1, 7Tb,1)

(IDg2,by) = (vt2, TTEnc,2, T 2)

Assume that A controls V3 and wants to learn how V; voted. He can replay an ex-
act copy of by, which is a valid ballot. When the votes are decrypted then whoever
candidate receives 2 votes, will be revealed to be the option preferred by V;. While
this attack, is artificial in nature as it is targeted only to elections with 3 candidates,
[CS13], show how it can be used to break privacy in precinct-based elections where
the adversary can learn with the help of a few corrupted voter and with great confi-

dence how a particular voter voted in small precincts, that publish their partial tallies.

Other variations of this attack, exploit the malleability of the cryptosystem and the
NIZK proofs in order not to post an exact copy of a ballot contained in the BB [[CS13]:

- Adding multiples of the group order to the response s of the NIZK.
— Permuting the elements of the vectors

— Reencrypting (homomorphically changing) all elements of the ballots and the

respective proofs

In order to thwart these attacks, [CS13] propose that the Helios BB must be changed
in order to accept unique ciphertexts, make the NIZK proofs non-malleable and only
allow ciphertexts that encrypt proper elements of G. Additionally, the random oracle
call in the Fiat-Shamir heuristic must include the voter identity in order to bind each
NIZK to a unique voter and prevent ballot copying. These changes are collectively

called ballot weeding.

As aresult, the secure version of Helios that attends to all the attacks in the literature
is Helios-C-BPW with ballot weeding.
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KTV-Helios An extension of Helios-C, that uses many techniques inspired from
coercion resistant schemes, that are of interest to our case was proposed in [KTV15;
BKV17] and will be referred to as Helios-KTV. The target property that this variation
aims to satisfy is participation privacy, that is to hide who voted in order to protect
the identities of those who abstained. Systems with credentials violate it, as a simple
search for a vote corresponding to a public credential, can reveal if the relevant voter

participated in the election.

The basic method to achieve participation privacy is to add dummy votes for all vot-
ers. These dummy votes are null, i.e. they do not affect the result, as they are encryp-
tions of 0. They can be added by the EA and other interested parties. This idea was
first proposed in [JCJ05] and is also used in our scheme in chapter 5. The IND-CPA
property of the underlying cryptosystem prevents anyone from distinguishing real
from dummy ballots. In particular, Helios-C is extended with a new functionality
VoteDummy(i) that invokes VS.Vote with voting option vt = 0 for the voter. The re-
sulting encrypted ballot is added to the BB for the voter and is accompanied by 7tg,c
of correct encryption. Before tallying begins, the TA multiplies all the entries for a
particular voter to receive the final ballot and anonymizes. Subsequently, a PET is
performed between a deterministic encryption of each vote and the final output, to

check vote validity.

Another interesting aspect of KTV-Helios is that it provides a form of receipt-freeness,

by using a form of deniable vote updating, detailed in section 4.4.1.

4.3 Election Verifiability

A short informal introduction to verifiability was given in section 1.2. Election ver-
ifiability is the property that allows the voters to regain the trust endangered by the
volatile nature of computer systems that implement e-voting functionalities. This
lack of trust is made worse when combined with the motivation for malice inherent
in all types of elections due to the enormous gains of the winners. In this section, we

will focus on formal definitions of verifiability, that can be used to model our voting

scheme presented in chapter 5.

Recall that verifiability is not a monolithic concept. It comprises many sub notions
that capture specific parts of voting systems and processes. Definitions given for
these sub notions are often incomplete and tailored to specific systems. There are

two encompassing notions that holistically embody them.

End-To-End verifiability, now a folklore term, was initially proposed in a series of
works by Chaum, Adida and Neff [Cha04; Nefo4; AN06; Ben0d]. It is an umbrella
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term for the properties we mentioned in cast as intended, recorded as cast
and tallied as recorded. Its main emphasis is on accurately and securely conveying
voter intent to the election system. The predominant solution to achieve it, aka the
cast-or-audit mechanism (Benaloh challenge) [Ben06], especially in the manner used
in the most successful remote voting scheme Helios [|Adi08], can be made compatible
with any remote voting scheme, as the one presented in this thesis. Consequently,
we do not deal at all with cast-as-intended verifiability, despite its huge importance.
In what follows, we will use the alternative notion of Election verifiability as it is
proposed by [SFC15] formalized in the computational setting. It comprises 3 notions:
Individual, Universal and Eligibility verifiability. The first two correspond to recorded
as cast and tallied as recorded verifiability, respectively. Eligibility verifiability is often
considered as contained within universal verifiability in some definitions, while other

treat it as a separate concept. We discuss both possibilities.

Trust assumptions Since the essence of verifiability is to protect against systemic
errors or malice, it makes sense to consider the election authorities that control the
system as adversarial. As a result, in formal models, the EA either as a whole or
in part (RA, TA, BB) is considered to be completely corrupt by A. This means, that
even if they consist of many members (with conflicting interests), we must assume
that they collude in order to attack the system. Consequently, schemes that rely on
at least one honest participant, are not verifiable [MPT20].

In systems, where the components of the EA handle different functionalities, there
are nuances of verifiability that differ in their trust assumptions. For instance, for uni-
versal verifiability the TA must be completely corrupt as it handles vote tallying. For
eligibility verifiability the same applies to the RA. An open question is whether the
BB is considered corrupt or not. In many implementations, it is completely controlled

by the EA and as a result, it this question makes no sense. Theoretically however is an

independent component subsection 2.1.2, and if treated as such then some interesting

attacks can come up, leading to variations that fix them.

Regarding voters, the A can either statically corrupt some of them at the beginning
of the protocol, or dynamically during its execution. These are denoted by Viory. The

rest of the voters are assumed to be honest and denoted by Vyop.

A real-world problem with honest voters is that they do not always perform the veri-

fication procedure. This has various effects in the verifiability guarantees, but surpris-

ingly even in privacy guarantees [CL18] as we will see in section 4.5. Some definitions

of verifiability [Cor+14; KZZ15b; Cor+16] take this into account concluding that for

a voting system to be verifiable, the following guarantees can be provided:

— All the votes of the voters who check are included in the tally.



4.3. Election Verifiability 113

— Some of the votes of the voters who do not check are included in the tally.

— There is no ballot stuffing or equivalently the number of adversary-cast votes

do not exceed the number of corrupted voters.

4.3.1 Individual verifiability

Individual verifiability, also called traceability according to [JMP13], was first used in
the context of mixnet-based anonymous channels, where it indicated the capacity of
senders to verify that their message reached the intended recipients [SK95]. In the
context of electronic voting, it refers to voters verifying that their vote was included
in the tally. The architecture of most voting systems proposed in the literature makes
this equivalent to votes being present in the BB, assuming that all such ballots will be
counted. As a result, for a voting system to be individually verifiable, the voter must
be able to locate her ballot in the BB.

This does not apply to voting systems, mostly aiming for coercion resistance, where
the vote might indeed reside in the BB, but this does not automatically mean that it
will be counted, since this depends on the validity of credentials. This is the case with
our voting system, as well(cf.section 5.2). When we refer to the ballot we mean the

version of it that will be counted, and not some intermediary version.

A necessary condition for individual verifiability is that the ballots are unique. This
is formally defined using the game [Algorithm 4.1, first proposed in [SFC15]. There
are two variations for this game. The first applies to systems without any registration
phase, that use some external mechanism to authenticate the voters, like the original
version Helios. The adversary generates the public parameters of the election system
and selects two different choices from the adversary generated CS to dictate to the
voter. The adversary wins the game if it can manage to create a clash, i.e. two identical
ballots.

Algorithm 4.1: IndVer%s from [SFC15]

Input : security parameter A
Output: {0,1}

(prms, pkyp, CS) < A(1%)
(vto, vt1) < A()
bg := VS.Vote(EA(), Vi(vty), prms, pkya, VE1, CS, BB)
b1 := VS.Vote(EA(), Vi(vt1), prms, pkya, VE1, CS, BB)
if bg =by AND by # 1 then

| return 1

else
| return 0

end
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From this definition it is evident, that a voting system that casts the votes in plaintext,
cannot possess individual verifiability. In this respect, traditional voting systems do
not possess individual verifiability. A simple way to achieve this property in elec-
tronic voting is to use a probabilistic encryption scheme like ElGamal [[Gams5].

A similar game can be used in the case of a voting scheme that supports internal
authentication, by a registration authority that creates and distributes credentials to
voters. Again, the adversary generates the parameters for the voting system and
simulates the RA in registering the voters and generating their private and public
credentials. A sanity check is performed that all voters have different private keys,
since two voters with the same private key are essentially the same. Subsequently the
adversary selects two honest voters and two voting options for them. The adversary
simulates the RA in executing the vote-authorization and casting protocol with the
voter to produce the ballots. Even though the adversary participates in the protocol,

its input partly originates from the honest voters. As a result, at least these parts will

be unique and therefore distinguishable.

Algorithm 4.2: IndVer'}'s from [SFC15]

Input : security parameter A
Output: {0,1}
(prms, pkga, Skra, PkTa, CS) < A(14)
. n

{(pk;, sk;) < VS.Reglster<A(skRA),Vi())}i:1
if 3(i,j) : sk; = sk; AND i # j then

| return 0
end
VR:={pk;}]L,
Veorr < A(corrupt)
(Vto,th,i,j) <~ .A()
if i,j € Veorr OR i = j then

| return 0
end
b; := VS.Vote(A(skga), Vi(vto, sk;), prms, pkra, Ver, CS, BB)
bj := VS.Vote(A(skga ), Vi(vt1,sk;j), prms, pkyp, VE1, CS, BB)
if b; = b] AND b; # | then

| return1

else
| return 0

end
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Definition 4.2: Individual verifiability

A voting system VS with external (internal) authentication satisfies individual

verifiability, if for all adversaries A there exists a negligible function negl(A)

such that: Pr|IndVer’s (¢ (1) = 1] < negl(A)

4.3.2 Universal verifiability

Universal verifiability is a concept first explored in [SK95] to contrast individual veri-
fiability in mixnet-based anonymous channels. While individual verifiability guaran-
teed delivery for a single message, or, in the case of voting, information that a single
vote was included in the tally, universal verifiability allows every interested party, in-
ternal or external, to verify that all messages were processed correctly or that all the

votes were tallied. Universal verifiability is the most studied property of electronic

voting systems with many definitions present in the literature (e.g. [Ben87; JCJ05;
KTV12b; KZZ15a; Cor+14; SFC15]) and many more, surveyed in [Cor+16].

The essence of universal verifiability is that the adversary cannot come up with a tally

T 4 that is different from the correct tally of the election, along with fabricated ad-
versarial evidence BB, 7t1 , that cause the incorrect tally to pass verification. In order
to express the correct result of the election, we make use of a function correct — tally
that retrieves the ballot contents from each ballot in the BB and provides them to
the result function in order to calculate the fair objective outcome of the election, re-
gardless of the influence of corrupted parties. It serves as a baseline to compare the
output of the tally function which is fed from the contents of the BB. The various
definitions in the literature define many ways to compute this result function in an
ideal way; actually, only the corrupted voters are of interest. In [KZZ154)], there must
exist an extractor algorithm that on input the election transcript can extract the votes
and compute the result. In other definitions [KTV10; Cor+14], only the existence of
such votes is required, not their exact specification. In [JCJ05] a game-based defi-
nition of correctness is given, and assuming the tally is correct then verifiability is
defined against it. For the correct — tally function we use the definition from [SFC15],
which states that a candidate component of a tally is /, if and only if there are exactly
[ ballots in the BB cast for the specific candidate. The game in from
[SFC15] captures the essence of of universal verifiability.

In the case of voting with credentials, the definition must be adapted. This is the

point of the game in Algorithm 4.3. The result function changes though to support
only valid votes and not all cast votes, since some of the votes cast will not be counted.

Based on these games the definition of universal verifiability can be provided:
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Algorithm 4.3: UniVer;%s from [SFC15]
Input : security parameter A
Output: {0,1}

(prms, pkra, CS,BB, T4, 717, ) < A(11)
T « correct — tally(BB)
if T4 # T AND VS.Verify(T 4, 7tr ,, prms, pkga, BB, CS, Vg1 ) = 1 then

| return 1

else
| return O

end

Algorithm 4.4: UniVer®{\ from [SFC15]
Input : security parameter A
Output: {0,1}

(prms, pkga, Skra, Pkra, Sk, CS) < A(11)
. n
{(pk;, sk;) < VS.Reglster(A(skRA),Vi()>}i:1
if 3(i,]) : sk; = sk]- ANDi # j then
| return O
end
VR := {pk;}",
(prms, kaA/ CS/ BB/ T.A/ nTA) < A({Ski}?zll VR/ 1A)
T « correct — tally(BB)
if T4 # T AND VS.Verify(T 4, 71, prms, pkga, BB, CS, Vg1 ) = 1 then

| return 1

else
| return O

end




4.3. Election Verifiability 117

Definition 4.3: Universal verifiability

A voting system VS with external (internal) authentication satisfies universal
verifiability, if for all adversaries A there exists a negligible function negl(A)

such that: Pr|UniVers\(d” (1) = 1] < negl(A)

Beyond these essential universal verifiability definitions there are other things that
must be considered. [Cor+16] highlights the following points:

— Behavior of honest voters toward verification of their ballots. Early definitions of
universal verifiability [Ben87], expect all the voters to perform the verification
process (either for ballot casting or for tallying). However, this not what hap-
pens in reality. Most voters do not verify that their votes are present in the BB
nor that the system took them into account. As a result, an adversary can drop
or alter votes without being detected. The latter is of course more serious. A
verifiability definition should have a bound on the number of honest voters that

do not perform the verification process.

— Existence of a registration authority. Although universal verifiability is mainly
concerned with the tallying process, the latter can depend on the eligibility of
voters. Identification, authentication and eligibility is usually performed by a
registration authority and represented by handling tokens to the voters that
function as credentials. A corrupt registration authority can handle the same
credential to many voters or handle invalid credentials to some others leading
to not counted votes. Furthermore, it can create credentials for non-existent
voters or many credentials for one voter leading to ballot stuffing. All these

must be taken into account during tallying.

— Behavior of the BB. In many voting systems (such as the initial version of He-
lios [|Adi08] and the JCJ scheme [JCJ03]), the BB plays only a passive role, as a
datastore of votes. ‘Smarter’ BB can validate proofs of correct ballot formation
or perform duplicate weeding (i.e. check that there is no identical copy of the
ballot ciphertext). In voting systems with RAs, such as Helios-C [Cor+14] or
Belenios [CGG19], it can additionally validate the credentials of the voters. In
these cases. a corrupt BB can drop votes claiming an invalid credential or stuff

ballots for voters that did not cast any.

Although the last two observations are related to eligibility verifiability, they also
affect the outcome of the elections. As a result, they are part of universal verifiability
as well. In fact, in systems with a RA, [Cor+14] two types of universal verifiability
can be defined:
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— Weak universal verifiability assumes that both the BB and the RA are honest.
The TA is corrupt as always.

— Strong universal verifiability assumes that the BB and the RA are not concur-
rently dishonest. As a result, in order to be verifiable, a voting system must
withstand attacks by an adversary that controls both the TA and the BB, while
the RA is honest and attacks by an adversary that controls both the TA and the
RA but not the BB.

Weak universal verifiability can be defined using the game in from
[Cor+14]. In this game, the adversary generates the keying material of the TA that
is under his control. Since the RA and the BB are assumed honest, he can access
them only through the respective oracles Register, Cast, which create the voter cre-
dentials and cast the ballots respectively to avoid ballot stuffing. The oracle Vote
represents the votes of the honest voters, which are maintained as tuples in the list
Hon. The corruption of voters by the adversary occurs through calls to the Corrupt
oracle, which reveal the voter credentials maintained in the list Corr. The A produces
a tally after he has invoked the oracles at will. The adversary loses the game if it can-
not cast more ballots than the maximum number of corrupt voters and all the votes
of the honest voters are taken into account, assuming that the tallying function ad-
mits partial tallying i.e. result(A u B) = result(A) & result(B) for some commutative

operation @.

Strong universal verifiability can be defined using the games in and
Algorithm 4.7 from [Cor+14] where the BB or the RA are respectively corrupted. In

Algorithm 4.6 the adversary controls the casting and in Algorithm 4.6 he controls the

registration, therefore the relative oracles are not omitted.

In both games the objective of the adversary is to cause a tally to be accepted if the
number of duplicate or stuffed votes exceeds the number of corrupted voters or (some

of) the votes of the honest voters that did not check are not taken into account.

4.3.3 Eligibility Verifiability

Eligibility verifiability was first defined in [KRS10] as the property that allows anyone
to verify that each tallied ballot was cast by a voter with the right to vote and that no
voter cast more than two counted ballots. In the game in Algorithm 4.8, the adversary
must produce a valid ballot for a credential that it does not possess i.e. not belonging
to a corrupt voter. Note, that even though A executes the registration phase with
the voter, he cannot know the private part of the voter’s credential as it is completed

with the help of input submitted by the voter. Furthermore, it is assumed following
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Algorithm 4.5: Weak universal verifiability game UniVer\X'i?g from [Cor+14]

Input : security parameter A
Output: {0,1}

Oracle Register(i)

(pk;, (sk;, pk;)) := VS.Register(RA(skga ), Vi())
VEl = (Z, pkz)

Vg1 <= (i, pk;, sk;)

Oracle Corrupt(i)
ifie VEl then
‘ VCorr ~ (l/ pki/ Skz‘)
else
| return L
end

Oracle Vote(i,vt)
ifie VEl AND i ¢ VCorr then
if 3(i,-,-) € Vgon then
‘ VHon := VHon N {(1/ /)}
end
b := VS.Vote(:, Vi(vtl\./*‘“‘,ski), )
Viton <= (i, vt ", b)
else
| return L
end

Oracle Cast(i,b)
| BB < (i,b)

(prms, pkya, skra) < A(11)
(TA/ 7TTA) - ARegister,Corrupt,Vote,Cast()
if VS.Verify(T4, 7 ,,-) =0OR T4 = 1 then
| return O
end
if Iy, 10 < nyg,,, < |[Veors] AND 3{vt Yo e CS} oo -
Ty = result(vtl\./c"") ® result(vtlyH"“) then
| return O

else
| return 1

end
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Algorithm 4.6: Strong universal verifiability game U niVer%‘iﬁg with malicious BB from

[Cor-+14]

Input : security parameter A

Output: {0,1}
Oracle Register(7)

‘ /* Same as in |Algorithm 4.5| */
Oracle Corrupt(i)

/* Same as in |Algorithm 4.5| */
Oracle Vote(i,vt)

‘ /* Same as in |A1gorithm 4.5| x/

(prms, pkyy, skrp) < A(11)
(T.A/ TOT 4, BB) - AReglster,Corrupt,Vote()
if VS.Verify(T4, 7tr,,-) =0 OR T4 = 1 then
| return 0
end
Vene
Venek = {(YChck/VtYChck,bYChck)}L:ih K )
if EanCorr :0 < nVCorr < |VCOrr| AND H{VtYCorr}i:\/forr
In’: 0 <1’ < |Vion| = [Venex| AND 3{vt; 7:’1 // Honest voters that did not
check
Tyg= result(vtyc"rr) ® resuIt(thyCth) 2> result(vt;) then
| return 0

else
| return 1

end
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Algorithm 4.7: Strong universal verifiability game UniVe rVAV/e\f'ls( with malicious RA from

[Cor+14]

Input : security parameter A
Output: {0,1}

Oracle Corrupt(i)

‘ /* Same as in |A1gorithm 4.5| */
Oracle Vote(i, vt)

| /* Same as in Algorithm 4.5 %/
Oracle Cast(i,b)

| /* Same as in Algorithm 4.5 */

(prms, pkya,skra) < A1)
(Ta, 7t7,,) < ACorrupt,Vote Cast ()
if VS.Verify(T 4, 7tr,,-) =0 OR T4 = 1 then

| return O
end

—_ 1V c V c. V, c |V C |
VCth - {(ldi Ch k/ Vti Ch k’bi Ch k)}i:ih k )
if Iy, 10 <y, < [Veors| AND 3{ut)er ¢ CS}oorr
dn’:0 < n' < [Hon| - |Chck| AND 3{vt; lel // Honest voters that did not
check

Ty = result(vtl\./cm) ® result(vtyCth) @ result(vt) then
| return 0

else
| return1

end
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[SFC13], that A learns some credentials during the voting process, from voters that

cast their ballots, by the means of coercion. They are assumed to be part of a set Vioer-

Algorithm 4.8: EliVer%'s from [SFC15]

Input : security parameter A

Output: {0,1}

(prms, pkga, Skga, Pkra, CS) < A(11)

{(pk; sk;) < VS.Register(A(skga), Vi),
if 3(i,]):sk; = sk; AND i # j then

| return O

end

VR :=

{pki}i

Veorr < A(corrupt)
(vt,],b;) < A({sK; }ieiVgoers VR, 1Y)
if 3j:b; := VS.Vote(.A(skRA),Vj(vt, sk]-), prms, pky,, CS, BB) then

| return 1

else

| return O

end

Definition 4.4: Eligibility verifiability

A voting system VS with external authentication satisfies eligibility verifiabil-
ity, if for all adversaries A there exists a negligible function negl(A) such that:
Pr[EliVer\s(A) = 1] < negl(A)

Definition 4.5: Election verifiability

A voting scheme with external authentication provides election verifiability if
it provides individual and universal verifiability.

A voting scheme with internal authentication provides election verifiability if

it provides individual, universal and eligibility verifiability.

As we saw earlier, revealing if a voter participated in an election is illegal in some

jurisdictions. A relevant variation, private eligibility verifiability, was proposed in

[KTV15].

4.4 Coercion resistance

Coercion resistance or incoercibility is one of the most important goals for the realiza-
tion of remote electronic voting. Its absence means that there is no way to make sure
whether a voter is expressing her own will or is following the commands of a coercer

standing over her shoulder. However, it can also be a valid concern for supervised
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voting as well, as the short ballot assumption and the relevant real-world attacks of
reveal. In the literature there are models for the supervised setting, the

remote setting as well general models.

Coercion resistance is treated as an extended form of ballot secrecy; while the latter
protects honest voters only from passive adversaries, incoercibility protects from the
combination of dishonest voters (receipt-freeness) that want to sell their votes and
active adversaries that want to dictate a voting strategy on the voter. These gradi-
ent notions of privacy are well known in the voting literature and are respectively
referred to as IO coercion, semi-honest coercion and active coercion, in [Alw+15]. We

begin by reviewing the respective notions and models.

4.4.1 Receipt-Freeness

Ballot secrecy is not an optional security property of voting systems. The ballot con-
tents must stay secret, whether the voter wishes it or not. At first glance, this is at
odds with receipts generated for the purposes of individual verifiability [BT94]. The
Vote functionality, in the model in section 4.1, generates a receipt, that the voter can
input to the VerifyBallot functionality to check that her vote will be counted. As we
saw in section 4.7, this receipt can simply be the randomness used to encrypt the voter
choice in the ballot. The voter can use this receipt to recreate the ballot and compare
it with the one that resides in the BB. However, the same sequence of actions, can
be performed by a malicious voter wanting to sell her vote or by an honest voter that
is coerced to vote in a specific way. To thwart this attack a voting system must emu-
late the ‘plausible deniability’ offered by physical voting booths [BT94]. This can be
simply achieved by not generating receipts as in traditional elections. But that, albeit
the fact that it is impossible with probabilistic encryption schemes, would not satisfy

individual verifiability. The challenge is on how to combine the two.

The first definition of receipt-freeness and the first such protocol was given in [BT94].
Informally, a voting protocol is receipt-free if it can there exist no other protocol that
provides the same inputs and provides a receipt. The main way proposed to imple-
ment this property is that the voter does not produce the encrypted ballots herself, but

instead they are produced by the EA, which also generates a public proof to convince

about their well-formedness. The voter enters a voting booth (cf. subsection 2.1.2)

where he is given private data in a deniable manner, to be convinced about the plain-
text encrypted, so that he can choose her vote. If the voter is forced to reveal these
private data, she can provide a ‘forgery’ that is equally convincing to the coercer. The
problem with [BT94] is a convincing realization of the voting booth. Later, in [SK95],
the voting booth requirement is relaxed, by using a one-way untappable channel from
the EA to the voter.
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Another formal definition of receipt freeness was given in [Oka97]. According to it, a
voting system is receipt-free, if a voter V exists such that for any adversary 4, V can
cast a vote vt different from the vote required by A, such that the TA counts this vote
and A accepts the public view of the protocol (BB). They also propose a modification
of the [FOO94] voting scheme, which makes use of the anonymous channel already

present and an untappable channel from the voter to the EA.

Later, the construction of [HS00] provide a generic way to implement the voting
booth, only requiring an untappable channel (one-way voting booth from the EA to
the voter). The EA again constructs deterministic encryptions of ballots, using some
predetermined randomness. The ballot list is shuffled i.e. permuted and reencrypted.

Each voter is presented with the shuffled list and is given the designated verifier proof

of correct reencryption of subsection 2.5.2 through the untappable channel. As a re-

sult, the voter learns to which candidates the transformed ballots correspond. For
this proof to be constructed each voter is assumed to hold a private key. To cast the
ballot, the voter does not perform any computation, but simply points to her selec-
tion. If coerced, she can simulate the received proof to show that she complied with
the coercer demands. Since the coercer cannot be sure of what is received, she can-
not sell her vote. Note that a different shuffle must be performed for each voter. In a
different case if the coercer was a voter (or if she controls some corrupted voters), he

could learn the permutation and deduce, how her target voted.

Game-based definitions of receipt-freeness These first schemes, claimed receipt
freeness intuitively, without providing formal definitions or proofs. According to
[FOS19], the formal analysis of receipt-freeness was in the symbolic setting (e.g.
[JV0d]) until DEMOS [KZZ15d], which was the first game-based receipt-freeness def-
inition. Their definition is a side-effect of their privacy definition. The relevant part
in their privacy/receipt-freeness game is that the adversary presents two voting op-
tions to the challenger who plays the role of an honest voter as input to the Vote
functionality. The challenger flips a coin b and posts one of them to the BB. The
challenger returns the ballot and if b = 0 the real transcript of the interaction, or a
simulated view otherwise. This ability to simulate is according to [KZZ15d)] the rea-
son the DEMOS has receipt-freeness. [FQS19] mentions several problems with this
first game-based definition. Firstly, it inherits the problem of the respective privacy
definitions that it does not apply to all voting rules (cf. section 4.5). Secondly, it is in-
complete as it excludes schemes were receipt-freeness is achieved through re-voting.
More importantly, it is focused on supervised voting schemes, where it is difficult for

the adversary to obtain credentials, before or during vote-casting.

Another game-based definition of receipt-freeness was defined for the BeleniosRF
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voting scheme [Cha+16]. This recent scheme adds receipt-freeness to the Belenios
voting scheme [CGG19], a variation of Helios-C [Cor+14], where each voter is as-
sumed to have a private key to sign the ballot. BeleniosRF uses the cryptographic
primitive of signatures on rerandomizable ciphertexts proposed in [Bla+11]. This
primitive consists of an encryption scheme Enc that allows reencryption and a digital
signature scheme DS, such that when a ciphertext created by Enc is rerandomized,
the signature is adapted to verify on the new ciphertext. These functionalities can
be performed without any access to secret keys. BeleniosRF utilizes signatures on
rerandomizable ciphertexts to alter the randomness of an encrypted ballot. When
the voter casts the ballot, a rerandomizing server reencrypts the ciphertext and the
accompanying signature, before posting it to the BB. As a result, the randomness
used to encrypt the plaintext, cannot be used as a receipt, since it has been altered as
well. The rerandomizing server is part of the EA and adapts the proofs of validity that
accompany the ballot. Note that this does not break individual or eligibility verifiabil-
ity as the rerandomized signatures are still publicly verifiable. However, BeleniosRF
is not universally verifiable as a collusion of the RA and the rerandomizing server can

alter votes.

More interestingly, the authors of [[Cha+16] propose the first game-based definition
of receipt-freeness. Their definition is an extension of BPRIVof [Ber+15] (cf. Defid
nition 4.7). It uses two BBs, where A has access to only one according to the value

of b. Tallying occurs always on BBy and if A views BB; the correctness proof is

simulated. There are also the same oracles as in the game in |Algorithm 4.10, where
Vote(i,vtp, vty) casts a ballot for vty in BBy and a ballot for vt in BB; (for the
same V;), Cast(i,b) which casts the same ballot b in both and Tally(b) which per-
forms the tally always on BBy. For the definition of coercion resistance, a new oracle
Receipt(i,bg, b ) is defined which posts by in BBy and by in BB;. Note that Receipt

differs from Vote as it operates on ballots and not on plain votes.

A voting scheme is receipt-free if the adversary cannot distinguish which board he is

viewing, except with negligible probability.

Definition 4.6: Strong Receipt-Freeness from [Cha+16]

A voting scheme VS provides strong receipt-freeness if for every PPT algorithm
A there exists a negligible function negl(A) and an efficient algorithm Sim such
that:

Pr[sRFY ys(A) = 1] - Pr[sRF ys (1) = 1] < negl(A)

\ 7

The intuition of why the inclusion of Receipt is enough to model receipt-freeness is

that even if the 4 encodes some data (that can serve as a receipt) into by € BBy and
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Algorithm 4.9: SRFELLVS from [Cha+16]

Input : security parameter A
Output: {0,1}

Oracle Receipt(i, by, b1)
if Valid(by, BBy) AND Valid(bq, BB;) then
BBy < by
BBl <~ b1

else
L return L

Oracle Vote(i, vty, vtq)
L /* Same as in BPRIV |A1gorithm 4.1d */

Oracle Cast(i,b)
L /* Same as in BPRIV  Algorithm 4.10 */

Oracle Tally(b)
L /* Same as in BPRIV |A1gorithm 4.1d */

(prms, pkyp, sktp) < VS.Setup(1%)
CS « A()
b/ « AReceipt,Vote,Cast,TaIIy(prmsl pk)

return b = b’

different data in by € BBy so that he can distinguish the two BBs he will not be able
to do so. It is especially important, to take into account that receipt-freeness exten-
sion of BPRIV only applies to voting schemes where ballot casting is not interactive
and where the voter casts a single ballot. As a result, it cannot capture coercion-
resistant schemes, which by definition, are receipt-free and are based on re-voting,
or other techniques. A valid critique made by [FOS19] is that it requires that the bal-
lot is changed before being posted to the BB. All in all, it is focused on a particular
protocol and is not generic enough. A generic receipt-freeness definition still eludes

researchers.

Deniable vote updating Another strategy for receipt-freeness was used in sys-
tems of [LHK16; BKV17; Ach+15; LQAT20]. These systems use deniable re-voting or

deniable vote updating. The adversary forces the voter to cast a ballot b 4. The voter

obeys but can later update the ballot to by, without the adversary noticing this. There
are two variations of this technique; the second vote either cancels the first or updates
it to match the option that is really preferred by the voter. The latter option is usu-
ally found in homomorphic voting systems and depends on the candidate encoding,.
Additionally, the voter must be aware that of the value of the ballot being canceled
to successfully update it. In fact, this technique can be generalized to more than two

votes: The voter can cast as many votes as she likes - the vote to be counted in the
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end will be the homomorphic sum of all the ballots that belong to her. The idea is that
the voter can provide as many receipts as the adversary requests, but .4 we will not
be sure he has seen them all. For this reason, the votes must not be visibly linked to
each other; in [LHK16] this is achieved by using a verifiable shuffle. In [BKV17] this
is achieved by casting dummy null votes - however trust is required to the posting
agents. Of course, the greatest disadvantage of re-voting based techniques is that if

the A always watches the voter then he can block the voter from updating their vote.

4.4.2 The JC]J coercion resistance framework

The first comprehensive framework for coercion resistance was proposed in [JCJ05].
The goal of voting schemes that provide coercion resistance is not to allow the ad-
versary to perform the coercion attack. This is achieved in a game-theoretic way; the
adversary will not be motivated to coerce if he cannot check that his attack succeeded.
The JCJ proposal accomplishes this through a combination of two defense techniques:
Multiple votes per voter and authentication using anonymous credentials. Each vote
is authenticated by an anonymous token. During the registration phase the voter
receives a genuine credential. This is meant to be used when the voter is not under
coercion and will authenticate the intended vote. Under coercion, she supplies an
indistinguishable but fake credential to accompany the vote. The TA must count only
the votes that correspond to authentic credentials. This must take place in a verifiable
manner for the voter, but without publicly disclosing which votes are discarded so

that the coercer cannot verify compliance.

Adversarial model The adversary can be a vote buyer and additionally perform

the following attacks:

— Randomization attack: The voter is forced to cast a specific random vote, which
is handed by the adversary. His goal in such an attack might be to diminish a

known advantage one candidate might have (in a specific precinct).

— Forced abstention attack: The voter is forced not to vote. This attack could be
considered a variation of the randomization attack if we consider that there is an
extra null candidate representing abstention. However, it is slightly stronger, as
even a null vote has a side effect; a message is transmitted. On the other hand,
abstention means that the voter does not send a single message. While this
attack is quite simple in nature, it is very difficult to defend against, as we will

see later.

— Simulation attack: The adversary can force the voter to reveal her private key

and then vote on her behalf. This attack is stronger than the randomization and
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forced abstention attacks since an attacker knowing private keys, can perform

both.

The fake credential mechanism can thwart all these attacks. If the voter is requested
to vote randomly, then the voter does, so using the fake credential. If the voter is
forced to give up her credential in a simulation attack, then the voter gives up her
fake credential. If the voter is ordered to abstain, then she casts no vote with the fake

credential. In all cases the real vote is cast using the authentic credential.

Assumptions Inorder to provide coercion resistance the JCJ framework makes the

following assumptions:

— Moment of privacy: It is assumed that the voter is not controlled by the coercer
at all times. This is a minimal assumption; a totally controlled voter cannot

deceive the adversary.

— Untappable registration: If the adversary can obtain the registration credentials
then he can easily mount a simulation attack. While the general use of un-
tappable channels hinders the scalability of the voting system, the registration
phase can occur only once and the credentials obtained can be used for many
elections. Furthermore, this untappability is permanent; the registration tran-

script cannot leak. For this, three possibilities are offered:

+ The majority of the RA is honest and there is a mechanism for the secure

erasure of the registration transcript.

+ No corruption of the RA is allowed, and the registration transcript can be

simulated.

+ The minority of the RA is corrupted, and the voter knows their identities

so that he can simulate their transcripts.

- Anonymous casting: An adversary that can map ballots to voter identities can
at least find out if a forced abstention attack has been successful. As a result,
casting through a channel that leaks identities is incompatible with coercion

resistant.

— Corruptions: The adversary controls a minority of the members of the EA and
a minority of all voters. The corruption of voters is static, while the corruption

of authorities is adaptive.

— Coercer uncertainty: The attacker must be unaware of how honest voters vote.

Otherwise, the tally could leak information on a vote contents, in the manner
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we described in section 4.5. This can be achieved if there are voters (e.g. pro-
democracy organizations) that cast dummy votes, that should be counted, with-

out this fact being conferred to the coercer.

Model Inorder to formalize the coercion deception strategy of the voters a function
fakekey is assumed that produces an anonymous credential indistinguishable from the
real one. While few details are given in [JCJ03], it is assumed that the fakekey has hid-
den randomness from the adversary while it allows him to verify that the credential
presented has been generated in a normal manner by the registration authorities,

without allowing him to guess if it is authentic or not.

To reason about coercion resistance, the JCJ framework defines two games between
the adversary (coercer) and a challenger (voter). In the real game, the challenger
setups the election and A statically chooses which voters to corrupt. The latter yield
their private credentials. The coercer chooses a single (uncorrupted) voter to coerce.
Now the challenger flips a coin b. If b = 0, the challenger will evade coercion. For this
reason fakekey is invoked and its result is handed to 4. Subsequently, the voter casts
her real ballot. To make the attack stronger the preference of the voter is selected by
A. If b = 1, the voter allows to be simulated by providing its credential to .A. The
challenger then proceeds to tally the election and provides to the adversary the result
with a proof of correctness. The coercer must guess b i.e. check if the voter followed

his instructions.

The probability of success of the adversary in correctly guessing b is compared to the
corresponding probability of winning an idealized version of the above game, where
he cannot use the private credentials of the corrupt voters. The rationale behind this
game is to exactly measure the effect of the cryptographic primitives and the voting
protocol to the probability of the adversary discovering if his attack succeeded or
not. For instance, the adversary could win the real game by instructing the coerced
voter to cast a ballot for a candidate that is expected to receive no votes. If tallying
indicates that this candidate still does not receive any vote, then A will know that
the coerced cheated. This, however, can happen in any voting scheme, regardless of
the primitives and the workflow used to stop coercion attacks. The ideal game will
exhibit such a behavior as well, so the comparison with the real game will is meant
to nullify its effect. More specifically in the ideal game, .4 merely enumerates the
preferences of the corrupt voters to the challenger. The coerced voter does not use
fakekey but always hands the real credential to A. If b = 0 the coerced voter simply
casts the real ballot using the real credential. For this game to work, the real tally
function cannot be used. As a result, an ideal tally is defined. This version handles

the honest voter ballots as in the real case. The corrupt voter’s choices are simply
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added to the result. For the coerced voter, if b = 0 then it adds only her real vote and
not the one cast by the adversary, so as not to exhibit one more ballot in the result
which will differentiate it from the real tally and the case of b = 1. The ideal tally

function also checks for valid credentials and duplicate ballots.

Still, however, the adversary could bypass the cryptographic primitives of the voting
scheme to discover if the voter followed his instructions. For instance, in a forced
abstention attack where no other honest voters vote, the coercer can simply check if
the total number of ballots is greater than the number of ballots cast by the coerced

voters. This attack is thwarted by the assumption about the coercer uncertainty.

JCJ Implementation

Additionally, [JCJ05] proposed a protocol that implements this framework, while pro-

ceeds in the following steps:

1. Setup Phase: Key pairs are created for registration RA and tallying authorities
TA with keys (pkga,Skra) and (pkya,skya ), respectively. Corruption of a mi-

nority of members of both authorities can be tolerated for coercion resistance.

2. Registration Phase: During this phase, the voter identity is validated, and
the voter credentials are generated. They comprise a public and private pair
derived from a random anonymous token 6; which can be as simple as a random
number (or more elaborate as is the case in later refinements). The anonymous
token is encrypted with the public key of the talliers and placed on the BB C;; =
EnckaA(H,-). This is the public component, while the token itself is the private
component, which is transmitted using the untappable channel. The voter roll is

built from the public encryptions VR = {(7, Ci1) }1,. To avoid corruption during

this phase, the assumptions of apply.

3. Voting Phase:
— Ballots are cast to the BB as usual.

— 'The ballot is a modified ElGamal encryption of both the candidate choice
and the credential. This modified version, proved in [JCJ05] to have the
IND-CPA property, accommodates the needs of the proof of coercion re-
sistance. More specifically, the ballot has the following form:

b= (EnckaA (Vti)/ EnckaA(Qi)) = ((gglfggll"ti ) hrl)/ (giiz/g;z/ei ) hrz))

where 71,7y are random values.
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— The ballot is completed by proofs of knowledge of vote and credential, proof
of vote validity, namely that the candidate index is valid, and proof that the
first two components of the encryptions use the same randomness. These
proofs are essential to achieving coercion resistance, by the following ra-

tionale:

« Since the voter roll is public, an attacker against verifiability might
spoof a credential by reencrypting a voter roll entry. A legitimate voter

must prove that he knows the credential.

+ An invalid vote might indicate a forced abstention or a randomization
attack.

— The voting phase takes place using an anonymous channel. This is partic-
ularly important as to thwart the forced abstention attack and to make the

coercer unaware of the actual vote position in the BB.

4. Tallying Phase: The authorities collect the ballots from the BB and compute
the election result. Because there are more ballots than voters, on account of
coercion evasion, there must some preprocessing, in order to distinguish the

votes that must be counted. This pre-tallying phase was aptly named vote au-
thorization by [Sch+11] and consists of the following sub-phases:

— Invalid Ballot Removal: Before counting begins, the proofs of correct-

ness are extracted and verified. Ballots with invalid proofs are discarded.

- Duplicate Ballot Removal: If multiple ballots correspond to the same
credential, they are filtered and a single ballot per credential is kept. To
this end:

» From ballots with valid proofs, two lists A1, By are created. A contains

the encrypted votes and B, the encrypted credentials.

« Encrypted credentials from B; are compared with each other using
PET and if the result is 1, then it means that there are votes with
duplicate credentials. Only one item per credential is kept according to

some rule. The changes are cascaded to A;.

— Fake Ballot Removal: Votes with fake credentials are eliminated, with

the following procedure:

« The lists A1, B1 as well as the voter roll VR are forwarded to a verifiable
Shuffle to anonymize their contents. Let A>, Bo, VR’ be the new lists.
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+ Each encrypted credential in B, is compared to each item in VR’ using
PET . If the result indicates 0, then the entry in B, and the corre-
sponding one in A are discarded. A new list of encrypted votes Aj is
returned from this process. Because of the use of the Shuffle the co-
ercer loses track of the credential index in the voter roll and the vote
index in the BB. If this vote corresponds to a fake credential it will be

removed from BB before counting without raising any suspicion.

— The resulting list of encrypted votes Aj is decrypted and the votes are
counted to create the tally T. Proof of correct computation is also provided

7TT.

This protocol is proved in [JCJ05] to be coercion resistant by comparing two games.
In the real coercion resistance game, the A executes the voting protocol while also
controlling a set of corrupted voters Vgory. The goal of the game is to tell if a targeted
voter cr has followed his instruction. To this end a coin is tossed and if b = 1 the voter
allows to be impersonated, while if b = 0 the voter invokes the fakekey functionality,
provides its output to A and then uses her valid credential to cast the real vote. A
simplistic model would declare the scheme to be coercion resistant if the coercer could
not successfully distinguish the coin result after viewing the BB contents, the tally,
and the proof of correct computation. However, this is not the case, as the tally could
leak information to the coercer, in a manner like the one we saw in the case of privacy.
As a result, the advantage of the coercer should be calculated in relation to an ideal
voting system that ideally tallies the votes. This comparison will reveal how much
the actual voting system impacts coercion. To this end, an ideal voting experiment is
defined where the coercer does not have access to the contents of the BB, but only to
the outputs of the tally, i.e. the results and the number of canceled votes. Additionally,
A does not have access to the private credentials of the voters. The authors of [JCJ05]

prove that their protocol is coercion resistant if the DDH assumption holds.

The main problem of the [JCJ03] protocol is its time complexity. Assuming that there
are 1 eligible voters in VR and v votes cast, then the total number of PET performed
in By are (9(1/2) and the total number of PET performed in B; is O(nv). Note that
v > n because of multiple votes. This makes the JCJ framework inefficient for practical
usage, considering both running time and space required. Ideally, such a scheme

should operate using O(n + V) steps.

JCJ variations

Various efforts in the literature have tried to overcome the performance bottleneck of

the JCJ scheme. In this section, we review the most important ones, where importance

is defined in relation to our proposed protocol in section 5.2,
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A first line of relevant proposals are due to [Smi05; WAB07]. They achieve by blinding

the credentials and then stripping off the encryption randomization. As a result, they

efficiently compare by using a hash table. More specifically, if (a,b) = (g",0h") is an
ElGamal encryption of credential 0, where s is the shared private key and / = ¢° is
the public key and r the randomness employed, then the randomness can be removed

as follows:

The authorities select a second private key z which should be generated in a

distributed fashion.

They blind the ciphertext by computing (a2, b?) = (g"?, 67¢"%%).

Subsequently they divide the components which leave only the plaintext cre-

dential 6% in a blinded form.

The ciphertext is transformed to a deterministic fingerprint.

Duplicates can be discovered by using a hash table in linear time.

[Smi03] proposes, with efficiency in mind, to split the blinded credential to two pieces
and use the first half as a key to the hash table. This approach is problematic since it
will imply an increase in hashing collisions. This side-effect is particularly problem-
atic during fake detection and removal, since a valid credential might collide with a
fake one, and be wrongly removed, thus altering the election results, and violating
fairness. [WABO07] skips this problem by using the complete blinded credential and

appropriately adjusting the system parameters, such that 6% is unique.

Both these approaches suffer from a variant of the Pfitzmann tagging attack [Pfi94]
initially observed in [JAra+10]: The coercer obtains the voter fake credential # (in an
impersonation attack or by forcing the voter to reveal it). Then it casts two votes: one
accompanied with an encryption of 6 and one with an encryption of #2. Since both
0 and 6? are fake, the blind hash table method will output both 6% and 022 as invalid.
The coercer can square every item found in the rejected list and if a match is found,

then he will know for a fact that the voter supplied him with a fake credential.

[Spy+14] noticed that the tagging attack is irrelevant during duplicate removal. As a
result, the blind hash tables can be used there thus achieving efficiency, as this phase
can be performed in time O(v). In order to achieve removal of ballots with fake cre-
dentials in O(n) steps, the authors of [Spy+12] propose that during vote casting the
voter encrypts the index of the VR where his credential is stored. During the tallying
phase the index will be decrypted, and the encrypted credential will be retrieved from
the initial version of the voting roll. Now a single PET suffices to check the two cre-
dentials and decide if the vote should be counted or not. For this scheme to work the

system must make sure that a uniform distribution of fake indices appears. To this
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end it is proposed that the tallying authorities themselves append fake votes. This
has also the effect that a coercer that monitors the bulletin board cannot tell whether

a target voter made use of his moment of privacy. In our proposed protocol we borrow

many ideas from [Spy+12].

CIVITAS In [CCMO03], the first detailed implementation of [JCJ05] is provided.

First of all, a concrete specification of the credential generation and distribution is
given, and the faking mechanism is discussed. Our proposal in supports
both mechanisms, so the details are given there. The general idea is that the members
of the RA generate the credential in a distributed manner and provide the voter with
designated verifier proofs. In order to fake the credential, a coerced voter can simply
select a fake credential share §j, which is assumed belongs to a teller not controlled by
A. To solve the scalability problem, Civitas employs parallelism. The voters are parti-
tioned in virtual precincts, called blocks. Vote authorization and tallying happens in-
dependently in each block, and the results are aggregated. As a result, the complexity
of the scheme is (’)(Bn%max) + O(BNByaxNBmin ) Where np,,y is the maximum num-
ber of votes per block, B is the number of blocks and g, is the minimum number

of voters per block.

Anonymity Sets Another option to make tallying more efficient in the JCJ scheme,
rests on the voter posting except for her credential a set of other credentials selected
randomly from the voter roll. These credentials, function as an anonymity set to hide

its real credential and to constrain the checks.

In [CH11] the voter presents the real credential accompanied by # — 1 credentials

from the voter roll. More specifically in Selections:

— The voter encrypts the credential 6 using exponential ElGamal. This is done to
enable rerandomization for use in multiple elections and more importantly to

remove fake votes.

— During vote casting the voter commits to ¢ and rerandomizes her entry from
the voter roll. Also, she randomly picks # — 1 encrypted credentials from the
voter roll and embeds them into the ballot. Along with the standard [JCJ05]
proofs she proves that her credential is indeed a rerandomization of one of the

11 credentials, without of course revealing which one (ala [CDS94]).

— During the vote authorization phase the deduplication process occurs in linear

time as the same value g7 is present in all of them. The last vote per g? is kept.

— For fake credential removal, the commitment is treated as a deterministic en-
cryption of the credential. As such it is randomized from the standard [JCJ05]
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mixnet and is 'PETted’ with the rerandomized voter roll entry. A real vote is

determined by a successful such test.

A practical aspect of the coercion resistance schemes that were presented above, re-
lates to how does the voter creates fake credentials when under coercion. This issue
is quite vague in the literature reviewed. The [CH11] scheme tackles this problem
using the notion of panic passwords. During registration, the voter selects a password
to be used during vote casting. In reality, the system partitions the space of possible

passwords into three categories:
— The actual password to authenticate the voter and submit the real credential.

— The panic passwords which indicate that the user is under coercion and generate
fake credentials. The interaction however is indistinguishable from the one that

takes place with the actual password.

— The inadmissible passwords that indicate authentication failure and do not allow

vote casting.

Ideally panic passwords should be a sparse subset of inadmissible passwords and the
actual password is a pre-selected panic password. To illustrate the concept, better, we
refer to the 5-Dictionary introduced in [CHO8] and used in Selections. The password
space consists of any combination of five words. The valid passwords are any com-
bination of five words from an agreed-upon dictionary. A particular combination is
selected as the actual password during registration. Any other combination from the
dictionary is a panic password. Any other five-word combination from the password

space is invalid.

A similar protocol is proposed in [Sch+11] that can be seen as a combination of
Selections and [Spy+12]. The voter instead of posting only the index of the VR
where the claimed credential is stored, it posts a set of #7 — 1 more indices in clear-
text, where 17 «<s[n — 1]. As a result, the ballot posted from the voter has the form
b = (Ency, (v;), Encpi,, (6;), ) where I ¢ VR AND i € I. The EA posts replicate
the ballot for all j € I. As a result, for V; the set {Encpk, (vt;), Encpk, (6;), VR;}. In
order for the vote to be authorized a PET is performed between and Encpy, (6;) and
VR;. The advantage of this approach against Selections is that no zero knowledge

proofs are required for the credentials.

Structured credentials A different approach to the duplicate and fake credential
detection, tries to avoid the blind comparisons inherent in all the proposals so far, and
results in a new line of research [[AFT07; Ara+10; AT13], the defining characteristic

of which is that structure is added to the credentials. As a result, a credential is not

merely a group element or an alphanumeric string, but a tuple of elements some items
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of which are used for the identification of voters, and other for duplicate detection
and invalid credential removal.

For instance, in [[AFT07], the credential for V; is a tuple (7;,4;,b;, ¢;) where 7; is a
random index, 4; is a random group element, b; = als.kl and ¢; = aSratTiskiraskora
where skyra,Skoga are secret keys of the RA. (a;,b;,c;) can be made public, while
r; must be kept secret. This tuple is created during registration for each voter and is
transmitted to the voter according to the assumptions set by the [JCJ05] framework
(untappable channel, trust in a particular member of the RA). The fakekey functional-
ity is made possible by the following observation: if (r;,a;,b;, ¢;) is a valid credential
then (ri,a;p, bzl./J, czp) is also a valid credential. So, the voter can pick a random index
and produce a new credential by raising the known credential to a random power.
The same observation allows for a single registration phase to be reused for many

elections.

The ballot in [[AFT07] consists of an encryption of the vote vt and the elements of the
tuple using the public key of the TA:

b1 = (EnC k. (Vt1)1 ai/ EnC k (airi)l EnC k (biri)l EnC k. (Ci)/Ori, 7-[)
PKTa PKTA Pkta pka

where 0 is a random group element and 77 is a set of proofs of ballot well-formedness.
The value 0"i is used for duplicate detection and removal through a hashtable. The
casting phase requires an anonymous channel. Counting is performed jointly by the
registration and tallying authorities. RA checks that the credentials are unique and
valid using its secret keys, and TA decrypts and counts the corresponding valid votes.
The same approach is used in a follow-up work [[Ara+10], with the difference that the
credentials are shorter and different security assumptions is used for the security of

the scheme.

A major possible weakness in both cases is that the existence of 0”i could be used as a
receipt for vote selling or to break coercion resistance. Indeed, if the ballot (that con-
tains the value 0'i) is posted to the BB as is then the coercer could demand that the
voter present an r; such that an exponentiation could yield the posted value. How-
ever, in [[AFT07] it is not exactly specified which parts of the ballot are stored in the
BB. Another weakness of this line of work is that the authorities can easily generate

fake credentials that are identical to valid ones and insert ballots. This weakness is

addressed in [AT13].

Board Flooding The [JCJ05] framework has another problem. The BB contains

many fake votes that will not be counted, but are used only to fool the coercer. This
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design choice could yield another attack vector as first pointed in [KHF11]: An adver-
sary could disrupt an election by causing a denial of service attack, through deliber-
ately injecting fake votes. In the original version this has a quadratic effect, however
in the linear version this is not so important. A solution first proposed in [KHF11]]
combines dummy credentials together with a smart BB. The former replace JCJ fake
credentials and are the mechanism to evade coercion. They are given to the voter
during registration. In particular each V; is granted a (different) number d; of fake
credentials. As a result, not every group element is a potential credential but only the
ones that are received during registration. This implies that everything else is rejected
from the BB automatically upon submission. As a result, there will be a bound on
the items present in the BB, which consists only of votes accompanies with real and
dummy credentials. The downside of this proposal is that a portion of the voters (the
ones that receive the minimum number credentials) are more vulnerable to coercion
as the adversary will demand that they provide exactly so many and they will not be

able to present fake ones.

Our proposal (chapter 5) combines aspects of all these variations of [JCJ05]. To for-

mally prove coercion resistance we adapt the model and game-based definitions of
the JCJ framework. While other more rigorous models do exist, we find the JC]J frame-
work the best compromise between theory and practice. To illustrate the reason be-
hind our preference we compare our model with the notion of universally composable
incoercibility [Alw+15]. The latter applies not only to voting schemes but to any pro-
tocol for secure multi-party computation. A complete analysis of [Alw+15] is beyond
the scope of this thesis, as it assumes knowledge of the universal composability (UC)
framework of [Can01]. This framework aims to guarantee that the security guar-
antees of a protocol are maintained when they are combined with other (insecure)

protocols. This guarantee does not apply to [JCJ05] and by extension to our work.

Nevertheless, both works have some things in common: They both assume that there
is some ‘space of doubt’ or coercer uncertainty, so that the election tally does not leak
if the voter submitted to the attack. Both assume local coercion and corruption, in the
sense that the voters do not need to know who else is corrupted or coerced in order
to fool both adversaries. The latter can communicate through the UC environment
or the game adversary. They also both assume a trusted hardware token, at least in
principle since later instantiations of JCJ [UH12] provide mental coercion resistance,

as well.

The UC incoercibility definition expects the security properties to emanate solely
from the cryptographic primitive used in the protocol. Intuitively this means that
the coercer will be present when the voter tries to cheat. This is a very strong se-

curity property. On the other hand the JCJ framework ‘cheats’ by using out-of-band
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capabilities: revoting and a moment of privacy (since when the voter is before the
coercer she will simply do as she is told) As a result, the voter is not confined only to
cryptographic countermeasures but can also use real-world means. This makes the
resulting protocols more practical, also leads to less rigorous definitions and analysis.
On the flip side, insofar as our understanding of [Alw+15] permits, the UC inco-
ercibility definition cannot deal with the forced abstention attack as even in the case
of active coercion, the adversary does not seem to block communications. The JCJ

framework deals with this attack at the expense of an anonymous channel.

4.5 Ballot secrecy

Voter privacy is a tricky property to formulate. As we saw in there are
many levels of privacy protection. None of them are absolute, as the result, combined

with the tallying rules, leaks information. For instance:
— In a unanimous result, everyone knows how everyone voted.

— If all voters except for one, have voted for the same choice, then the one that

differs knows how everyone else voted.

— In the general case, every voter knows the probability that a random voter
picked a specific candidate from the percentage of the total votes this candi-

date received.

As a result, a definition for all types of privacy is limited by what is leaked by the
election result. However, this is independent of the voting system used and not lim-
ited to electronic voting systems. We are interested in the effect of the electronic
voting system, in particular, the cryptographic protocol used, on vote privacy. In the
current section, we begin our discourse on election privacy, starting with ballot se-
crecy. In the following section, we will deal with stronger notions of privacy such as

receipt-freeness and coercion resistance.

According to [CS13] ballot secrecy concerns the protection of a ballot’s contents from
a passive adversary, i.e. an adversary that simply monitors but does not try to affect

a target voter or the voting protocol.

4.5.1 Trust assumptions

The adversary is as we saw passive, in its interactions with the target voter. However,
he can corrupt other voters adaptively and use them by dictating their behavior in or-
der to learn how the target voter voted. The talliers are considered honest for privacy,

but the adversary can partly corrupt them. This corruption is extremely important
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in the case of homomorphic voting systems such as Helios, where the talliers must
decrypt the vote output. As only a minority of corrupted talliers is tolerated, a trust
assumption is that the adversary should not corrupt beyond this threshold. However,
it is an open problem to study how this is perceived by voters, as some might object

to the fact that they must trust the talliers for their vote not to be revealed.

4.5.2 Security games for ballot secrecy

We use the BPRIV definition of [Ber+15] to model privacy for our proposed voting
scheme in chapter 5. This definition combines the best elements of the literature (up

to that point) and has been used to model the privacy of the Helios voting system.

First approaches to ballot secrecy

Before, we describe the BPRIV definition, we summarize the characteristics of other
definitions up to BPRIV by following the excellent review found in [Ber+15]. The
most common approach to modeling ballot secrecy, adapts the indistinguishability
games that express cryptographic secrecy in the setting of voting systems. The ad-
versary, instead of distinguishing the encryption of two messages, tries to distinguish
between two BBs (BB, BB1) that contain different variations of voting scenarios. The

general description of the indistinguishability games is the following:
— The challenger setups the voting protocol. Both BB, BB are initially empty.

— The adversary can cast as many ballots as he wishes, representing the corrupted
voters. These ballots are posted to both BBs.

— The challenger posts a different variation of some behavior in each BB, by pre-
senting two voting choices to an honest voter. The honest voter executes the

voting/casting protocol and casts a ballot for each choice in each BB.
— The adversary may continue to post items to both BBs.
— The challenger flips a coin and presents the respective BB.
— The adversary must guess which BB he is viewing.

— Ballot secrecy holds if 4 cannot distinguish which BB he is viewing except with
negligible probability.

In some first privacy definitions [BT94], the variation in behavior for the challenger is
to post different permutations of votes for two honest voters, i.e. {(Vo,vtg), (V1,vt1)} €
BBy and {(Vo,vty1),(V1,vtg)} € BBy. A variation of this definition [Ben87] consid-
ers the fact that the tally must remain the same for the honest voters. For this reason,

it employs the result function that we saw in the respective verifiability definitions.
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The challenger, except for BBy, BB maintains two lists [,g°n, Elfm where the votes of
the honest voters are kept. The adversary casts ballots to both BB. For the challenge,
C posts a vote vtg in BBy, Egon and a different vty in BBy, E?On. If the results for the
honest voters in £8°n, Ellhn are different, the experiment aborts. The problem with
these definitions is that in certain cases and tallying rules, both tallies for the honest
voters are equal, but the adversary can tell the BBs apart by taking advantage of the

voters he controls.

To overcome this limitation, [Ber+11]] propose a variation of this experiment. The
first bulletin board, BB always contains the votes of the honest voters. The second
BBy, replaces the honest votes with null, fake votes. Counting takes place always on
BBp. When the adversary requests to see the tally, he is presented with the tally and
one BBg, BB{. He must guess which board he has been given.

This definition has a problem again that illustrates the conflict of ballot secrecy and
verifiability. If A can examine proofs of correct ballot formation and tallying, he can
immediately reject the ballot box with the fake votes, as these proofs will not validate.
This situation is remedied by the variation presented in [BPW13]. When the adver-
sary is presented with the real BB the real tally and actual proofs are given to him.
When the adversary is presented with the fake BB the real tally is given to him but
the proofs are simulated to match the contents of the presented BB. Unfortunately,
this definition is not sound as it can characterize as private, protocols that are not
[Ber+15]. The definitions of [Ben87] and [BPW12] can be combined so that when the
tallies for the honest voters are equal then the real tally is given to A. If not, then A

is presented with one BB.

Ballot secrecy with trusted talliers - BPRIV

We now turn to BPRIV, which is an indistinguishability game as well. The adversary
must distinguish between two ballot boxes: BBy contains the votes of the honest
voters as well as the ballots posted by A and BB that contains fake ballots that will
not be counted. The result is always computed from BB, but when the adversary is
viewing BB the proofs must be simulated from the data available in BB for the tally
of BBy. The BPRIV definition is displayed in |Algorithm 4.10, where the adversary

has access to 3 oracles. The oracle Vote represents the honest voters - the adversary

specifies two options vtg, vt and the challenger casts them to the respective BB.
The oracle Cast allows the adversary to cast any ballot to both BBs. The oracle Tally

performs the tally according to the described rules.
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Algorithm 4.10: BPRIVY s from [Ber+15]

Input : security parameter A
Output: {0,1}

Oracle Vote(i, vty, vt)
bg := Vote(i, vtp)
by := Vote(i, vtq)

BBy < by
BBl <~ b1

else
L return L

Oracle Cast(i,b)
if Valid(b, BBy) then
BBO <b
BBl <b

else
[ return L

Oracle Tally(b)

if b =0 then

(T, 7r7) := Tally(skq,, prms, CS, BBy)

return (T, 7t7)

else

(T, rrr) := Tally(skya, prms, CS, BBy)

77, := Sim(sky,, prms, CS, BBy, BBy, T)
return (T, 777)

(prms, pkyp, skt ) < VS.Setup(1%)
CS < A()

b/ « AVote,Cast,TaIIy(prmS, pk)
return b = b’

if Valid(bg, BBy) AND Valid(by, BB;) then
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Definition 4.7: BPRIV ballot secrecy

A voting scheme VS is private according to BPRIV if for every PPT algorithm
A there exists a negligible function negl(A) and an efficient algorithm Sim such
that:

Pr[BPRIVY ys(A) = 1] —Pr[BPRIV}LWS(A) = 1] < negl(A)

. J

The BPRIV definition deals with leakage from the contents of the BB and the proof of
correct tally. However, the operations of the tally phase itself might also leak enough
data for the adversary to be able to distinguish between the BBs, e.g. from the filter-
ing of the duplicate ballots found in voting schemes that allow revoting for coercion
resistance. To deal with this problem, [Ber+15] accompany the ballot privacy defini-
tion with two extra properties, that apply to voting schemes that allow for revoting

in particular:

— Strong consistency: The result of the election T as obtained by the application
of the tally phase is the same as the result of the election obtained directly from

decrypting the ballots. As a result the tally algorithm does not leak anything.

— Strong correctness: Ballots that originate from honest voters are accepted re-

gardless of the contents of the BB at the time they are posted.

More formally:
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Definition 4.8: BPRIV strong consistency

A voting scheme VS has strong consistency relative to a result function result
if there exist:

— An extraction algorithm Extract that receives the election secret key and

a ballot and outputs the identity of the voter that cast it and the ballot

contents. More formally:
V(i,vt) e VxCS: Pr[Extract(skTA, VS.Vote(i,vt)) = (i, vt)] =1-negl(A

— An independent ballot validation algorithm ValidInd that receives the
tallying public key and a ballot and outputs if the ballot is valid, such
that

¥(BB,b) < A() : VS.Valid(BB,b) = 1 = Validind(pky,,b) = 1

for which:

(Pka,skta) = VS.Setup(A)

BB « A()

(T, 7r1) < VS.Tally(skr,, BB)
return (T = result({(, vt;)}1L;))

Pr =1]=1-negl(A)

where BB = {b; : ValidInd(b;) = 1};cv

Definition 4.9: BPRIV strong correctness

A voting scheme VS satisfies strong correctness if

(BB, i,vt;) < A()
Pr{{ b; « VS.Vote(i, vt;) =0]=1-negl(A)
return VS.Valid(BB, b;)

Ballot secrecy with untrusted talliers and anonymous channels

We now present a variation of BPRIV to express ballot secrecy in voting schemes

that do not require trust in talliers for ballot secrecy and use anonymous channels.

This variation is named U-BPRIV and is presented in Algorithm 4.11. Its design fol-

lows the rationale of BPRIV of [Ber+15] as expanded in [Cha+16] for voting schemes
with registration (cf. |Algorithm 4.9). The elections are recorded into two bulletin
boards BB, BB1, and the objective of the adversary, denoted by A and computa-

tionally bounded for this model, is to distinguish them. A can actively participate in
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the elections, corrupt voters (Vcorr) and collect all data generated by VS and honest
voters (Vgon). The honest RA is modeled as a call to the Register oracle. Honest and
adversarial vote casting is represented by the Vote, Cast oracles respectively. All the
oracle calls execute the respective functionalities and return their outputs along with
the protocol transcript Trans and leaked data Aux (e.g. communication addresses and
timing information). These form the view of the adversary, denoted as view 4. Tally-
ing is performed by A and therefore there is no respective oracle as in BPRIV. In the
end, A is presented with one of the two bulletin’ boards BBy, and their objective is to

distinguish which one they are seeing.

In more detail, the challenger C takes the role of the RA, the BB, and the honest voters.
Initially, it executes a Setup functionality to create the registration parameters. The
adversary generates the voter roll, the candidate slate CS, and the tallying parameters.
The voters complete the registration process and receive the credentials in physical or
electronic form. They are not restricted only to public and private key pairs but they
can also be encrypted group elements as in [JCJ05]. This process is denoted with the
call to the Register oracle. The communication with the selected BB (according to
b) has a transcript Transy and leaks some information denoted as Auxp Register- This,

along with the public result of Register is provided to the A via its view.

The core of the game is the ballot casting phase, which is represented by the Vote and
Cast for honest and corrupted voters respectively. If V; is corrupted, then C hands

the private credentials sk; giving full control to A.

The challenger retains control of the honest voters. The adversary schedules con-
current executions of the Vote and Cast functionalities for all voters, in the most
favorable manner to them. If a voter is honest, then C plays her role, receives 2 selec-
tions vtg, vty € CS picked by A and provides in return the results of Vote, namely a
ballot b, proofs of validity and leaked data due to the use of the communication chan-
nels. The challenger flips a random coin to decide which BB to use to cast their vote.
This models the anonymous channel and prevents .4 from winning trivially. In all
cases, the view of the adversary as well as the auxiliary information is updated after
the execution of a functionality. All ballots are checked for validity for their respec-
tive BB. When all voters have finished executions of their protocols, the adversary is
presented with one of the bulletin boards and performs tallying on it. Finally, A tries

to guess which board he was presented with.

Based on this game, we provide our variation of BPRIV privacy with untrusted talliers

for secrecy and anonymous channel:
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Algorithm 4.11: U-BPR|VE’4,V5 with anonymous casting

Input : security parameter A, election information L, corruption tolerance ¢
Output: {0,1}
Oracle Register(7,L)
if i € L then
(sk;, pk;) < VS.Register(skga ), 1)
BBg < pk; for fe{0,1}
return (pk;, Transg Registers AUXg Register)  fOr B € {0,1}

else
L return L

Oracle Vote(i, vtg, vtq)

p<s{0,1}

bg := VS.Vote(i, vtp)

bl—ﬁ = VS.Vote(i, th_lg)

if VS.Valid(bg, BB) ANDVS.Valid(b;_g, BBy p) then
BBl—ﬁ <~ bl—,B
return (Transg vote, Auxg vote) for B €{0,1}

else
[ return 1

Oracle Cast(b)
if VS.Valid(b,BBs) for B e {0,1}) then
BBg <=b for fe{0,1}
return (Transg cast, Auxg cast) for e {0,1}

else
| return 1

(;rms, pkra,Skra) < VS.Setup(1%)
(VR, CS, pkya,skta) < A1)
Veorr < A(L, corrupt)

if |Vcorr| > t then
L return L

VHon <~ I\VCorr )
VieWb/ A< AReglster,Vote,Cast(BBb) where

VieWb,A :(Transb,Register/ Auxb,Register/ Tra NSp Votes

AUXb,Vote/ Tra NSp Casts AUXb,Cast)

T « A(BBy, tally)
b’ < A(viewy 4, guess)
return b = b’
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Definition 4.10: U-BPRIV ballot secrecy

A voting scheme VS is private if for every PPT algorithm A there exists a neg-
ligible function negl such that for every L:

Pr[U-BPRIVY, s, (14,L) =1] —Pr[U-BPRIVh/VS,t(lA, L) = 1] < negl(A)

\.

To model voting schemes that allow revoting with U-BPRIV we also define strong

consistency and strong correctness as in Definition 4.8 and Definition 4.9. For brevity,

we do not repeat them here.

4.5.3 Privacy based on blind signatures

The approach towards privacy in Helios-related schemes is based on trust. The TA will
decrypt nothing but the aggregate of the votes in the homomorphic version and only
the individual votes after anonymization in the mixnet based version. In practice, this
trust assumption is enforced only using threshold cryptosystems, where the power to
decrypt via the secret key is split to many shareholders assuming to have conflicting

interests.

Another line of work towards privacy-oriented voting schemes, utilizes the unlink-
ability property of blind signatures. In fact, voting was a proposed application from
their inception [Cha83]. Indeed, the scheme proposed there combines privacy and
individual verifiability (using modern terms). It utilized a registration authority RA
to handles eligibility checks and requires and anonymous channel: The general work-

flow is as follows I:

— V; blinds the ballot and submits it along with election identifying information
to the RA.

— The RA validates the voter data, and if V; has the right to vote, signs the blinded

ballot and returns it.

- V; validates the signature of the RA, unblinds the signatures and posts the signed

ballot anonymously.

— The RA receives the signed ballots, validates the RA’s signature, and posts them

to BB for verification.

- Each voter can individually verify her ballot through a random pattern embed-

ded to it, known only to him.

1A large part of the material in subsection 4.5.3 is based on [Gro14]
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The unlinkability of blind signatures, prohibits the RA to link signing with verifica-
tion sessions, which intuitively provides privacy to the scheme as the RA cannot use
the voter identification information obtained during the signing request to identity
who cast a particular vote. Individual verifiability is provided by pinpointing a vote
in the BB by using the random pattern embedded into it. The problem with [Cha83]
is twofold. Firstly, it lacks fairness as the RA knows the intermediate voting results.
Also, in the case of a dispute, the voter must show their vote, thus defeating pri-
vacy. While dispute-resolution or accountability is an exceedingly difficult property
to achieve, a solution towards this direction was proposed in [FO092]. The voting

scheme described there is based on the separation of functions between 2 entities.

— The RA, that knows the voter’s identity but not the actual vote. As a result, it

can efficiently check eligibility and authorize the vote.

— The TA, that knows the vote contents but not the voter identity. As a result, it
can provide the counting. In fact, its role is not essential, as the counting can be

performed by any interested party.

The workflow is depicted in and detailed as following:

6. Validate ID
5. Send 7. Sign Blind Commitment
a.ID
b. blinded commitment
>

c. Signature

8. Send blinded
ballot

................... 11. Vote anonymously o
15. Decommit or

1. Prepare vote complain if ballot
2. Commit to vote not present

3. Blind Commitment
4. Slgn Blind Commitment 9. Venfy RA Signature
10. Unblind ballot

14. List of valid ballots

12. Retrieve ballot list
13. Verify signatures

16. Check commitments
17. Count votes

FIGURE 4.1: Voting with blind signatures [FO092]
— Setup: An RSA digital signature scheme is initialized by executing DS.KGen.
The RA obtains a key-pair (skga, Pkga ), While no key is required for the TA.
- Register: Each V; obtains a similar key pair (sk;, pk;).
— Vote: Let vt; be the choice of V;.

+ The ballot is created by committing to vt; using randomness r;, b; = Commit(vt;, 7;).

The commitment scheme must be binding and ensures that the voter cannot
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behave differently in the preparation and generation phases. Moreover, it
substitutes the random pattern of [Cha83] that the voter must embed into

her vote in order to verify it in the BB.
» The ballot is blinded, using the properties of the RSA scheme: b} = Blind(b;, )

+ The blinded ballot is signed using the private key of the voter, producing a

signature 0y,.

» The voter submits (i,b’,7y,) to the RA, where i denotes voter identifying

information.

+ Upon receipt, the RA validates 0y, using pk;, obtained through the iden-
tity 1, the eligibility of V; and checks for double requests to defend against

double voting.
« If all checks turn out ok, it signs the blinded ballot producing Ei.
« The RA sends Ei to V;.

» After all voters have submitted their votes the RA announces the total num-

ber n of eligible voters.

— Cast: The voter executes Unblind and obtains the plain signature ¢; of the RA.
The signature can be validated with the public key of the authority pkg,. The
tuple (b;, 0;) is submitted to the TA through an anonymous channel, to hide the
network identity of the voter from the TA.

— VerifyBallot The voter checks that the commitment is present in the BB.
— Tally:

» The TA validates {0;}!_; using pkg,. Note that if the TA cheats and fails
to validate a signature, the affected voter can present the ballot with the
received signature as submitted (b;,7;) and prove that her vote should be
counted without revealing it. All valid ballots are indexed and publicly

announced.

« Each voter opens the commitments sent through during the voting phase,

by posting the index and the opening values 7;.
- Verify Everybody can verify the result, by computing it on their own.

Many aspects of the security of the scheme depend on the properties provided by the
anonymous channel. Note that the privacy provided from [FOO92] is of a different

nature, as it bears no trust assumptions.
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If a perfectly anonymous channel is used, then the system provides everlasting privacy
(cf. section 4.6). While dispute freeness is provided against a corrupted TA, it is not
provided against corrupt voters leaving the system open to Denial-of-Service attacks,
as a corrupt voter might send an invalid opening value and used it to object later or

to cancel the vote of another participant.

The scheme [FOO92] provides individual verifiability if the commitments posted are
binding. It does not provide strong universal verifiability [Cor+14] as a corrupted RA
can stuff ballots. But it provides weak universal verifiability assuming the commit-

ment scheme used is binding.

[FO092] Variations An important drawback of [FOO92] is that it requires voter

interaction in at least three stages, namely during authorization, voting and opening.
The last of these is the most problematic, as it requires from a voter to wait until ev-
erybody else has cast their votes. This provides inefficiency especially if we contrast
it to the vote-and-go approach of [CGS97]. On the other hand, it is conceptually sim-
ple, efficient and supports many counting functions. As a result, many improvements

have been proposed.

In [Ohk+99], the authors reduce the number of voter interactions by one step. They
achieve this by replacing the commitment scheme with a threshold encryption scheme.
More specifically the TA generates a key pair, where the private part is split. Instead
of committing to her choice, the voter encrypts with the public key of the TA. The
encrypted vote is then blind-signed by the RA and sent with the signature to the BB
during the voting phase. This is the last step of the voter interaction, assuming noth-
ing goes wrong. After everybody has voted, the voter can simply check the BB for
her encrypted vote and object if it is not found by revealing the authority signature.
Instead of the opening phase, the counters collectively decrypt each vote and write
the result to the bulletin board. Subsequently, the votes are aggregated. In order to
protect [Ohk+99] fairness and verifiability attacks, that are now commonplace, but
were not well researched when it was published, the voter must provide a proof 7tg,c
of correct encryption of her choice and the talliers must provide proof of correct de-

cryption 7Tpec when producing the result. We assume that the proofs use the strong

Fiat-Shamir transform (cf. section 2.4.1)).

The augmented [] scheme is presented in Figure 4.2, Figure 4.3,Figure 4.4.

The proposed voting scheme of this thesis extends the scheme in [Ohk+99] for coer-
cion resistance (cf. chapter 3).

We now prove the following, which does not exist in the literature, as far as we are

aware :
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AugFOO.Setup(11)

AugFOO.Register(14,1)

The RA invokes Each V;
prmsS = BS.Setup(1) (sk;,vk;) < DS.KGen(1")
(skga,Vkga) < BS.KGen(1") BB <= (i, vk;)

prmsgS « £S.Setup(1*)
(skpa, Pkra) < ES.KGen(1")
prmspS < DS.Setup(11)
prmsy zk < NIZK.Setup()

FIGURE 4.2: The functionalities Setup, Register of the AugFOO scheme

AugFOO.Vote(RA(skga ), Vi(vt;))

Vi

b; <~ £S.Enc(pkyy, vti)

mty, < NIZK.Prove(vt; € CS)
i <$prmsgS

b; < BS.Blind(b;, ;)

7; < DS.Sign(sk;,b;)

RA

send over (i,b,0;)

Check signature 0;
Check eligibility for V;
Ei,RA « BS.Sign(skRA,bf)

send over 3; ra

(bi,Tira) = BS.Unblind(B; )

BB « (b;, v, TirA)

FIGURE 4.3: The protocol Vote of the AugFOO scheme

AugFOO.Valid(BB,b)  AugFOO.Tally(skra)

ifb¢ BB

The TA

and NIZK Verify(rry,) =1 fori=1to n do
and BS Verify(Tigpa) =1  if BS.Verify(T;ra) = 1

then
return 1
else

return 0

andNIZK.Verify(my,) = 1
then
vt; = £S.Dec(skqy, bi)
Apply counting rule
end if

end for

FIGURE 4.4: The functionalities Valid, Tally of the AugFOO scheme
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Lemma 4.1: AugFOO is U-BPRIV

The AugFOO scheme is private according to U-BPRIV.

Proof. We define a sequence of games beginning from the adversary interacting with
the challenger of U-BPRIV® and concluding with the adversary interacting with the
challenger of U-BPRIV!. The differences in each game are detected by the adversary
with negligible probability.

For the proof, we also require the technical assumption, that all inputs to the Vote

oracle are equal as multisets.

- Gamey is the U-BPRIV® game. BBy is built through a succession of calls to or-
acles Vote, Cast from the challenger and calls Cast from the adversary. This
means that, for each tuple (b;, 71y, ra) posted by the challenger, C can in-
ternally maintain the tuple (i, vto, bo, 7v,, 0o, vt1, by, 7Ty, , 1) where by is the
ballot for vt in BBy and by is the ballot for vty in BBy. Note that while C
knows in which BB each of the ballots for vtg, vt ends up, A cannot track this
information because of the random coin that simulates the anonymous casting
and decides in which BB the ballot will end up. As a result, he cannot trivially
win the game by instructing all ballots that end up in BBy to have a specific
option vt and all ballots that end up in BB; another vt].

- {Gameé}ie[n]. For each honest voter i, the challenger selects another honest
voter i’ such that vt; = vt;. Then it replaces swaps (bjo, 7Tv,,, 7o) in for request
iin BBy with (b, 71y, 1,(7171) from or request i’ BB1_y according to the internal
table of tuples it maintains from the calls to oracle Vote. Recall that if the tuple
originates from a Cast call, then there is no change, as the adversary posts
the same ballot in both boards. In the case where the tuple originates from a
Vote call, the change is indistinguishable from the point of view of A since both
ciphertexts hide the same votes and the tally does not change. Additionally, the

proofs are swapped as well and the signature is created on the ciphertext.

It is easy to see that Game] is U-BPRIV!. Since each game in the sequence is indis-
tinguishable to the adversary, the initial and final games are also indistinguishable.

As a result, the AugFOO scheme provides privacy according to U-BPRIV.
The AugFOO scheme also provides strong consistency and strong correctness. To

argue about this we define the following functionalities:

Extract(skTA, (bi, ﬂvi,ai’RA)) =
if BS.Verify(o; ra) AND NIZK.Verify(7ty,) then £S.Decgy, (b;) else L
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and

Validind(b;, T ra) = (BS.Verify(c; ga) = 1 ANDNIZK.Verify(ry,) = 1)

Regarding strong consistency, we note that the actual tally is computed by essentially
applying the functionalities Extract and ValidInd, which is the same as AugFOQ.Valid
except for the duplicate check. Furthermore, the Extract functionality will recover
the correct voter choice assuming a sound zero-knowledge proof system and correct

encryption and signing schemes.

Strong correctness holds because even an adversarial BB cannot reject an honestly
generated ballot. Since 71y, is generated honestly and the RA is assumed honest, the
only ways to invalidate a ballot is to create an exact duplicate of the vote in question.
To do this, however, the adversary must guess the randomness used for encryption,

which can occur with negligible probability.

4.6 Everlasting Privacy

As we saw in ballot secrecy allows voters to express their true preference
without repercussions. In electronic elections, it is usually provided by cryptographic
schemes, that rely on hardness assumptions. These, however, may be broken in the
future. As a result, a computationally powerful, future, oppressive regime might ob-
tain the vote contents and use them to better control their subjects. This constitutes
an indirect coercion attempt [MNO§] in the present and it is quite easy to achieve as
secret ballots and election-related data are made widely available by e-voting schemes
in order to provide verifiability [Ber+17]. Furthermore, since authoritarian regimes
also control state and infrastructure agencies, their view will be not limited only to
publicly available information but will also contain ‘insider’ data. Everlasting pri-
vacy, a term proposed by [MNO04], is the property that protects voting protocols from

such adversaries 2.

Before [MNO6], there have been previous works that tackle the same problem, even
if they do not exactly employ the term everlasting privacy. For instance, in [Cra+96]
the voter uses the information-theoretically hiding Pedersen commitment scheme to
commit to the vote. The openings are then secret shared to the authorities using pri-
vate channels and homomorphically combined. To be verifiable, all exchanged data

are stored in a bulletin board, modeled as a public broadcast channel with memory.

2Parts of this section appear in [GPZ2(]
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Unfortunately, an adversary that hoards its contents can later use his advanced ca-
pabilities to break the privacy of the encrypted shares and reconstruct the votes. The
older blind signature-based protocol of [FOO92], achieves everlasting privacy goal,
if one assumes a perfectly anonymous channel (as Theorem 3 of [FO092] points).
It resembles the shuffling of the ballot box contents, which in traditional elections
provides a sense of everlasting privacy to the average voter, who as a human is com-

putationally restricted.

The protocols of Moran and Naor [MNO0d; MN1(] further elaborate on providing ev-
erlasting privacy through perfectly hiding commitment schemes. They propose a

concrete voting system that provides universal verifiability, receipt-freeness and ev-
erlasting privacy. Additionally, they do not require the voter to perform complex cal-
culations which makes their scheme easily usable by humans. In more details, their
proposal consists of two authorities that communicate through a private channel and
cooperate in order to produce the commitments that the voter selects. To tally the
votes, the authorities work together (privately again) to shuffle the commitments and
their openings. The latter are encrypted separately using a homomorphic cryptosys-
tem providing computational secrecy and as a result, there are two ‘parallel’ shuffles.
In the end, the perfectly hiding commitments can be safely opened to produce the
result. Everlasting privacy is achieved under the assumption that the two authorities
do not collude, and the commitment openings are not made public and thus avail-
able to the future adversary. If only a single authority is honest, then the scheme of
Moran and Naor only provides computational privacy, while if both authorities are
corrupted then the system provides only correctness. Despite proving the security of
their protocol in the UC framework, the threat model for everlasting privacy is not
formally captured. It merely rests on the perfect secrecy of the commitment scheme
and an informal description of the adversary’s capabilities. Note that in the future an
attacker, that functions as an insider, can have an equivalent effect as if at least one
of the authorities was corrupted, which means that the system of [MN10] does not

provide everlasting privacy under this stronger threat model.

Subsequent works further elaborate and generalize this technique of splitting voting
data into public and private parts, where the private data are never given to the adver-
sary thus achieving a special version of everlasting privacy - towards the public. For
instance, in [D 9] the authors apply this procedure to the Helios [[Adi08] voting
system, by replacing the exponential ElGamal encryptions with Pedersen commit-
ments that are published to the bulletin board. Their opening values are sent to the
tallier encrypted through private channels. In [CPP13], a relevant primitive - com-
mitment consistent encryption (CCE) is introduced. It allows the voters to derive

commitments from their encrypted votes. These commitments are then posted to a
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public bulletin board for verifiability purposes. If they are perfectly hiding, then the
voting scheme has everlasting privacy. Tallying takes place in parallel using a private
bulletin board, where the decryption of the result of the homomorphic combination of
the votes takes place. They also provide security definitions for the privacy properties
of their scheme but not for everlasting privacy in general. Furthermore, in [BDV13]
this splitting technique is applied to create two synchronized mixnets that operate in

parallel, mixing public commitments and private decommitment values, respectively.

The central idea in all the works presented so far is that a future adversary might be
more powerful in terms of computing power, but he will lack access to data contem-
porary to the election or private data available to the authorities. This was noted and
formalized in [[Ara+13] with the notion of practical everlasting privacy. However,
the formalization used the applied pi-calculus and not the more expressive indistin-
guishability cryptographic games. Using automated tools, the authors of [[Ara+13]
proved that the protocols of [MN1(] and [DGA12] possess practical everlasting pri-
vacy. However, they did not apply their definition to schemes based on blind signa-
tures and anonymous channels. Moreover, the reliance on private channels assumes
an external adversary, who has a view of the system similar to the view of the voter.
This excludes adversaries that cooperate with the election authorities, who in our

opinion are more powerful and more likely to be the perpetrators of a future attack.

More recent works revisit the idea of an anonymous channel to add everlasting pri-
vacy to voting schemes. As the anonymous channel is a necessary condition for
coercion resistance, these schemes also try to combine these two goals. In [LH15],
the voter casts an unencrypted choice to the bulletin board along with commitments
to their voting credential. The use of an anonymous channel and the fact that the
voting credential consists of two parts, prevents a future adversary from associating
the choice of a voter with her identity. A variation of this protocol was presented in
[LHK16] to offer coercion resistance using deniable vote updating. To achieve coer-
cion resistance, votes can be overwritten and only the last one counts. As a result,
a voter under coercion can save her real vote for the end. This is a much stronger
assumption than a simple moment of privacy required by the JCJ framework; for
example, an adversary who is able to cast a last-minute vote achieves coercion. In
[lov+17], a version of Selene enhanced for JCJ coercion resistance is equipped with
everlasting privacy towards the public with the use of pseudonyms. However, the
creation process of pseudonyms and their relationship to real voter IDs and creden-
tials requires trust assumptions and private channels between the members of the

registration authority.

In our work [GPZ17; Gro+18; GPZ19; Gro+2(], presented in and concluded

in chapter 5 we try to combine everlasting privacy and coercion resistance under
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weaker assumptions. We start with the scheme of [FO092] (cf. subsection 4.5.3)
and we solve the ballot stuffing problem with the PACBS primitive we described in
chapter 3. The conditional verifiability property of PACBS also assists to achieve

coercion resistance. The architecture of the proposed voting scheme allows tallying

without trusting the authorities. The blindness of the signatures along with the use
of an anonymous channel facilitates everlasting privacy. To reason about the way to

achieve it we introduce the following formalization.

4.6.1 Game based definitions for everlasting privacy

Our model considers an adversary, who can corrupt voters and use them to learn
what the honest voters voted. More specifically, our adversary is assumed to have

the following capabilities:

— They can passively (as there will be no vote casting) examine the public bal-
lot data found in the BB, without any further distinguishing information (e.g.

which ballots belong to honest voters and which to corrupted ones).

— They can cooperate with the contemporary adversary .4 and utilize the voters
controlled by them. Consequently, they can pinpoint the ballots originating

from adversarial voters.

— They can utilize leaked election and communication data, obtained in the real
world by taking control of state and communication agencies, such as election

authorities and internet service providers.

We incorporate these cases in our definitions, by assuming a pair of algorithms (A, A)
where A is a PPT algorithm and A is computationally unbounded. The former partic-
ipates actively in the election by corrupting voters and the latter looks at the election

transcript. leakage from communication channels denoted Aux and the information

gathered by A.

For the everlasting privacy property, we define three games to capture the differ-
ences in the strategy and knowledge of the future adversary. These games depend
on U-BPRIV defined in [Algorithm 4.11]. In all of them the adversary A is unbounded

and invokes the election system that is controlled by the challenger.

In particular, the weaker version of everlasting privacy WE-BPRIV is meant to cap-
ture a strong adversary which views only the publicly available information in the
BB for an election. Based on his computational power he can compute the tally (e.g.

by decrypting) No more data is available to him.
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Algorithm 4.12: Weak everlasting privacy game WE—BPRIVE VS

(BBy, T) < AVS()
b’ < A(BBy, T, guess)

return b = b’

This is formalized in |Algorithm 4.12, where the future adversary A invokes the voting

system. After the execution, the adversary receives the BB picked by the coin b and

the tally and tries to guess .

Definition 4.11: Weak everlasting privacy

A voting scheme VS has the weak everlasting privacy property, if for every
algorithm A there exists a negligible function negl such that for every L it holds
that:

Pr[WE-BPRIV?‘i vs(A L) = 1] - Pr[WE-BPRIV}ﬁ vs(AL) = 1] < negl(A)

In stronger versions of everlasting privacy, the future adversary remains unlimited
computationally, but gradually has access to increasing data to utilize. In the ‘plain’
everlasting privacy game the future adversary considers the transcripts obtained by
the contemporary adversary during the execution of the protocol. Note that since
corruption information is used the restriction f on the number of corrupted voters

applies as well.

b

Algorithm 4.13: Everlasting privacy E-BPRIV', 1\,

(vto, vty,Corr) « A()
(BBy, Transy, T) < AVS4()
b’ < A(BBy, Transy, guess)
return b = b/ AND |Veore| < #

Definition 4.12: Everlasting privacy

A voting scheme VS has the everlasting privacy property, if for every pair of

algorithms (A, A) there exists a negligible function negl such that for every L
it holds that:

0 1
Pr[E-BPRIVA/AIVS’t(A,L) = 1] —Pr[E-BPRIVA,A,VS’t(A,L) = 1] < negl())
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Finally, in the strongest version of everlasting privacy SE-BPRIV, the computation-
ally unbounded adversary A obtains all data generated by the protocol both main and

auxiliary.

Algorithm 4.14: Strong everlasting privacy SE—BPRIVZ VS

(vto,vty,Corr) « fl()

(BBy, view 4, Transy, Aux,, T) < AYSA()
b’ < A(BBy, Transy, Aux, guess)

return b = b/ AND |Veorr| < £

Definition 4.13: Strong everlasting privacy

A voting scheme VS has the strong everlasting privacy property, if for every

pair of algorithms (A, A) there exists a negligible function negl such that for
every L it holds that:

Pr[SE-BPRN?MVSt(A,L) = 1] —Pr[SE-BPRIVilAVSt(/\,L) = 1] < negl(A)

4.6.2 Application of the new everlasting privacy definitions
We now apply our definitions to two representative schemes; one for each of the main
approaches to privacy in the literature.

The AugFOQO scheme provides strong everlasting privacy

First, we characterize the everlasting privacy provided by the AugFOO scheme (cf.
Figure 4.2, Figure 4.3,Figure 4.4)

Theorem 4.1: AugFOO and strong everlasting privacy

The AugFOO scheme provides strong everlasting privacy.

Proof. The data available to A for an honest voter are the following:
— All the public keys and parameters.

- The public data posted on the BB in the registration and voting phases (i,b?, 7;),

(bi, v, TirA)-
- The private keys sk, skya-

— The private transcript of the corrupt voters that reveal their vote.
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DGA.Setup(171) DGA.Tally(skra)

The system invokes The TA

prmscs = CS.Setup(1t) fori=1tondo

ck « CS.KGen(1') vt; = £S.Dec(skyy, Aux;)

ok; = £S.Dec(skrp, Aux;)

if CS.0pen(b;, vt;, ok;) = 1 then
Apply counting rule

end if

end for

prmsgg < £S.Setup(1t)
(skrp, Pkra) < ES.KGen(1%)
prmsy iz < NIZK.SetUp()

DGA.Vote(vt;)

V; TA
(bj, ok;) < CS.Commit(ck, vt;)

Aux; < ES.Enc(pkya, vE;)

Aux; < ES.Enc(pky,, ok;)

BB < b;

send Aux;, Aux;

FIGURE 4.5: The DGA scheme of [DGA12]

Note that because of anonymous casting the leaked data Trans, Aux are nullified,
which means that A cannot identify the voter. The tuple (i,b}, ;) is also useless
to the adversary since b/ is blinded with information-theoretic security. While the
challenger consistently places both (i,b,;), (b;, 7tv,,7; ra) in the same BB, A does
not get any advantage because of the unlinkability of blind signatures. From b;, A
can obtain the choice of the voter. However, like Lemma 4.1, the anonymous channel
used during casting prohibits A from distinguishing in which BB this choice has been
placed. ]

The DGA scheme provides everlasting privacy

Informally, in DGA the voters publish a Pedersen commitment of their vote in the
BB, along with a witness indistinguishable proof of correct ballot formation. They
also submit the respective openings to the TA, the Helios server. The system has two
variations; it either homomorphically combines the commitment ballots or it mixes

them. The same operation is performed on the openings in parallel. We describe DGA
more formally in [Figure 4.5.

As DGA is a variation of Helios, it can be proved secure using plain BPRIV, by adapt-
ing the proof in [Ber+15]. Concerning everlasting privacy, the authors of DGA admit
in [D 2] that it only provides everlasting privacy towards the public. Towards the

election authority, DGA provides Helios-level privacy, which means that a corrupted
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or computationally powerful TA can reveal the selections of the voters. We can reach

the same results by applying our model.

Theorem 4.2: DGA and strong everlasting privacy

The DGA scheme does not provide strong everlasting privacy.

Proof. In |Algorithm 4.14, A obtain the auxiliary data:

Aux = {Auxi,Auxl{}?:1 = {£S.Enc(pkya, vt;), ES.Enc(pkyy, 0ki) b1y

Since they are computationally unbounded, they can break the encryption scheme
and obtain both vt;, ok; for all the voters. They can also obtain Transg for p € {0,1}
and the contents of both BB(, BB; which now contain the commitments from A. The
former also includes all the choices selected by A for voters in both V¢ory and Vien.
Using vt;, ok; they can validate all commitments in both bulletin boards and deduce

which of BB, BB they are viewing with certainty. ]

Theorem 4.3: DGA and everlasting privacy

The DGA scheme provides everlasting privacy.

Proof. Firstly, we note that DGA provides weak everlasting privacy. In Algorithm 4.12,

A views only the contents of both BB, having no information about which ballots be-

long to corrupt voters. However, the commitment scheme hides the ballot contents

perfectly and thus A cannot win [Algorithm 4.12.

In |Algorithm 4.13, A obtains additionally the view of A, namely the options of the

corrupt voters and the choices vtg, vt from A used in the calls to Vote. These pieces
of data provide no advantage to A, as the option of corrupted voters where already

known to them and the options of the honest voters are honestly hidden. |

4.6.3 Discussion

Our models and their evaluation indicate that it is not enough to use an information-
theoretically hiding scheme to achieve strong everlasting privacy. To do so, such
schemes need to be accompanied by an anonymous casting phase. Interestingly, this
is the intuition applied to physical on-site voting systems. The voters do not merely
hide the ballot (by concealing it inside an envelope) but they also anonymize it by

mixing it with identical envelopes inside the ballot box.

On the other hand, a critic of the anonymity approach can point out that it trades one

problem for another. Instead of a perfectly hiding system, a perfectly anonymous
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scheme is required to provide strong everlasting privacy. In our view, however, this
is not the case. An anonymous channel might not be in the (full) control of a future
adversary. It might be distributed, operated (in part) by non-governmental organiza-
tions and it might even transcend national boundaries. In theory, this seems easier to
accomplish, than trusting only the election authorities to keep private or securely de-
stroy sensitive data such as decommitment values even from insiders. Furthermore,
alternative methods of anonymity ‘on the client-side’ can be applied. For instance, it
isn’t hard to imagine a voting scheme where the locally-connected voters of a partic-
ular polling station create small-scale anonymity sets to obfuscate their ballots. As a
result, by keeping at least a single component of the anonymous channel out of the

control of the future adversary, strong everlasting privacy can be attained.

4.7 Relations between properties and models

To conclude this chapter, we review the relations between the various properties we

described in the previous sections.

We begin, with the conflict of verifiability and privacy that is evident in many vot-
ing schemes. [Che+10] prove that universal verifiability and unconditional privacy
cannot exist unless everyone votes. The reasoning for this, is that for universal veri-
fiability there must be a list of eligible voters and corresponding individual votes that
are summed to the tally. An adversary that is not constrained, can find for all sub lists
of voters, that contain one less voter, the corresponding tally. By subtracting it from
the original tally, he can uncover the preference of the voter that is excluded. Further-
more, in the same work it is proved that universal verifiability and receipt-freeness

cannot coexist, unless private channels are present. The intuition behind this proof,

rests on the fact that we accounted for in subsection 4.4.1, where the randomness used

to construct a ballot can serve as a receipt. Since, this randomness, along with the
vote uniquely determines the ballot it must be used to verify the ballot. As a result, if
the receipt is absent, the scheme is not universally verifiable and if it is present it is

not receipt-free.

Some interesting results concern individual verifiability (cf. subsection 4.3.1). It

would seem reasonable to assume that if a voting scheme possesses individual veri-

fiability, it possesses universal verifiability. However, as we saw in subsection 4.4.1,

in BeleniosRF, a voter can verify her ballot, by checking the signature. However, the
RA and the rerandomizing server can collude and undetectably change the contents
of the ballot. Note, that for universal verifiability, every member of the EA must be
regarded as being corrupted. As a result, BeleniosRF provides individual verifiabil-
ity but not universal. [SFC15] reached the same result by constructing a scheme
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with in which each voter posts her vote in plain together with a random nonce,
ie. (L, (vt;r;)) < VS.Vote(EA(),V;(vt;), prms, Vg1, CS) where r; <5 {0,1}*. This
scheme obviously possesses individual verifiability but is amenable to ballot stuffing.
The reverse does not hold either. One can construct a scheme that has universal ver-
ifiability, where each individual voter cannot pinpoint her vote in the BB. In fact, the
original version of the [FOO9Z] is such a scheme. As a result, universal verifiability

and individual verifiability are orthogonal properties.

[SFC15] prove that if a scheme provides eligibility verifiability, then it will also pro-
vide individual verifiability. The reason is that eligibility verifiability guarantees that
everybody can verify that a ballot is associated to a particular public key. This means
that the holder of the private key, can pinpoint their ballot and thus the scheme is

individually verifiable.

More surprisingly, [CL18] proves that if a scheme provides privacy then it provides
individual verifiability, or for the contrapositive if the scheme does not provide in-
dividual verifiability it does not provide privacy. The reason for this is that if voters
cannot verify that their ballots will be counted, then a corrupt EA can replace all the
ballots except for one and thus learn what a particular voter voted. An interesting
consequence of this result, is that voters who check their ballots, protect the privacy

of other voters.

Ballot secrecy is also implied by receipt-freeness. If a scheme is not private, then
there is no need for a receipt since it is public who everyone voted for. This is also
evident from the BPRIV definitions in Algorithm 4.10 and |Algorithm 4.9. It removes
the need for an unbounded adversary. For this reason, everlasting privacy implies
privacy. Regarding the reverse direction, it clearly does not hold. In fact, [KTV11]

show some counter-intuitive results if one tries to quantitatively characterize ballot

secrecy and coercion-resistance for specific voting schemes. Contrary to one’s in-
tuition: increasing privacy by forcing the voters to cast their ballots in a particular
format, reduces coercion resistance. Informally, everlasting privacy is also related to
coercion-resistance, by the observation that if a system reveals to a future adversary
the contents of the vote, then the voter is de-incentivized to cast her true preference.
However, this is not a direct consequence of any model and as a result, we do not

form a logical implication.

A contested relation in the literature, concerns receipt-freeness and coercion resis-
tance. These concepts do not have clear boundaries, as is evident from the fact
that many schemes that are coercion resistant according to some models, are not
receipt-free ([KZZ154; Cha+16; FQS19]). Receipt-freeness defends against corrupt
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voters, while coercion resistance defends against active adversaries and assumes anti-
coercion measures from the voter. Since a corrupt voter will not take this anti-
coercion strategy, a scheme that is not receipt-free will not be coercion resistance.
In the ] setting, things are clear: since a coercion resistant scheme, must be

receipt-free, coercion-resistance implies receipt-freeness.

These relations are depicted in Figure 4.6.

Universal Coercion
Verifiabili without .
erifiability X private Resistance

~ <channels
~

~
~
~

Receipt .
Individual Freeness E;igistlng
Verifiability Yy
A

Eligibility Secrecy
Verifiability Jx -------- - - - oo - -~ x

channels

Participation
Privacy

FIGURE 4.6: Relations between security properties of voting schemes
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5 Voting with Publicly Auditable

Conditional Blind Signatures

The first principle is that you must not
fool yourself and you are the easiest

person to fool.

Richard Feynman

In this chapter i, we present a voting scheme that utilizes the PACBS primitive we
analyzed in chapter 3. The main idea of this scheme is that the blind eligibility checks
of [FOO92] are combined with a credential-based coercion resistant check and em-
bedded into the PACB signature. This means that if the credential provided by the
voter during the authorization phase, is the one created during registration, then the
signature will be valid, and the vote will be counted. Otherwise, the signature will be
invalid, and the vote will be discarded because it will be considered a result of coer-
cion. While this is the intuition behind our scheme, there are many more details that
need to be considered. For instance, the designated verifier of the PACBS must indi-
cate that the signature is invalid for verifiability, without informing the coercer about
this fact. Furthermore, the duplicates inherent in [JCJ05], must be weeded out in a
verifiable manner. All these aspects of the scheme are detailed in the current chapter.
The claimed properties are also proved using ideas from the models in chapter 4.

5.1 Overview

One of the disadvantages of the [JCJ05] coercion resistance scheme is the quadratic
number of checks required to weed out coerced and duplicate votes. As we saw in
section 4.4.4, there have been many efforts in the literature, trying to speed up this
process, without sacrificing coercion resistance and verifiability. Our approach was
first detailed in [GPZ17], where we noted a new possibility stemming from the com-

bination of the scheme in [FO092] with its variations and [JCJ05]-type schemes.

1 An extension of [[GPZ17; Gro+18; Zac18; [Gro+20]
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Recall, that in [FO092; Ohk+99], the voter sends an authorization request consisting

of identification information and a blinded vote. The RA checks eligibility and then
signs the vote. Our idea is to embed credential weeding into this eligibility verification
performed by the RA. This can improve the complexity of detecting coerced votes,
bringing it down to a linear function of the number of voters (instead of votes as
in [JCJ05]). During this authorization phase, the voter identity is known, so only
the credentials assigned to it should be considered, instead of checking the tokens
of all voters. As a result, the RA would be able to tell if a particular vote should be
counted. For the actual counting, however, this fact should be conveyed to the TA,
which can be done by extending the scope of the RA’s signature. Instead of only
indicating eligibility, it can also signal if the authenticating credential is genuine or
fake, for the vote to be counted by the TA or not. All these must be done verifiably.
Every election stakeholder should be able to audit the process to check that the two
authorities followed the protocol. However, the voters, should also be convinced
that only the vote corresponding to the registered credential was counted. This fact

should not be conveyed to the coercer. Our novel contribution is that all these checks
are embedded the PACBSprimitive. Our voting scheme [[Gro+18] uses the OSPACBS
instantiation of PACBS kection 3.6.

The general workflow, from the point of view of a single voter V;, is depicted in
ure 5.1,

1. Untappable Registration - Generation-Receipt of real credential

=
2.Post encryptions of all real credentials

RA

4 .Check eligibility/coercion

(B, tsign) = OS-PACBS-BlindSign(s, C1, C», e)
ID, e=0S-PACBS-Blind(Cy, Cs, v @
3.Vote authorization

\ o | 2.(D,C)
3,4.(ID, e, B, Ttsign)
[enmessare | 5.(w0)
5.Vote casting 6. (R, Turty) 6. Verify signatures and decrypt

v, 0=0S-PACBS-Unblind (B S~ r/ (R, Ttuy) = OS-PACBS-Vrfy(s, z, v, 0)

7. Verify proofs
0OS-PACBS-Audit-Sign(Ttsign)
0OS-PACBS-Audit-Vrfy(Ttyef,)

Ficure 5.1: PACBS voting for an individual voter

The election authority EA consists of two sub-authorities RA, TA that handle the

registration and tallying functionalities respectively. They, in turn, consist of many
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members, with conflicting interests, that share cryptographic keys. Real-world elec-
tions are usually organized by a central entity so it is not uncommon for the function-
alities of the RA, TA to be performed by the same functional election authority. As a
result, the assumption that the authorities can share a cryptographic key (in this case
the PACBS secret key s) is not restricting or unrealistic. Of course, all their members

are considered corrupted to provide for universal verifiability.

The scheme VSppcgs of consists of five phases. We detail them below and
match them with the functionalities defined in Definition 4.1|:

— Setup comprising the functionalities VSpacgs.Setup, VSpacgs-SetupElection.
— Registration implemented through VSpacgs.Register.

— Voting is split into two sub-phases: authorization and casting realized by the
functionalities VSpacgs.Vote, VSpacgs.Cast. The functionality VSpacgs.Valid
is executed after casting and performs ballot weeding. Helper functionalities
used in this case are VSppcps.fakekey, VSpacgs-chaffvote, VSpacgs.-dupauth to
generate a fake credential, inject fake votes for coercion resistance and to weed

out duplicate authorization requests.
— Tally, which is implemented by VSpacgs. Tally.
— Verification which comprises of VSpacgs.VerifyBallot, VSpacgs.Verify.

In short, the protocol operates as follows (a detailed analysis will be provided in

tion 5.2).

The EA executes the VSpacgs.Setup functionality to create the cryptographic param-
eters of the system. These parameters are to be used across multiple elections. Each
voter V; participates in the generation of the real credential through an untappable
pre-election registration. This is implemented using the VSpacgs.Register function-
ality, that generates a credential intended for use in many elections. The EA executes
the VSpacps.SetupElection functionality to create a particular election. When the
registration phase ends, the RA posts a list of pairs consisting of voter identity 7 and
an encrypted genuine credential to the publicly available BB. Assume that voter V;
has obtained a credential 6; encrypted as C;; under the RA public key. Then (i, C;;)

will be included in the public credential list.

During the voting phase, V; first performs an authorization request, by executing
VSpacgs-Vote. To this end, she recomputes an encryption of the credential as C;; and
computes the encryption v; of her vote vt;. If the voter is under coercion, she will use
afake credential 0. Otherwise, she will use the genuine, making Cj, encrypt the same

plaintext as Cj; (i.e. 0;). Subsequently, she executes the VSpacgs.Vote functionality,
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by initiating the OSPACBS.Sign protocol with the RA. More specifically, v; is blinded
using the OSPACBS.Blind algorithm. Both encryptions Cj;, Cj» are attached to the
authorization request. Note that there is no need to encrypt v; with the same public
key as Cj1, Cjp. However, for simplicity, we assume that this is the case. Then V;
produces the OSPACBS.Blind output ¢;, and submits the vote authorization request,
which includes voter identification information as in [FO092]. The RA uses this infor-
mation to find out if V; is eligible to vote and uses the OSPACBS.BIlindSign function-
ality to compute the blind signature B;, conditional to the predicate pred(C;1, Cip) =
1 < Dec(Cj1) = Dec(Cjp) and verifiable by the TA. OSPACBS.BlindSign also pro-
duces the proof 77; 5;gn. V; retrieves Ei and invokes the OSPACBS.Unblind function-
ality to obtain the plain signature ¢; which is then recast with v;, as the ballot for
Vi, using the VSpacgs.Cast functionality. In order to accept the voter ballot the BB
executes the VSpacgs-Valid functionality.

For tallying, the TA invokes the VSpacgs. Tally functionality which must count only
the votes that correspond to uncoerced ballots i.e. ballots for which pred(C;1, Cjp) = 1
when signed by the RA. This can be determined by the execution of the OSPACBS.Verify
functionality for each ballot - signature pair. However, if the TA is ‘careless’ and
simply executes this functionality, its published result will notify the coercer if his
coercion attempt succeeded, beating the purpose of the fake credentials mechanism.

To avoid this problem, the TA will perform the validation in two steps: Firstly, it will

compute R; and 77; verify = (71, 7Ti, 713 as specified in Algorithm 3.13 and post them

to the BB. Then it will use a verifiable shuffle to disassociate all entries from their
identity and from when they were originally cast. The result of the shuffle will be
verifiably decrypted and counted if and only if Dec(R;) = 1. The 7t;4 will be posted
to the BB. By the construction of the PACBS scheme, this means that only the votes
that were not a product of coercion, as indicated by the usage of the correct credential

will be counted.

The VSpacgs.-VerifyBallot can to provide individual verifiability. It includes the func-
tionality AuditSign. The VSpacgs.Verify functionality can be invoked by any inter-
ested party and reveals if every participant followed the protocol. To the voter, how-
ever, who has the private input of which credential she used to cast her ballot this
will also signify if the ballot was counted or not. This is not checkable by the coercer
who lacks this secret piece of information and only receives the knowledge of the

public. This means, that the system is receipt-free as well.
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5.2 PACBS Voting Scheme Specification

We now detail how the functionalities from are instantiated using
PACBS. In the following, all public data are appended to the BB. For readability,
we assume that the BB is split into sections, where the appropriate data from each
functionality are stored. These sections are identified by the use of an appropriate

subscript.

5.2.1 Setup phase

The setup phase contains the VSpacps.Setup and the VSpacgs.SetupElection func-
tionalities that aim to initialize the underlying cryptosystem and select the election

parameters for each election, respectively.

VSpacgs-Setup functionality

The election authority EA initializes the PACBS scheme by invoking the PACBS.Gen
algorithm (Algorithm 3.11). All the generated private keys are split between the

agents, but we treat them as controlled by a single entity. For simplicity, we will
use the encryption scheme that is employed in PACBS to encrypt credentials, to also
encrypt the vote. However, the latter is not required as any IND-CPA secure cryp-
tosystem could be used for this task. A random group generator g is also selected to
be used to encode the initial voter credentials into group elements. The credentials
are assumed to be mapped to elements of Z, (ultimately). All the public parameters

generated are stored in a special section of the BB in the end.

Algorithm 5.1: The VSppcps.Setup algorithm executed by the EA for all elections

Input : security parameter A
Output: prms, sk, pk

(prms, sk, pk) < PACBS.PACBS.Gen (1)

/* prms = (q,G, g1, 82,0, pred, Hy, Hp) */
/* sk=(s,z) */
/* pk=(kh) x/
g+sG

prms := (q,G, g1, 82,0, pred,Hy, Ha, §)

skg = Z

pkEnc =h

skpacgs = S

Pkpaces = K

BBprms A (prmsl pkEnc’ kaACBS)
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VSpaces-SetupElection functionality

At the beginning of each election the EA generates the list of candidates (candidate
slate CS) and the list of eligible voters Vg;. For the former, a suitable encoding must
be selected so that the candidates are mapped to the message space of the cryptosys-
tem. This encoding will of course affect the counting function. While our framework
can be adapted to both homomorphic and plain vote counting, in aran-
dom group element is selected and assigned to each candidate. When the ballots are
decrypted, the plaintexts are compared to the respective ‘prototypes’ of the CS € BB
and then counted. For the latter, additional external information L is required (e.g.
citizenship or membership records, start time and end time Tgart, Teng). We assume
an external functionality check that given a voter identity and the database L, returns

if the voter in question has the right to vote or not. In the end, both lists are appended
to the BB.

Algorithm 5.2: The VSppcpgs.SetupElection algorithm executed by the EA for a partic-
ular election

Input :n,m,prms,L, {Cil}?zl

Output: CS, Vg

CS=g
for j e [m] do
Vt]' G
CS = CSuvt;
end
VE1 =0
forie[n]do
if check(i,L) =1 then
‘ Vg1 := Vg1 U (i, Rebase(Cj))
end

end
B Belection = (CS/ VEl )

The VSpacgs-SetupElection functionality assumes that there exists a list of encryp-
tions of the registered voter credentials produced by the multi-election VSpacgs.Register
functionality. This list is presented as input to VSpacgs.SetupElection. To allow cre-
dential reuse for many elections a Rebase functionality transforms them from their
initial form g% to their new form gg, where g0 is a random group generator computed
for each new election. The proof 7TRepase is @ conjunction of a Schnorr proof (775 from
Figure 2.1) and Chaum-Pedersen proofs (7r¢p from Figure 2.2). This functionality can
be performed in a distributed manner, to reduce the trust required to the election

authority.
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Algorithm 5.3: The Rebase algorithm for changing credentials between elections

Input : Cy = (g",g%h")
Output: C]

besZ,
80:=g"

BBelection < 80

Ci = (810 (8°h)) = (g7t 86 h'?)

TtRebase := NIZK{(prms, Cy, C{,80), (b) : g0 =8 AND (] = Ci)}
return (Ci/ ﬂRebase)

5.2.2 Registration phase

VSpaces-Register functionality

The registration phase aims to create a genuine voter credential. As such, it is overly

sensitive to the goal of coercion resistance, since a possible leak can result in a sim-

ulation attack. As a result, the generated credential must be deniable (cf. the spe-
cific assumptions in [section 4.4). We assume that the registration phase takes place

through an untappable channel, that is implemented by physical means i.e. in-person

registration. This might be contrary to the online voting concept, but in our case the

credentials can be reused for many elections, through the Rebase mechanism. Our

system can support both registration methods in the literature:

— Using something the voter ‘knows’, like a password. This approach was used in

Selections [[CH11]], where the voter registers a password from a panic password
system [CHO8]. For instance, the RA could set up a commonly used set of words.
Each password consists of a combination of several words. The voter registers
a particular combination as the normal password. Any other combination is
considered a panic password. In both cases, the user experience is the same,
so that the coercer cannot distinguish the type of password typed by the user.
Note that in such a system, invalid passwords (maybe due to typing errors), are
different from panic passwords and can be treated in the usual way - the user

can simply retry.

Using something the voter ‘has’, like a tamper-resistant cryptographic token
(e.g. smart-card) that has a cryptographic key embedded and can be used to per-
form cryptographic computations - reencryptions, (designated verifier) proofs
computations etc. This approach was used in CIVITAS [CCMO03].

In the former case, [CH11], we assume that there exists a function ¢ : {0,1}* — Z,

that transforms a password to a group index 6. Subsequently, the voter encrypts the

corresponding group element g% using the public key of the RA and submits it. The RA
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posts a rerandomization of the encrypted credential to the BB. The proof 77;; proves
knowledge of a lifted ElGamal plaintext (cf. 77, in [Figure 2.5). The proof 7T/, proves
correct reencryption (cf. 7Tregnc in section 2.4.1). If the voter is assumed to use an
untrusted computational device to perform the computations then this process must

be repeated for a credentials, with the user selecting a single one using a mechanism

such as Benaloh challenges [CH11; Ben06)].

Common input: prms, pkg,, the voter ID i
Assumption: Runs over an untappable channel

V; creates a credential:

RA creates the voter roll entry

selects a valid password pwd; from a panic password system

computes 0; := ¢(pwd;)

computes Cjy := Ench(gei,ri) and 71;7 := NIZK{(prms), (6;,1r)): Cip = Ench(gei,ri)}

submits (Cj1, 71;1) to the RA

- computes C}; := ReEnc(Ci)
and 7t/; := NIZK{(prms, C;1, C};), (') : C}; = ReEnc;(Ci1) }

/ /
- BBRegister - (Cil’ 7-[1'1)

FIGURE 5.2: The VSpacps.Register protocol executed through an untappable
channel (Selections version)

In the latter case, [CCM0§], the RA functionality is split among many members EA;.
The voter creates a credential share with each member and derives the final credential
from their combination. The proof 77j; proves knowledge of a lifted ElGamal plaintext

(cf. 71, in Figure 2.5). We assume that the voter has a key pair (pky,,sky,) that
is going to be used for the designated verifier proof of correct reencryption (Oregnc

from [Figure 2.9) that achieves deniability.

5.2.3 Voting phase
Coercion evasion functionality fakekey

To achieve coercion resistance our voting protocol utilizes a function fakekey that
the voter executes when the coercer is present. This function creates a new anony-
mous and indistinguishable credential that the voter will use to cast her coerced vote.
The implementation of this function depends on how the credential was created and

registered.
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Common input: prms, pkg,, the voter ID i, pkv,-
Private RA input: sky,
Assumption: Runs over an untappable channel

Each member EA, of the RA generates its credential part:

selects 0;; <$ Z,

computes s;; 1= g

computes Sjj := Ency (s, 1), 71 := NIZK{(prms), (6;;,7) : Sij = Ency(sij, ) }

appends S;; to the BB
Voter i registers with each EA,

— receives S! j = ReEncy,(S;;) along with a designated verifier proof of correct reencryption

djj := OReEnc = DVP{(prms, pkga, pkvl_, Sl(j, Sij), (skEA]_), Slfj = ReEncy (i)}
— verifies the proof

— computes Cj; := [J; Sz(j = Ench(H]- Sij)

FIGURE 5.3: The VSpacps-Register protocol executed through an untappable
channel (CIVITAS version) between V; and EA,

In case, the system of [CH11] is used, when the voter invokes fakekey a password
is requested. Under coercion the user provides a panic password. The function ¢
recognizes the case and does not reject the password. However, it encodes it to a

different element 6’ of Z, thus producing a different credential.

Algorithm 5.4: The fakekey functionality for evading coercion assuming [CH11]]

Input : A password pwd; from a panic password system
Output: encrypted credential
while pwd’ is invalid do

| pwd; := RequestPassword()
end
0= ¢(pwd;)

o/ o

Cip := Ency (8, 7i), TTin 1= NIZK{(prms), (01(, ;) :Cpp = Ench(gol,ri)}
return (Cp, 7Tjp)

The proof 7Tj, proves knowledge of a lifted ElGamal plaintext (cf. 77, in Figure 2.5).

In case, the system of [CCM08] is used the voter must have at least one trusted reg-

istration server, whose credential he can fake. Subsequently, she will also fake the

corresponding designated verifier proof. The process in Algorithm 5.5 can be gener-
alized for many trusted EA;:

The proof 77;; proves knowledge of a lifted ElGamal plaintext (cf. 77, in Figure 2.5).
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Algorithm 5.5: The fakekey functionality for evading coercion assuming [CH11]
Input :
Credential shares obtained during registration s;;, Sjj, Szl'j

Designated verifier proofs obtained during registration d;;
Identity of a least one trusted RA: j*
Output: encrypted credential
91‘]'* <$ Zq
Sl]* = gei].*
Sij+ = Ency (i, ije ), Tijx = NIZK{(prms),(si]-*,rij*) : S = Ench(Gij*,rij)}
Slf].* := ReEncy,(S;j+)
dl]* = 5ReEnc = DV’P{(prmS, kaA, pkvl, Sl’]*, Sl]* ), (Sk‘/l), SII]* = ReEnCh(Sl]* )}
Cio =TI} S};
return Cj, {(/'ll]}]

During the essential moment of privacy, the voter will not use this fakekey but instead

will use her real credential created during the registration phase.

VSpacgs-Vote functionality

The voter selects the preferred candidate vt from CS, encrypts her selection with the
RA’s public key to produce v and provides proof of knowledge and validity of plain-
text 7T,. Since the candidates are group elements (cf. [Algorithm 5.2), the voter proves
that v is an encryption of one of these elements. Such a proof can be constructed

use a disjunction of proofs of correct EIGamal encryption of a known message (sec

tion 2.4.1).

Then she presents a credential 6/, that might be the original 6 or the result of fakekey
if the voter is under coercion. This is encrypted with the RA’s public key to produce
C; along with a proof of knowledge of plaintext 77¢c,. This proof is very important
in the analysis of the verifiability of VS.PACBS, as an attacker cooperating with a

corrupted RA could include a reencryption of the credential in the voter roll.

Finally, the voter and the RA invoke the OSPACBS.Sign protocol. During the protocol
execution, the RA makes some additional checks before continuing in issuing the

blind signature. In particular
— The RA checks the validity of the proof of knowledge issued by the voter.

— The RA, using PETs, examines whether there was another message with the
same credential which would mean a duplicate authorization request. The RA
states whether the request is a duplicate or not and if not continues into issuing

the blind signature.
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Common input: prms, pkg,, i, BBelection

V;’s private input: vt;

RA’s private input: sky,

Assumption: Runs over an anonymous channel

V; prepares the ballot and creates the authorization request:

- (vi, 7ty;) = (Ency(vti;rer,), NIZK{(g1,h,CS,v), (vti 1ve,) : vt € CS AND v; =
EnCh(Vti/rvt,-)})

— If the voter is under coercion executes the fakekey functionality
(Cip, 1tc,,) = fakekey()

— If the voter is not under coercion computes a new encryption of her normal credential
0; . 0;
(Ci, 7tc,) = (Encp(gy', 7i), NIZK{(prms), (6, 7;) : Cio = Ency (g, 7i) }

RA and V; invoke the OSPACBS.Sign protocol with communication through the BB:
1. V; retrieves C;; from BBgjection
2. V; executes the OSPACBS.Blind algorithm
(ei, uj1, upp,d;) := OSPACBS.Blind(prms, pkga, Ci1, Cio, ;)
BBvote <= (i, i, Cio, 7Tc,,)
where e; is the public output and (u;1, 15, d;) are the blinding values selected from V;

3. The RA validates the authorization request and provides the blind signature:
— Firstly, it retrieves Cj; from BB jection
- If 7ic, is invalid the RA ignores the request.

- The RA checks for duplicate requests with the same credential Cj; and proofs

Tl dup1, TTi,dupz are added in a special section BBy, (cf. Algorithm 5.10).
. 0
BBdup <~ (l/ €i, CiZ/ gol v 7T, dup1/ 7Ti,dup2)

— Ifno duplicates are found then the RA executes the OSPACBS.BlindSign to produce
the blind signature:

(B., i sign) := OSPACBS.BlindSign(prms, skg, Ci1, Cia, €;)

- The tuple (Cil,Ciz,Ei, T sign) is appended to BBjgueq along with the duplicate
proofs (cf. Algorithm 5.10).

. 7 wB;
BBissued <~ (lr €, Cil/ Ci2/ ,BZ‘I ni,Sign/ 80 Y 7Ti,dup1r ni,dupZ)

4. V; unblinds the signature: ; := OSPACBS.Unblind(prms, kaA,ei,Bi, (ui1, Ui, d;))

5.V, prepares the ballot: b; := (v;, ﬂvizai)

FIGURE 5.4: VSppcps.Vote Vote authorization protocol using OSPACBS.Sign
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VSpacgs-Cast functionality

The voter V; constructs her ballot using the encrypted vote, the proof of knowledge
of the selection and the conditional blind signature from the Authorize protocol. Then
she appends her authorized ballot b; and the corresponding proof to the BB. We refer
to this part of the bulletin board as BB ,st.

Algorithm 5.6: Vote casting VSpacgs.Cast

Input :b;
Output: BByt
Assumption: Runs over an anonymous channel

BBcast ~ (bir VSPACBS'Va“d(bi/ BBcaSt))

For the ballot to be accepted, it must be of the correct format, which means that
it must consist of 3 elements. The ciphertext should be unique to defend against
ballot-copying attacks. Additionally, the second element must be a valid proof. The
signature cannot be checked at this stage since the BB lacks the verification key. The
ballot is marked with the result of the validity test and appended to the BB 4.

Algorithm 5.7: VSppcgs.Valid Vote validation from BB

Input :b; = (Ui, ﬂvilai)/ BBcast
Output: {0,1}

foreach b; € BB, do

end

if b # (v, 715, 0) then

// Incorrect format
return 0

end

if v; is not unique OR 71y, is invalid then
‘ return 0

end

return 1

Implementing the anonymous channel

[JCJ05] dictates that a necessary condition for coercion resistance is the existence of
an anonymous channel to defend against a forced abstention attack. In VS.PACBS we
require such a channel in the authorization To implement such a channel, a system
such as Tor [DMS04] might be used. Alternatively, voters, third parties and other
interested authorities might cast ‘chaff’ votes on behalf of registered voters in an

effort to increase the anonymity set of vote casting identities.

This is implemented with the chaffvote functionality in |Algorithm 5.8.
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Algorithm 5.8: The chaffvote functionality to implement an anonymous channel

Input :CS, Vg
OUtput: BByote, BBcast
Vg «$2Ve
foreach i € Vi, do
‘ {ti, tin} <[ Tstart, Tend]

end

foreach i € Vi, do

end

A%

Wait until £;;

91‘ <$ Zq

t; «<$CS

b; = (Z)l', 7'(1,7.,5’1') = VSpAcgs.VOte<RA(SkRA),Vi(Vti, 9{),')
Wait until ¢,

VSpacas-Cast(b;)

Every interested party that wants to participate in the anonymous channel, sends
a random subset of voters. Fake votes will be sent on their behalf identified by a
randomly sampled credential and a randomly sampled vote. Then it executes the

VSpaces-Vote, VSpacgs.Cast protocols to update the BB.

Ballots generated by chaffvote, will receive an invalid signature, as the probability that
the credential selected, matches a valid credential for a voter is %, which is negligible

in the security parameter.

Removal of duplicate authorization requests

The [JCJ05] coercion resistance scheme does not preclude that multiple ballots are cast
with the same credential. As a result, before tallying begins one ballot per credential
must be kept. This phase is of quadratic complexity in [JCJ03] and as we saw in

there are many variations trying to improve efficiency.

In our scheme, the duplicate removal functionality is moved to the authorization
phase (along with fake credential detection and marking). Since the ballots are not
yet cast, the RA must remove duplicate authorization requests. The simplest way

to detect them would involve the use of the PET primitive on the credential (cf.

subsection 2.6.2). In more detail, if there are k requests for a particular voter i, the

RA computes {PET (Cj, Cjz)};‘:l. If a duplicate credential exists on the j* request,
then this will be found and can be presented as proof. In other words: 74y, :=
PET (Ci2, Cj»2). If no duplicate is found, then the RA can post all the checks per-
formed i.e. {7Tjnon-dup = PET (Cio, Cjz)};.‘zl). This procedure, however, is quadratic
in the number of authorization requests, which means that we forego all the efficiency

gains in the literature.
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To our advantage, the method of [Smi05; WAB07] is safe to use during duplicate detec-
tion since the tagging attack of by [[AFT07] does not apply as remarked by [Spy+12].

Indeed, if an attacker tries to tag a credential and check using the tag if this is later

discarded, both credentials will pass duplicate detection. As a result, we can apply
their method here: All encryptions of credentials Cj, are blinded using a common
random factor &« known to all members of the RA. Then they are decrypted to obtain
ggei, which is sent to a hashtable. If there exists another copy the request is marked
as duplicate. The members of the RA generate proofs of correct blinding 7t qup1 (77cp

from section 2.4.1) and proof of correct decryption 7t qupz (7Tpec from section 2.4.1)).

These proofs can be checked to verify that a credential is duplicate or that it is not.

However, the duplicate removal phase, still, has a profound effect on the usability
and perceived performance of the scheme. Since the ballots to be counted are unlink-
able to the authorization requests (because of the blindness of OSPACBS), duplicate
removal cannot be performed during tallying. If this were the case, we could apply
any rule to decide which of the duplicate ballots to keep. If we were to do this during
authorization, it would mean that the duplicated removal phase would have to be ex-
ecuted after all authorization requests have been submitted and before the signatures
are generated. This would hurt usability, since each voter would have to wait until all
other voters had cast their authorization requests (typically until a time limit imposed
by the RA was reached). To avoid this situation, we sacrifice this flexibility and pick
the regular (first-come, first-served) definition of duplicate ballots: If a ballot contains

the same credential as a previously submitted ballot, then it is considered a duplicate.

The algorithm to detect requests with duplicate credentials is described in |Algorithm 5.10.

After the authorization phase has ended, BBy, will contain all duplicate creden-
tials and BBjsueq Will contain requests with a unique credential. In order to verify
this phase, a voter or interested party should recreate the hash table HT by retriev-
ing all authorization requests in the order they arrived, verifying for each the proofs
Tl dup1, 7Ti,dup2 and checking if each blinded credential exists in HT . For each blinded
credential gggi in BBjssueq the HT must return false, while for each ggei in BBgyp the

HT must return true and an earlier posted request must exist in BBjsgueq. This pro-

cess is better illustrated in Algorithm 5.10 which will be used in the verification phase

as well.

5.2.4 Tally phase

After the voting period has expired, the TA executes the VSpacgs. Tally functionality
on all the ballots from BB,st. Initially, it checks all the proofs of correct candidate

selection and encryption 77, and discards the ballots with invalid proofs and identical
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Algorithm 5.9: Duplicate removal using hashtable

Input : BBgjection, BBvote cleaned up for valid proofs

cf.
Output: BBissuedi BBduP

HT :=

x<sZg

foreach (i,e;, Cjp, 7tc,,) € BByore do
C, =G

ggg‘ = Dec,(C/,)
T dupt = NIZK{ (prms, I, Cir Ci2), (0) : C, = C

91' . - 9i
T dupz = NIZK{(prms, b, C}, = (o1, ¢i22), 85 '), (2) : §7 = AND ¢inp g™ = ¢, }
if ggei € HT then
mark request (i,e;, Cip, 7tc,,) as duplicate

. ob;
BBaup <= (i,€i,Ci2, 8 s TTi.dupis Tidup2)
else

Execute OSPACBS.BlindSign to produce the blind signature (B;, TT; Sign)
HT =HT ugh®
. - 0;
BBissued <= (i,€i, Cin, Ciz, Bjs TTisigns o+ Tidupis i dupz)
end
end

Algorithm 5.10: Verification of duplicate removal

Input : BBissuedr BBdup
Output: {0,1}
Sort authorization requests (i, e;, Cip, 7tc,,) by time of arrival
HT :=
foreach (i,e;, Cjp, ¢, ) € BBygte do
if 7T; gup; OR 7T; gypz do not verify then
| return 0

end

1f (i,ei,Sn ') € BBissued AND go % ¢ HT then
return 8

end

if (i,e;,-,¢3",) ¢ BBy, AND g% ¢ HT AND

. 0;
(l/ ei/'/gg /') ¢ BBissued) then
| return 0

end

end
return 1
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contents. This action can be verified by any interested third party. Then the TA must
act as the verifier in PACBS and count only the votes with a valid signature. For this
reason, it will execute the PACBS.Verify algorithm of |Algorithm 3.13 and write the

result to the BB for verifiability. However, this will signal to the coercer that their
vote will not be counted. In order to avoid this, the TA transforms the ballots before
posting the results by sending them through a verifiable Shuffle . This means that
the PACBS. Verify algorithm cannot be used as is, but must be split into a preparation
step PACBS.Verify.Prepare (Algorithm 5.11) and a decryption step PACBS.Verify.Dec

(Algorithm 5.12). In between the ballots are anonymized. The encrypted votes corre-

sponding to ballots with valid signatures are transferred to the BBgy,,) section of BB
that contains only the votes that should be counted. Subsequently the votes can be
decrypted and counted or homomorphically combined. The former method supports
more elaborate voting rules, but both are supported. This is denoted by the Count
functionality, which computes the tally T and returns it together with a proof of cor-
rect computation 7r7. For instance, if Count decrypts the votes then 7r7 will contain

the plaintext of each vote along with proof of correct decryption.

Algorithm 5.11: PACBS.Verify preparation - PACBS.Verify.Prepare

Input : prms, pkpacgs, SKpacgs M, 0 = (X*,€*,01,02)
Output: R, TR

if Hy(m, x*) # e* then
| return L

end

'y<—$Zq

validity := x* '8;72 T
M := Ency,(validity; r1)
V= M*

R::(
71 <
VI
T3 <

TR ==

L)”

(%1

NIZK{(h1,h, M, validity), (r1) : M = Ency,(validity; r1) }
NIZK{(V, M), (s) : V = M?}

NIZK{(V,71,R), (1) : R= (%)}

(M,V,R, 711, 7T, 7'[3)

return (R, 7TR)

5.2.5 Verification phase

The verification phase consists of invoking the functionalities VSpacgs.VerifyBallot
and VSpacps. Verify to check for individual and universal verifiability.



5.2. PACBS Voting Scheme Specification

179

Algorithm 5.12: PACBS.Verify decryption - PACBS.Verify.Dec

Input :prms,pkg, ., skg, o, R

Output: d € {0, 1}, Tpec

result := Dec,(R)

Tverify < NIZK{ (111, h, result, R), () : result = Dec:(R) |
d < result

return (d, TTyerify)

Algorithm 5.13: VSppcps. Tally functionality

Input : prms, pkya, Skpacgss SKgncr BBeast
Output: T, 7ir
/* Keep unique valid ballots
foreach b; = (v;, 7y, ;) € BBcast do

if v; is unique and 77, ; is valid then

‘ BBcorrect <~ (vi/ O_'i)

end

end

/* For each correct ballot execute the first part of Verify

foreach (v;,7;) € BBcorrect do

(R;, 7tR,) := PACBS.Verify.Prepare(prms, pkpacgs, Skpacs: Vir i)

BBprepare ~ (vi/ Ri/ T[Ri)

BBunshufiled < (v;, R;) /* Remove the proof
end
/* Shuffle list

(BBshuftle , 7Tshuffle ) = Shuffle (BBunshuffied)
/* Execute second part of verify (i.e. decryption)

foreach (v}, R)) € BBgusme do
(dy, 71 verify) = PACBS. Verify.Dec(prms, pkg,, ., sk

BBresuit < (v[’/ dy, ﬂl,Verify)

R;)

Enc’

if d; =1 then
‘ BBfinal < vl,
end
end

(T, 7'CT) = COUHt(BBﬁnal)
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Individual Verifiability. The algorithm for VSpacgs.VerifyBallot is specified in

/Algorithm 5.14. The receipt retrieved for the voting protocol consists of the random-

ness 7;,7y¢; used in the encryption of the credential and the vote preference respec-
tively. Each voter has to check if her ballot b; appears in the BB, list and if both
the credential and the vote have been correctly encrypted. Additionally, each voter
must check if the authorization request has been correctly marked as a duplicate,
by verifying if a similar request has been added to BBjgseq and the duplicate proofs
Tlqup1, Tdupe- Finally, the voter must invoke the PACBS.AuditSign functionality, to
check that the RA has considered the credentials for the creation of the blind signa-

ture.

These types of individual verifiability checks do not violate coercion resistance as
while b; might appear on the list only the voter knows if it will be counted or not and

this cannot be transferred to the coercer.

Algorithm 5.14: VerifyBallot Algorithm

Input : prms, pkga, BB, i, (7;,7vt,), (bi,€;), (vt;, 6;)
Output: {0,1}

/* Parse ballot */
(vir nvilal’) = bi
if b; # Ench(vti, rvt,-) then

| return O

end

if b; ¢ BB then

| return O

end

/* Locate and verify authorization request x/
if (i,e;,-,) ¢ BByo then
| return 0

else

| retrieve Cpp, 7tc,,

end

if Cp # Ench(ggi,ri) then

| return 0

end

if 7tc,, does not verify then
| return 0

end

if e; + OSPACBS.BIlind(prms, C;1, Cjp, v;) then

| return O

end

/* Verify duplicate removal using |A1gorithm 5.1d x/

if duplicate removal does not verify then
| return 0

end

return 1
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Universal Verifiability. Every interested party must be able to verify that all the
votes present in BB,5t will be counted. In our scheme this can be performed in an
indirect manner (similarly to individual verifiability), as the vote will be counted only
if the signature is valid. Everybody can verify the proofs created by the EA during
all phases of the scheme, which means that the EA followed the protocol, without

disclosing which votes were counted. This will only be known to the interested voter.

The verification algorithm is presented in |Algorithm 5.15. For a more clear presenta-

tion we split it Auth-Verify and Tally-Verify, both of which must be valid for the result

to be accepted.

Algorithm 5.15: Verify Algorithm
Input : prms, pkg,, BB
Output: {0,1}

if Auth-Verify(prms, pkga, BB) = 1 A Tally-Verify(prms, pkg, BB) = 1 then
| return 1

else
| return 0

end

Algorithm 5.16 Auth-Verify verifies the actions of the RA during the authorization

phase. Firstly, it checks that invalid (i.e. with an incorrectly encrypted credential)
authorization requests were not signed. Then it proceeds to verify that all valid au-
thorization requests were either characterized as unique or duplicate. For the du-
plicate requests it checks the proofs and that there was another request in BBjgseq
to justify this characterization. For the unique requests Auth-Verify also invokes the
PACBS.AuditSign functionality of PACBS to check that the authorization signature

was computed based on the actual encrypted credentials and not arbitrarily.

Algorithm 5.17 Tally-Verify verifies the actions of the TA during the tally phase. At

first, it checks that only the ballots with correct proofs are collected for tallying, by
essentially repeating the VSpacgs.Valid functionality. This reduces the required trust
to the BB. Then it checks that all the valid ballots have been inputted correctly to the
Shuffle functionality and that PACBS.Verify.Prepare has been correctly performed for
each one, by verifying the proof 7tg. Then the shuffle proof 7Ty, is checked, thus
verifying that the anonymization was done according the protocol. Moreover, the
proof 7Tpec to check that the shuffle outputs were correctly decrypted, thus conclud-
ing the PACBS.AuditVrfy functionality of PACBS. Finally, Tally-Verify checks that
only the ballots were the signature was valid (i.e. the ones were d = 1) are present
in BBg,1 and recomputes the result of Count from the ones with the correct format.

These steps are dependent on the actual counting method used (i.e. if homomorphic
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Algorithm 5.16: Verification of authorization phase Auth-Verify

Input : prms, kaA’ BByote, BBdup/ BBissued
Output: {0,1}

/* Check that invalid authorization requests were not answered

foreach (i,e;, Cpp, 7tc,,) € BByor do
if 7c,, is invalid (i,e;,-) € BB gy, U BBsyeq then
| return 0

else
/* Check that were all valid request were handled
if (l/ €i, ) ¢ BBdup U BBissued then

| return 0

end

end

end

if |{(l/ €, CiZ/ 7TC1'2) € BBvote STy, is valid }| * |BBissued| + |BBdup| then
| return 0

end

/* Verify duplicate removal using |Algorithm 5. 1d

if duplicate removal does not verify then
| return 0

end
/* Check that non-duplicate authorization requests are signed

foreach (11 €, Cil/ Ci2/ ﬁi/ ﬂi,Sign/ 836i, ﬂi,dup]r ﬂi,dupZ) € BBissued do

if Cjp ¢ BBRegister then
| return 0

end

if PACBS.AuditSign(prms, pkpacgs, Ci1, Ciz, €i, Bj, Ti sign) = 0 then
| return 0

end

end
return 1

*/
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counting or decrypted ballots). A check of the lengths of all the outputted lists is also

performed.

Algorithm 5.17: Verification of tally phase Tally-Verify
Input : prms, pky,, BB
Output: {0,1}

/* filter out invalid ballots */
foreach (v;, 71y, 0;) € BBcas not marked as duplicate do
if 71, ; is valid then

| check that (v;,0;) € BBcorrect

else
| check that (v;,0;) ¢ BBeorrect
end
end
foreach (v, R;, R,) € BByrepare do
check that there exists the corresponding entry in BBorrect
verify 7TR.
end

check that BB nshuffled is the same as BBy epare Without the proofs

verify 7Tspyffle

foreach (vlll dl/ nl,Verify) € BByesuir do

check that that there exists the corresponding entry in BBg, e

Verify 7T Verify

end

foreach v; € BBy, do

check that there exists the corresponding entry (v, d;, 7] verify) in BBresur and
d =1

end

check if |BBcorrect| = |BBprepare| = |BBunshuPﬂed| = |BBshufHed| = |BBresult|
if all verifications are successful then
| return 1
else
| return 0
end

5.2.6 Performance

We now compute the performance of our scheme in an election with n voters. We
assume that the EA = (RA, TA) is split into f members and we measure the num-
ber of modular exponentiations. We cover the worst-case scenario, where the ballot
construction proof has a linear number of exponentiations to create or verify in the
number m of candidates. This proof can be improved to a logarithmic number of

steps. The performance of PACBS.Vote is dependent on the performance of PACBS
from [Table 3.1,
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In the registration phase, the cost for each voter is 6 exponentiations, 3 for the cre-
dential encryption and 3 for the proof, while the RA performs 4 exponentiations per

voter.

In the voting phase, each voter performs 12t + 4(m — 1) + 17 exponentiations to create
the ballot, provide the proof of correct construction, initiate the PACBS.Sign protocol
and audit 7Tsjgn. To sign a single authorization request the RA performs (12¢ +10)

exponentiations and 9¢|BByte| to check for duplicates.

In the tally phase the TA performs in total [BBcast|(9t + 4m + 6) exponentiations, to
verify the ballots, verify the duplicate proofs and execute PACBS.Verify. Some extra
exponentiations will be performed by the Shuffle functionality that depend on the

algorithm used.

For individual verifiability, each voter performs 8¢ + 1 exponentiations for her own
ballot and 8t|BByte| to verify for duplicate elimination. Universal verifiability re-

quires (18 + 12¢)|BByte| + (8t + 4m + 1)|BBc,st| exponentiations.

We now compare the performance of relevant functionalities from VS.PACBS with
the schemes of CIVITAS [CCM08] and Selection [UH12]. We use the data of [UH12].
Note that the proof steps for Selections’ ballot correctness need to be scaled by m to
take into account all the candidates. We don’t consider the soundness of the registra-

tion phase for simplicity.

Phase Entity | Civitas Selections VS.PACBS
Registration | Voter | 11 6 6
RA 7 4 4
Casting Voter | 10 (27 +9) 12t + 4(m -
1)+17
RA | - i IBBac| (121
10) +
9‘BBVotel
Tally TA 4|BBVote| + 2O‘BBVote‘ + |BBCast‘(9t +
O(tBBcast?) | (16t + | 4m +6)
8)‘BBCast|
Verify TA 4|BByote]  + | 20|BByote] + | (18 +
O(t|BBCast|z)) (16t + 12t)|BBVote| +
10)[BBcas| | (8% + 4m +
1)lBBCast|

TaBLE 5.1: Performance comparison of our scheme with Civitas and Selec-
tions
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Clearly, our scheme outperforms CIVITAS since the tallying phase is linear. VS.PACBS
is more demanding for the authorities the Selections, but in the same order of mag-
nitude. Clearly, the existence of the RA in the authorization phase is a bottleneck
for our scheme. However, our scheme can be more efficient for the honest voter. In
Selections the honest voter must create the anonymity set of size #, which can be
computation-intensive for large values. In our case this is taken care of by the chaff

votes, cast by third parties.

5.3 Security analysis

We analyze the PACBS voting protocol for verifiability, privacy, and coercion resis-

tance.

5.3.1 Verifiability

Verifiability protects voters against a corrupted EA - in our case both against a fully
corrupted RA and TA. In our protocol, this is intuitively achieved, because the EA
is forced to provide evidence in the form of NIZK PoK. Everybody can audit these
proofs. Their soundness proves that the EA did not deviate from the protocol. Com-
bined with the private knowledge that the valid credential was used during autho-
rization; each voter can be convinced that her vote was taken into account. More
importantly, this private knowledge cannot be transferred to a coercer, who is con-

fined to a public view.

The PACBS primitive was designed to implement this intuition. The OSPACBS.Sign
and the OSPACBS.AuditSign functionality force the RA to follow the protocol and
embed the predicate in a correct way inside the signature. Furthermore, the proofs
generated by the OSPACBS .Verify functionality can make sure that the signature was
indeed taken into consideration, when deciding which votes to count. PACBS is aug-
mented with a verifiable shuffle and verifiable duplicate removal, to cover the rest of

the protocol.

As a result, our scheme provides individual and universal verifiability and private

eligibility verifiability. The details are provided in the following sections.

Individual Verifiability The voter V; receives a ‘receipt’ that consists of the ran-
domness 7y, used to encrypt the vote and 7; used to encrypt the credential. The latter
can be used to check if the authorization request is in BByote and the former to check
if the ballot is located in BB,st. Contrary to other voting systems such as Helios, the
existence of the ballot in BB, does not mean that the vote will be counted, since this

depends on the validity of the attached signature. As a result, this receipt alone does
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not immediately provide individual verifiability (and as a result, cannot be used for

vote selling or coercion as we will see in subsection 5.3.4). Combined however with

the mental knowledge of whether the correct credential was used during the autho-
rization request, this receipt will allow the voter to be convinced that a particular vote

will be counted.

To reason about individual verifiability we need to examine two statements:

Firstly, that our voting protocol protects against clash attacks (cf. subsection 4.3.1),

i.e. that each voter can uniquely pinpoint her ballot in the BB. We stress again, that
this would suffice for systems like Helios, where all ballots in the BB are counted. In
our case, the voter must also be convinced that the ballot will be counted. To do this,

it suffices to show that the authorization request was not marked as duplicate and

that the signature is valid.

These statements are proved in [Theorem 5.4.

Theorem 5.1: PACBS voting is individually verifiable

Assuming that:
— The registration phase is sound.
— The BB is honest as it does not drop or inject or alter the order of sub-
mitted authorization requests.
— The voters contribute to the generation of the random coins for the en-
cryption of the ballot.
— The PACB signature is publicly auditable.
The PACBS voting scheme provides individual verifiability according to

hition 4.3,

Proof. First, we adapt the game of for our scheme in the game in
rithm 5.18. The adversary generates the cryptographic parameters and the election
candidates. The challenger randomly selects credentials by skipping the ¢ function of
and performs the registration phase against the A who then decides which
voters to corrupt and selects two honest voters and two candidates. The challenger
executes the vote authorization and casts the resulting ballots. The adversary wins if
he can perform a clash attack or if it can render the resulting ballot invalid so as not

to be counted.

Note that since the authorization request will be disassociated from the final bal-
lot that will be sent into the tallying phase, we directly refer to the output of the
VSpacgs-Vote functionality.
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Algorithm 5.18: IndVer'}'ys adapted for VS.PACBS

Input : security parameter A
Output: {0,1}

(prms, pkpacps, Skpaces, SKenes PREner CS) < A(1Y)
n
if 3(i,j):6;=0; AND i # j then
| return O
end
n

{((Cin, 7t11),0;) < VSpaces-Register{A(skpacgs ), Vi(0i), )},
VR:={(i,Cin)}14
Veorr < A(corrupt)
(VtQ,th,i,j) <~ ./4()
if i,j € Voorr OR i =] then
| return 0
end
b; = (o, TTi,vy, Ti) = VSpaces-Vote(A(skga), Vi(vto, 8;), )
b] = (01]', nj,vl,ﬁ]') = VSpAcgs.VOte<A(SkRA),V'(th,9]'), )()
if (b; = b] ANDD; # 1) ORb; = | then
| return 1

else
| return O

end

Firstly, regarding defense against clash attacks, since the credentials are not created

solely by the RA but the voter takes part as well, the RA cannot assign the same cre-

dential to two distinct voters. As a result, b; = b;. would mean that vg; = v1, 7Tj 4, =

7T]',v1, 51' = 5']'.

vo; = U1 = (ngtO,Vto . hr"to) = (ngtllvtl . hr"tl) = Tyty = vty AND vtg = vt

The assumption that the random coins 7y¢,, 'v¢, are honestly generated, because of
the contribution of randomness by the voters, makes the probability of the event that
vty = Tvt, €qual to €gpe = %
Assume now that A manages, as a corrupted RA, to achieve that b; = L, i.e. invalidate

the ballot b; so that it will not be counted. This attack can be performed in two ways:

— By retrieving the voter credential C;; from VR, decrypting it to retrieve ggi and
posting an authorization request for the particular voter. To do this, the .4 must
either fake the proof of knowledge of 0;, 77c,,, or extract it from ggi. This is
achieved with probability eyjzk + €pL.

— By characterizing the corresponding authorization request as duplicate by post-

ing a duplicate request (i,e;, Cjp, ggei, TG dup1/ TTidupz) in BBqyp. While this can



188

Chapter 5. Voting with Publicly Auditable Conditional Blind Signatures

be achieved with probability e€yjzk, it won’t pass verification as the BB is as-

sumed honest and the HT is reconstructed by the voters.

— Alternatively, the .4 must provide an invalid 7, even V; supplied the correct

credential. This can be achieved with probability eppcgs

audit *

As a result, the probability of the adversary succeeding in the game in Algorithm 5.18

iS €pL + €Enc + EPACBS.. ., + ENIzKk Which under the assumption is negligible in the

security parameter, a contradiction.

audit

Universal Verifiability Our scheme is universally verifiable assuming a corrupted
RA and a corrupted TA but an honest BB. Consequently, VS.PACBS satisfies the no-
tion of strong verifiability of [Algorithm 4.6. However, our construction is different
from the one presented in [Cor+14] since the voters do not sign their votes them-
selves, but receive signatures from the RA. As a result, the techniques presented

there cannot be used and strong universally verifiability will be proved directly.

Theorem 5.2: PACBS voting is universally verifiable

Assuming that:

— The L provided to SetupElection is authentic - contains only real voters.

The BB is honest as it does not drop or inject or alter the order of sub-

mitted authorization requests.

The Shuffle functionality is verifiable.

The NIZK system used for the proofs is sound.

The PACB signature is publicly auditable and unforgeable.
The PACBS voting scheme provides universal verifiability according to

tion 4.3,

Proof. First, we adapt the game of |Algorithm 4.7, that is used for the definition of

strong universal verifiability when the RA is corrupted and the BB is honest for our

scheme. In the game in Algorithm 4.7, the A has access to 3 oracles, to control cor-

rupted voters Corrupt and engage in the protocols for voting and casting. The RA is
under the control of the adversary. In [Cor+14], where this game originates, the role

of the RA is different: It solely generates and distributes the credentials on its own

and takes no further action. In our case in Algorithm 5.19, however, the RA takes

part in voting through the authorization phase. The winning condition is the same,

however.
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Algorithm 5.19: UniVeriltr\(/)gg with malicious RA adapted for VS.PACBS

Input : security parameter A
Output: {0,1}

Oracle Corrupt(i)
‘ VCorr ~ (l/ 91)
Oracle Vote(i,vt)
bi = VSPA(:Bs.VOte(A(SkRA),Vi(Vt, 91'), )
Oracle Cast(i,b;)
‘ BBcast <= bi

(prms, pkpacps, Skpacps, PKEnes SKgnes €S) < A(14)
{91' <5 Zq}?:l
if 3(i,7):0;= 0; AND i # j then
| return 0
end
{((Cin, 1), 8;) < VS.Register(A(skga), Vi(6:), )},
VR:={(i,Ca)},
Veorr < ACOMUPt(corrupt)
Vion == V N Viorr
(TA/ 7TT,4) <« ACast()
if VS.Verify(T 4, 7tr,,-) =0 OR T4 = L then
| return 0
end

Chck = { (§1ek, e ek, ek | e

if 3ncorr 1 0 < Moorr < [Voore| AND 3{vtforr e CS}ior
In’:0 < n’ < |Hon| - |Chck| AND 3{vt/}", // Honest voters that did not
check

T 4 = result(vt$°™) @ result(vt k) @ result(vt]) then
| return 0

else
| return1

end
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Note, as the challenger controls all the voters in Vyon (which includes Vipcyk) it can
internally maintain a list (i, vt;, 7¢,, 0;,7;) of their inputs to VSpacgs.Vote function-
ality. As a result, it can produce the choices vtl'. of the voters that did not check
and therefore compute result(vt$“*) @ result(vt!) in the winning condition. Con-
sequently, it can track their respective ballots in BB .. The rest are ballots, that
originate from A. For the challenger to lose the game, it must be proved that A can-

not modify or drop honest ballots and that .4 cannot add more ballots than |Veory|-

Assume, now that .4 manages to win the game in Algorithm 5.19 with non-negligible

probability for some or all the following reasons:

- A has modified at least a ballot corresponding to the vote of an honest voter.
This can happen in VSpacgs.Cast and in VSppcgs. Tally, as the A does not have
access to the ballot itself in VSppcgs.Vote. In VSpacgs.Cast changing vt from
v in the tuple (v, 71y, 0) without invalidating the proof 71, can happen with
probability eynjzx. In VSpacgs.Tally this can occur during the call to Shuffle
with probability egpyfe -

— A has removed at least a ballot corresponding to an honest voter. Since the BB

is honest and does not drop messages, this can occur in the following ways:

+ By marking the authorization request as duplicate in VSpacgs.Vote, or by

explicitly issuing an invalid signature for a valid authorization request, by

faking 77gjgn. As we saw in the proof of this can happen with
probability epy, + €EPACBS, 4 T ENIZK-

« By disregarding a ballot during tallying despite having a valid signature.
Again, this can happen with probability epacgs

audit
« By dropping a ballot during shuffling, which can happen with probability

€Shuffle -

— A has added at least a ballot corresponding to a duplicate of a valid one or to a

user that does not exist in L.

« In the former case, the adversary must produce fake proofs 7tqup1, 7Taup2
which can happen with probability enjzx. But this attack does not pass

verification.

« Inboth cases, taking into account VR is public, the 4 can add the duplicated
ballot only in VSpacgs.Cast by forging the signature. This can happen with

EPACBSforge -
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As a result, the probability of success of the A in the game in |Algorithm 5.19 is

€DL + ENIZK + EShuffle + EPACBS g T EPACBSorge which is negligible according to the

assumptions, leading to a contradiction. ]

Eligibility Verifiability VS.PACBS does not provide eligibility verifiability. As we

saw in subsection 4.3.3, eligibility verifiability requires that anyone can verify that

each tallied ballot was cast by a voter with the right to vote and that no voter cast
more than two counted ballots. While the second part of this statements does indeed
hold for our scheme as we saw in proof of the first part is incompatible
with coercion resistance. In VS.PACBS voters are identified by their credential. This
means that if a voter is eligible, her ballot can be identified by a valid credential. This

cannot be revealed to the public, as it would also notify the coercer. This is compatible

with the analysis in section 4.7.

However, our scheme does provide private eligibility verifiability, where only the
interested voter learns if her ballot was eligible. The reasoning is similar to

rem 5.4,

5.3.2 Ballot secrecy

The PACBS voting scheme we defined in provides ballot secrecy. Impor-
tantly, this result holds under the assumption that the TA is corrupted and the use
of the anonymous channel. Intuitively, this is achieved due to the blindness of the
PACBS scheme. During the authorization request, where voter identifying infor-
mation is present, the encrypted vote is blinded, which means that the ballot does
not leak anything. During the voting phase the vote in the ballot is unblinded (thus

merely encrypted). However, the ballot is unlinkable to the signing session.

After the casting phase, the BB contents are the same as Helios, except for the un-
blinded RA signature. Our protocol also incorporated defenses against Helios-related
attacks, such as attacks against ballot independence of [CS13] because of the ballot
weeding that occurs in the VSpacgs.Valid (Algorithm 5.7) and VSpacgs. Tally (Algo]
rithm 5.13) functionalities. Additionally, all the NIZKPoK contain the full statement
in the random oracle call, thus thwarting the attacks of [BPW12; [CS13].

The ballot secrecy of our scheme is analyzed in according to a modified
BPRIV definition.
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Theorem 5.3: PACBS voting is private

Assuming that:
The PACB signature is blind.
The PACB signature is publicly auditable.

The BB is honest in that it accepts all entries.

— There is an anonymous channel during casting.
The PACBS voting scheme provides privacy according to U-BPRIV even against
a corrupted TA.

Proof. Recall from that BPRIV essentially states that all the voting data
released in the BB do not provide the privacy adversary any advantage in guessing
the preference of an honest voter concerning what is provided by the election tally
alone. Furthermore, it must be noted that in BPRIV it is assumed that there are 2
bulletin boards BBy, BB1. When the A casts a ballot, it is posted in both. However,
an honest voter can cast a different vote vt for BBy and a different vote vt for BB;.
Both vt, vty are selected by the A.

We deviate from BPRIV in two ways: The first concerns the tallying phase. Since
BPRIV considers the TA trusted, the tallying is performed by C always on BB and a
proof (or a simulation) is provided. In our case, the adversary performs the tallying
on BBy. As a result, there is no need to define a BPRIV simulator nor a Tally oracle.

Note that the same concept is expressed in U-BPRIV |Algorithm 4.11

. but since the

RA in our case does not generate the keys on its own, we build on the definition from

Algorithm 5.20 for simplicity. Secondly, in order to indicate the anonymous channel,

the votes chosen by A are not sent to the specified BB, but their destination is chosen

randomly, by a coin flipped by C.

We begin by adjusting the description of the oracles of Algorithm 4.1 for our case.

Note, that to avoid confusion on the names of the oracles and the respective func-
tionalities, when we use the Cast oracle we mean that the adversary executes the
complete procedure to cast a ballot and not only the VSpacgs.Cast algorithm. Fur-
thermore, in our case, the ballot mentioned in the BPRIV definition contains all in-
teractions of the voter with the EA: both the authorization request and the actual
casting. In particular, the ballot of the BPRIV definition contains what the voter
posts in BByote, BBcast-

Since we don’t want the adversary to trivially win the game, all the sets of inputs
{vto}, {vt1} to the Vote oracle are assumed to be equal as multi-sets, or equivalently
that they are permutations of each other. Since the adversary controls the tally, if

it were not for this assumption then the challenger would not be able to swap the
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Algorithm 5.20: Privacy definition for PACBS voting

Input : security parameter A
Output: {0,1}

Oracle Vote(i, vty, vt)

b<+s{0,1}

(L, (i,ep, Co, 7T, )) = VSpacs-Vote(A(skga), Vi(vto, 0;), )

(L, (i,e1-4, C2,7¢,)) = VSpacps-Vote{A(skga ), Vi(vty, 8;), )

BBb,vote = (Z, ep, Co, 7TC2)

BBl—b,vote = (Z/ e1-p, Co, 7TC2)

if VaIid((vb, nb,v,ﬁb), BBb) AND Va|id((7)1,b, nl,b,v,ﬁ), BBl—b) then
BBy, cast <= (b, 75,0, 0p)
BBl—b,cast <= (vl—b/ ﬂl—b,vral—b)

else

L return L

Oracle Cast(i,b;)
/* Parse ballot contents x/
((l/ €, CiZ/ 7T(;'i2), (vi/ nvilai)) = bi
BBﬁ,vote = (z,ei, Ci2/ 7TC1-2) for [3 € {0,1}
if Valid((v;, 70, 0;), BBg) for B € {0,1} then
‘ BBb,cast <~ (Ui, nvi,ﬁi) for ﬁ € {0,1}
else
[ return 1

(prms, pkga, Skpa, Pkpa, Skra) < A(11)
(VElr CS) <~ A()

b/ < AVote,Cast(prmsl pk, BBb)

return b = b’
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votes between bulleting boards, since the tally would change, and the adversary could
trivially distinguish it. Additionally, we also assume that the authorization requests

for {vto}, {vty} are issued in random order by the challenger.

We define a sequence of games beginning from the adversary interacting with the
challenger of BPRIVY and concluding to the adversary interacting with the challenger
of BPRIV?. The differences in each game are detected by the adversary with negligible
probability.

— Gamey is the BPRIV? game. Both bulletin boards are built through a series of
calls to oracles Vote, Cast. This means that, for each tuple (i,b) posted by
the challenger, where b = ((¢, C3, 7¢,), (v, 70,0)), it can internally maintain
the tuple (i,bg, vto, b1, vt1) where by is the ballot for vty in BBy and by is
the ballot for vt in BB;. We observe that each ballot contains two parts i.e.
b; = (b;[0],b;[1]) where b[0] = (e, C, 7t¢,) and b[1] = (v, 77, 7).

- {Gameg}ie[n]. For each honest 7, the challenger replaces the entry in the BB, to
be tallied, with an entry with the same plaintext vote from the other BB. More
formally, it swaps (i,bp[1]) in BBy with (i’,b1_p[1]) from BBy_; by looking up
an entry in the internal table of tuples it maintains from the calls to oracle Vote,

such that vt; , = vt 1_p, where i’ is another honest voter.

This change is indistinguishable from the adversarial point of view, for the fol-

lowing reasons:
« Since vt;p = vty 1_p the tally does not change.

«+ The signature for i’ contained in b;:[1] in is perfectly unlinkable to the au-

thorization request for b;[0].

« The values v, 71, are indistinguishable, or else the Enc + PoK encryption

scheme would not satisfy the NM-CPA property, which is not the case
[BPW13].

+ Since both voters 7,1’ are honest, both signatures are valid assuming an
honest RA. However, since the RA is adversarial, it could try to distinguish
the two BB by providing a valid ballot for i in BB, and an invalid ballot
for i’ in BB1_g, so that BBy, contains one less vote. The adversary cannot
disregard the predicate and provide an invalid signature, as this will violate
the public auditability of the PACBS scheme. Additionally, .4 could try to
mark the request as duplicate, while it is not. This, however, would violate

the soundness of 7Tqyp1, 7Tqup2 in the duplicate detection phase.
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It is easy to see that Gamey' is BPRIV!. Since each game in the sequence is indistin-
guishable to the adversary, the initial and final games are also indistinguishable. As
aresult, even if an adversary fully controls the RA, it cannot distinguish between the

contents of BBy and BB1_y,. [

5.3.3 Everlasting privacy

We will now analyze how our scheme fares against unbounded adversaries using the
games WE-BPRIV, E-BPRIV, SE-BPRIV from Algorithm 4.12, Algorithm 4.13,Algorithm 4.14.
Intuitively, VS.PACBS provides strong everlasting privacy since the ballots on the BB

are information-theoretically protected and the casting phase is anonymous.

In more detail, assuming there is an anonymous channel during casting and that the

adversary cannot fully control it VS.PACBS provides everlasting privacy according
to SE-BPRIV from Algorithm 4.14.

The reasoning behind this statement is that A, the unbounded adversary of
rithm 4.14, will not be assisted by the data in the BB. Note that in our case the

complete communication transcript is posted on the BB. As a result, the notions of

E-BPRIV and WE-BPRIV are essentially the same. Furthermore, in we
proved that VS.PACBS satisfies U-BPRIV. Recall, that the contents of the BB after
Vote and Cast are:

. = af;
(l/ e, Cl/ 7TC1/ C2/ TCCZI ,B/ nSign/ go 1/ ndupli ndupZ) € BBVote

(vr 7'[1,,5') € BBcast

Since A can decrypt the BB contents are equivalent to:

(i/e/ 91/92/ ,B) € BBVote
(Vt/a') € BBCast

The blindness of PACBS does not allow A to associate the identified authorization
request in BByt With the respective vote in BBc,g;. As a result, the BB content

alone cannot put an identity to a vote.

One way A can bypass this, is by tagging the authorization and voting requests by at-

taching identifying information. Timing or network data could provide for such tags.

To thwart this attack the anonymous channel is used. In the spirit of subsection 4.6.3

it is essential that the adversary cannot fully control it.
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5.3.4 Coercion Resistance

Our voting protocol VS.PACBS provides coercion resistance according to the frame-
work of [JCJ05] we analyzed in subsection 4.4.2.

Recall that the JCJ framework defines coercion resistance as receipt freeness, along

with resistance to impersonation, random voting, and forced abstention attacks. Con-
cerning the former two, if a coercer forces a voter V to reveal her credential, or vote
randomly with it, then she can present a fake credential. During the moment of
privacy, she can cast her real vote. Nobody (including the coercer) can tell if the
credential is valid or not, since the conditional verifiability of PACBS discloses this
information only to the designated verifier (the TA in this case) and the holder of
the secret information, i.e. V. The generated proofs used in PACBS.AuditSign and
PACBS.AuditVrfy will merely provide information that the protocol was executed

successfully for verifiability.

To thwart the forced abstention attack, however, a further assumption should be
made, namely that there exists an anonymous channel used by V during authorization
and casting. In the former case, the anonymous channel is implemented with mul-
tiple authorization requests corresponding to the same voter ID. This prevents the
coercer from verifying abstention by checking if a particular ID is missing from the
BB. Such an assumption is common in previous JCJ-related schemes in the literature
(e.g. [CH11; Sch+11]). These extra authorization requests are assumed to originate

from interested third parties (e.g. pro-democracy non-governmental organizations)

or other voters, and will not be counted as they will correspond to a valid credential

with negligible probability.

Of course, for all these to hold, the coercer is assumed not to (fully) corrupt the elec-
tion authorities RA, TA which is one of the assumptions made in the JCJ framework

anyway.

It should also be noted that our scheme is impervious to the ‘1009 attack of [Smi05],
where the coercer can check if the voter follows his directions by forcing him to cast
a particular number of votes (e.g. 1009) and check if the group size is maintained
in tallying. First of all the chaffvote functionality makes sure that it is improbable
that the number of the ‘1009” authorization requests is maintained, as there will be
chaff requests for that particular voter ID. As a result, grouping with that value does
not make any sense and hence 4 cannot use it. If the attacker forces the voter to
cast ‘1009’ votes with a particular credential, the voter can do so and the duplicate
marking functionality will keep one and mark the rest 1008 as duplicates without any
impact to the group size. Additionally, the VS.Valid functionality discards all identical

ballots, so performing these attacks in the casting phase (i.e. with the ballots instead
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of authorization requests) will leave one for counting and the rest will be marked
as invalid without again affecting the group size. More importantly, in the tallying
phase of VS.PACBS there is no particular grouping of the votes, as all credential-
related information is absent and the result is hidden inside the signature, protected

by the conditional verifiability property.

In order to formally analyze coercion resistance, we adapt the two games from [JCJ05]

to accommodate our protocol’s functionality and the authorization phase in partic-
Ccr . . . . .

ular. Recall that we must prove that Advyg, 4(A) is negligible in the security

parameter, where:

AdVs, s cpea(A) =Pr|GameSs (A, n,m, [Voore|, D) = 1]-

Pr| Game(fgdee! (A1, m, [Veore, D) = 1]

VSpacgsAideal

As always, n denotes the total number of voters, who are partitioned in three sets:
Veorr are the corrupted voters, controlled by .A. We denote their number |Veorr|- The
corruption is static, which means that the adversary selects them at the beginning of
the game without the capacity to change them. Vioy are the honest voters and |Von|
is their number. The behavior of the honest voters is governed by a distribution D g
which aims to model the uncertainty of the adversary regarding their voting behavior.
For instance, D determines whether an honest voter will abstain or not and how
many chaff ballots except her real one will be cast on her behalf. The coerced voter

is denoted by j and is neither honest nor corrupt. As a result: # = |Veorr| + |Vion| + 1.

The coercion resistance game

The game Gamef/rSPACBS/ (A, n,m, |Veore|, D) is described in Algorithm 5.21. In gen-
eral, it does not deviate much from the JCJ] workflow, except for the particular adap-

tations required by our scheme.

The VSpacgs challenger sets up the election system, randomly chooses the credentials

and registers all the voters. In the end of this phase the encrypted credentials are

posted in the BB. Again, for readability, in |Algorithm 5.21 the exact data inserted to
the BB are omitted, as they are specified in detail in section 5.2.

The coercer corrupts the voters in Vgory and obtains their credentials. Subsequently,

it picks a voter j to coerce, who must not be corrupt. A random coin b is flipped
to determine the behavior of a coerced voter. If b = 0 then she invokes the fakekey

functionality to create a fake credential to present to the coercer. At a different time,

2We simplify notation by using D instead of Dy,
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during the moment of privacy, she casts her real vote. If b = 1 the voter gives her real

credential to the coercer, without utilizing the moment of privacy.

Afterward, all the honest voters vote, and A casts ballots on behalf of the corrupted
voters and the coerced voter, in a manner that benefits him the most. Then the chal-
lenger executes the Tally functionality and computes the result T as well as a proof
of correct computation. Finally, the adversary tries to guess if voter j followed his
instructions or not. If he succeeds, he wins the game and 1 is returned from the

experiment.

Note that if b = 0, there exists one more ballot than if b = 1. The reason for this
is that in the former case there are two ballots for the coerced voter (one for the
real and one for the fake credential), while in the latter there is only the fake ballot.
This distinguishing factor is counterweighed by the distribution D that governs the

behavior of honest voters.

Moreover, VSpacgs. Tally also produces a side-channel that consists of evidence with

the role to check the correct operation as specified in Algorithm 5.13 and what is

deduced by them. These include the number of unique valid ballots, the number of
duplicate ballots, or the number of ballots with invalid proofs, the list of anonymized
ballots, the proofs from PACBS.Verify.Prepare and PACBS.Verify.Dec which might
provide extra information to 4, such as the number of ballots that contain invalid
credentials. While these are already posted in the BB, we treat them in a special
way as they can aid A in computing b’ and winning the experiment. As a result, we

reserve a special argument I for them.

The ideal coercion resistance game

As we saw in section 4.4, a simplistic definition of coercion resistance would simply

request from the adversary to distinguish the coerced voter’s behavior for the differ-

ent values of b in Algorithm 5.21. However, this behavior can be deduced from the

tally (e.g. in the case that the candidate preferred by the coercer receives no ballots).
For this reason, as in [JCJ05] we must define an ideal version of the experiment of
gorithm 5.21 to express the maximal advantage that an adversary can obtain from the

invariant characteristics of the voting system, such as the tally, without interacting

with it. As a result, the ideal version, described in Algorithm 5.22 serves as a baseline

for comparison.

In more detail, the differences of Algorithm 5.21 and |Algorithm 5.22 are:

— The adversary is not given the credentials of corrupt voters. Consequently, he

does not cast ballots for the corrupt voters, but merely pre-selects their votes
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Algorithm 5.21: Real Coercion resistance game Gamef/rSPACBS, AN, n,m, |Veore|, D)

(prms, Pkpacess SKpaces, PKEne SkEnc) = VSPACBS-SetUp(lA)
n
{91' ‘_$Zﬂ}i=1
if 3(7,j):0;=0; ANDi # j then
| return 0
end
{((Cin, 1), 6;) < VS.Register(RA(skg, ), Vi(6:), )},
(VE1, CS) := VS.SetupElection(n, m, prms, L)

(VCorr/ VHon) <« A(Tl, COI'I'upt)

{61! < A(IVoozs], obtain)
(J th) < A(Vg1, coerce)

if j € Corr AND vt; ¢ CS then
| return L

end

b<s{0,1}
if b = 0 then
9].* « fakekey(j) // generate fake credential

credential
b] = VSPA(:Bs.VOte(RA(SkRA),V]'(Vt]', 0]), )
BB < VSpAcgs.CaSt(b]‘)
else
‘ 9].* =0 // yield credential

end
Viton|, D
{bi p= VSPACBs.VOte(RA(SkRA)IVi(Vtil 91)/>}| Hon]

=1
V on ID
{BB R VSPACB5.CaSt(bi)}|i:? |

{BB < A(0;,vt;, cast)}lz.‘:i(’rrI
BB < A(G;,vtj, cast)

(T, 7'CT,F) = VSPACBS.TaIIy(BB, SkPACBS’ SkEnc)
b’ < A(T, 7t7, T, BB, guess)

return b = b’

// In the moment of privacy cast the ballot for the real
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and does not have access to the BB. The rationale for this is that in the ideal

version, the adversary must not be aided by cryptographic material.

— For the same reason, the coerced voter does not use fakekey but always yields
the real credential to A.

ideal

— The functionality VSpacgs.Vote is replaced with VSpacgs.Vote that per-

forms the authorization part of the protocol by the RA in an ideal manner:

« It gives only one valid signature (ballot) for each valid credential, i.e. per-

forms duplicate ballot weeding.

» For honest voters, it does not embed the PET of the credentials inside the
signature. Instead, it extracts the underlying credentials (by decrypting
them) from the authorization request. If they are equal it equips the bal-
lot with a valid signature instead of embedding the credentials inside the

signature, else it provides an invalid signature.

« For the credential of the coerced voter the validity of the ballot is deter-
mined by the coin toss - i.e. if b = 0 (coercion resistance) the fake vote
(which now carries the correct credential) is disregarded. Only the vote
cast during the moment of privacy is counted. If b = 1 (coercion) the fake
vote is treated normally, i.e. given a valid signature, as it contains the cor-

rect credential.

ideal is the one that characterizes which

— Since the functionality VSpacgs.Vote
votes will be counted, tally just follows the regular protocol. Unlike [JCJ05] in

our case there is no need for an ideal tally.

We are now ready to prove that VS.PACBS is coercion resistant.

Theorem 5.4: PACBS voting is coercion resistant

Assuming that:
— The registration phase is sound.
The RA, TA is honest (or that the A does not control the majority of their

members).

There is an anonymous channel during vote authorization and casting,.

The adversary is unaware of the exact behavior of honest voters.

The voter has a moment of privacy.

The PACB signature is conditionally verifiable.
The PACBS voting scheme provides coercion resistance according to the JCJ

framework.
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Algorithm 5.22: Ideal Coercion resistance game Gamef/rSF')Aigsl Ao (A, n,m, |Veorr|, D)

/* Registration proceeds as in |A1gorithm 5.21 */

(Veorr, Viaon) < Aideal(11, corrupt)
@ < Aigeal(|Veorr|, obtain) // obtain credentials of corrupt voters

(j/ Vt]) < Aideal (VEll coerce)

if j € Corr AND Vote]- ¢ CS then
| return L

end
b<s{0,1)
if b = 0 then
b; = VSPACBS.VOteldeaI<RA(SkRA),V'(Vt]’, 0;),") // moment of privacy: use
real credential

BB < VSPACBS-CaSt(bj)
end
9; =0; // Always yield real credential

{b; < VSPACBS-VOteideaI(RA(SkRA)/Vi(Vti/91’); )

VHon|,D
(BB < VSpacas.Cast(by) }1

|VHon|/D
i=1

{BB <= A(, vti,cast)}i.‘:im'
BB < .A(G;,vtj, cast)

b/ < Aigeal(T, T, guess)
return b = b’
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Proof. In order to prove that our scheme is coercion resistant we construct a series
of simulated games starting from Gamef/rSPACBS, 4 and concluding to Gamef/réis:sé& A
where the advantage of the adversary is negligible between each game. These mod-
ifications aim to show that the extra vote cast by the coerced voter and the use of
the fakekey functionality if b = 0 as well as the behavior of the honest voters cannot
essentially help the coercer to distinguish if he can win the game in a manner sub-

stantially different from the ideal case. Our detailed exposition follows the general

framework of [JCJ05; UH12].

Game( - Initial simulation

Initialization (Setup, Registration, SetupElection) The challenger C creates the
parameters of the voting system, by running the PACBS.Gen algorithm. The pub-
lic values (g, G, §1,82,v,8) are selected uniformly at random and posted to the BB.
The private values s,z € Z, are sampled and the corresponding public keys k, /1 are
posted to the BB. During registration, for each voter i, C selects randomly a credential
0; < Z, stores it internally in a real credential table (i, ;) along with the voter iden-
tity. This means that the C knows the credentials for all voters (corrupt, honest, and
coerced). Then all credentials are encrypted using /i and rebased. In the end the BB
contains encryptions of all the credentials (i, Ency,( ggi)). All the proofs are created

normally, as C knows all the relevant values.

Corruption - Coercion - Coin Flip The adversary requests the credentials of the
corrupt voters. The challenger reviews its internal table and retrieves them. A selects
a voter to coerce and sends its id and the instructed vote to the C, who checks for
validity. C selects a random bit b«${0,1}. If b = O the challenger emulates the
actions of the coerced voter, by casting the real vote and producing a fake credential.

Since both of these actions will be modified, we describe them separately.

Coercion evasion - Real vote The challenger retrieves the real credential 6; and

0:
computes a new encryption of g/, Cj2. It also retrieves the encryption Cj;. Further-
more, it computes an encryption v; of the vote vt; selected by the coercer. Then
OSPACBS.BIlind(Cj1, Cj, v)) is executed and the result e; is posted to the BB along
with the voter identity (i.e. (j, e, Cj2, 7Tj2)).

In order to answer the authorization request, he decrypts both credentials using its
private key z. If there are no duplicates, it checks if the underlying credentials are
the same. If this is the case, it creates a valid signature by using an encryption of 1

as W, otherwise it encrypts a random element of G. The proof 77 5;q, is produced
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in the normal manner. Then it posts (le, CjZIB]'/ nj,Sign)- Finally, it executes the
OSPACBS.Unblind algorithm and posts the ballot (v;, 7Ty, 0;) to the BB.

Coercion evasion - Fake credential The challenger executes fakekey and creates
a fake credential 6; that is provided to .A.

Coercion concession - Real credential If b = 1 the challenger retrieves the real

credential for j and submits it to A.

Honest voters vote The challenger posts the votes of the honest voters, and the
same procedure that was followed for the real vote for voter j, is used to carry their

authorization requests. As a result, the data that is posted on the BB are the 3 tuples:
((i,ei, Cio, i), (Ci1, Cin, By, Ti Sign ), (03, T, 0))

Corrupt voters vote The adversary creates authorization requests and votes for
all the corrupted voters. A does not necessarily follow the protocol: As a result, all
types of votes (duplicates, with invalid proofs, with missing components, etc.) can be

submitted.
Coerced voter votes A constructs a vote for the coerced voter.

Tallying The challenger filters the unique ballots and executes the PACBS.Verify
functionality. Then it sends the votes with the partially decrypted signatures to an
oracle Shuffle that performs shuffling. The signature in the result is then decrypted
and if it is valid the corresponding vote will be sent for counting. It is easy to see,
that all the votes submitted from honest voters as well as the real vote of the coerced

voter will be counted in this way:.

For convenience we denote by Success; = Pr[GameferSPACB . AN, n,m, |Veore|, D) = 1]-

As a result, Success) = Pr[Gamef}sPACBS/A()\, n,m,|Veorr|, D) = 1].

Game; - The real vote does not help the coercer Our first objective is to show

that if b = 0 the vote cast during the moment of privacy for the coerced V; does not

aid the coercer. Note that this vote is present in both real (Algorithm 5.21) and ideal

games (Algorithm 5.22). In the real game, this is the only vote with a valid credential,

since if b = 0 the voter hands the result of fakekey to the adversary. In the ideal game,
however, two votes with the real credential will be added if b = 0 (one by the voter

and one by the adversary). This is taken care of, by the ideal version of the Vote
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functionality which disregards the vote cast by .A. To conclude, an equal number of

votes is cast in both games for this case.

To achieve our objective, we let C in Game; choose a different credential éj # 0 for

Vj and cast the real vote with this one. As a result:

b] = VSPACBS-VOte<RA(SkRA)/ Vj(th/ é])l )
BB < VSpacps-Cast(b;)

where the VSpacgs.Vote posts the tuples (j, ej, CAjz, 7'fj2), (le, Cp, BA]-, 7T Sign ), (‘0]-, Ty, (_;j))to
the BB. The values j, ej, le,vj, Tty are the same both in Game; and Game; as
e, 0j, Ty, depend only the voter choice which is the same in both games, while le, v;
depends on the registered credential which is the same again. As a result, A must
use CA]Q, 7'(}2,BA]-, njlgign,(_fj to distinguish between Game; and Game . Note that 0
will be a valid signature, while 5]' will be invalid, as the credentials no longer match.
However, this is not distinguishable by the adversary by the conditional verifiability
property of PACBS. Also, note, that the tally will not be a distinguishing fact as the
C, can monitor the choice vt; of V; during the various stages of the protocol, and add

it to the final tally, despite having an invalid signature.

This means that:

|Success; — Successg| < €ND-CPA + €NIZK + ECONDVER + €dup

where enp.cpa is the advantage of A to win the IND-CPA game, €y zk is the prob-
ability that the system used leaks information on the witness, €4y, is the probability
that a duplicate vote has been cast for the credential éj and econpVER is the probability
that A wins the conditional verifiability game for PACBS.

Game, - The fake credential does not help the coercer Continuing the case

that b = 0, in the real game (Algorithm 5.21) A receives the fake credential, while

in the ideal game Ajqe, receives the real one (Algorithm 5.22). The only way the

two can be distinguished, is by using the encryption C;; residing in the voter roll, as
well as the relevant proof 77,1 posted after the registration phase. The distinguishing
advantage is:

|Success, — Success | < €inND-cPA + ENIZK

Note that Cj; is reencrypted, which means that the voter cannot recreate it, as the

randomness has changed.
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Game; - The ballots of the honest voters do not offer any advantage to the
coercer If the A can determine the partial tally of the honest voters, then it can
combine this fact with the votes of the corrupt voters and deduce the tally of the

election minus the coerced voter. From there it is easy to see if the coercer obeyed

or not. To examine this, we define a family of games {Gameé}?j?“'

we change the behavior of V; € Vo, to use a credential 0; instead of 0. Following the

where in Game}

same reasoning as in Game; , we can see that:

i i-1
|Successz — Successz | < €END-CPA + ENIZK + ECONDVER + €dup

. V on| =+
where Successg is defined as Success; and Success|3 Honl 5 defined as Successg.

If A has advantage €,n0n to break the anonymity of the anonymous channel in the

authorization and casting phase to win the forced abstention attack we get

Successs — Successg| < €ND-CPA + €NIZK + ECONDVER + €dup T €anon

which is negligible according to our assumptions.

Note that in Game‘?)vHonl all the contents of the BB consist entirely of random values
and tallying takes place by internally tracking the honest votes. As a result, .A cannot
be assisted by the cryptographic primitives but the only data he can use is the actual

; Vi . i
result. This means that Game'3 bon| is Game® 9% and

Success3 = Pr[Gamecr'ideal (A, n,m,|Veore|, D) = 1]

VSpacgsAideal
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6 Conclusion

The end is the beginning is the end

Smashing Pumpkins

6.1 Summary

In this thesis, we presented two cryptographic primitives for the creation of a digital
signature that is conditionally verifiable from a designated verifier. For the simpler
variation, CBS, its validity is determined by a private input to the signer, which makes
the signing process and its result not auditable. This problem is solved by PACBS
where the validity, depends on publicly available but encrypted data, that is embedded
inside the signature. The creation and verification functionalities must also emit non-
interactive zero-knowledge proofs of knowledge, so that a corrupted entity is forced
to follow the protocol. We created instantiations for these primitives and introduced

security models to express and formally prove their security properties.

The introduction of CBS/PACBS was motivated by the need to implement efficient,
private, coercion-resistant and verifiable electronic voting in the JCJ framework. In-
deed, we created a voting protocol built around the properties of PACBS Conditional
verifiability was used to provide coercion resistance, public auditability was used for
universal verifiability and blindness was used for privacy against a corrupted signer.
The intuition behind our protocol was to replace the public outputs of the public tests
performed during tallying in the JCJ framework with private but verifiable ones. To
provide efficiency the credential check was moved earlier in the protocol, during the
authorization phase and its results were conveyed using the PACBS primitive. The
combination of PACBS with other components assumed by the JCJ framework, like
an anonymous channel, during the voting and casting phases, allowed us to pro-
vide ballot secrecy without a need to trust the talliers, an assumption common in
the e-voting literature. We observed, that since this could amount to schemes that
are resistant to more powerful adversaries, our voting schemes provide everlasting

privacy.

To better study this phenomenon, we introduced security models for everlasting pri-

vacy. Our adversary has the strongest capabilities ever defined in the literature as he
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is both active during the election by collecting data, as well as in the future where he
can break the cryptographic schemes used. Based on this we defined three models of
everlasting privacy. Our novel contribution was the modeling of the adversarial ca-
pabilities both in terms of computational power and in terms of information context.
Using this model, we reasoned that a system based on commitments opened through
private channels cannot provide the strongest sense of everlasting privacy, as an ad-
versary with internal knowledge (such as a governmental agency) will have access
to both the decommitments and network information. The use of an independent
anonymous channel, however, will be able to thwart such an attempt. While such
a channel is not currently practical, especially on a large scale, our model indicates
that research for everlasting privacy will be assisted by its existence, as long as the
other properties required by voting systems (e.g. integrity and election verifiability).
Anonymous channels have the added benefit that they resemble the way traditional

elections work and as a result, such a system will be more accessible to the voter.

While, anonymous channels are indeed a strong assumption, its use was prompted by
the need to defend against the vote abstention attack, described in the JCJ framework.
This also applies to other aspects of PACBS as well, as they were developed for the
extremely adversarial environment of electronic voting. In an environment, with
less strict security requirements, the logic behind CBS/PACBS could be applied more
efficiently.

6.2 Future work

In general, the separation of the authorization and casting phases that characterize
the scheme of [FO092] can be easily applied to many scenarios. CBS/PACBS fits
easily with this architecture and helps provide certified anonymity combined with
verifiability. Apart from electronic voting, other applications of interest, could in-
clude anonymous surveys, anonymous usage of services for authorized users (e.g.
adults). Such use cases have attracted attention in the previous years and there have
been similar proposals [Hoh+14] that follow the [FOO92] architecture, differing on

the use of primitives.

To make the use of our primitives in such usage scenarios clear, we generalize the
voting use case from chapter 5. A functionality is meant to be used by a predetermined
set of users, that must be authenticated before access is granted. However, the use
of the service must be anonymous, concerning the identities as well as the inputs
of the users. For instance, one can imagine a questionnaire about the evaluation
of a university course, or the statistical processing of the financial results for a set

of companies. To guarantee anonymity, the identities of the participants should be
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hidden. However, this is not enough, as the answers to survey questions could leak
identifying information. A possible solution could involve homomorphic encryption;

however, this will limit the types of possible operations to process the data.

Our proposed protocol provides another solution. There is a publicly available list of
encrypted tokens, representing the valid authentication information for the users of
a service. The service provider has granted the users with the credential that corre-
sponds to the token beforehand. Each time a user requests the use of the service, she
provides an encryption of her credential and points to the token in the list for com-
parison. Moreover, she includes a blinded input to the service (e.g. the answers of
the survey). The signer uses PACBS to sign the request, granting the service usage, if
the user has the right to. PACBS hides the input to the service from the signer. From
that moment on, the service can be used without any need for identity validation, as
the (unblinded) signature ‘carries’ the authentication information. Consequently, the
processing of the inputs can take place without the need for identifying information.
The PACBS primitive makes all actions auditable. However, the inputs can still leak
information. The fake credential mechanism can allow the users to obfuscate their
submitted data, by posting misleading information accompanied with a fake creden-
tial. These inputs will be seemingly valid, without leaving any public trace of whether
they were really considered. Only the user and the processor will know which items

make it into the outcome.

Furthermore, this obfuscated, auditable but private credential checking mechanism
can provide a solution to metadata anonymity. In many cases, the contents of ex-
changed messages can be protected by cryptography or other means. This does not
apply, however, to other related information, such as the sender or the receiver or the
frequency of exchanged messages. Such metadata have many uses, and are easier to
leak, providing a rich information context. One way to protect them is to flood the set
of genuine conversations with fake ones. During processing, they must be weeded

out for the results to make sense. Both of our primitives can help in this direction.
More concrete avenues for future work also include:

Different constructions of PACBS could be investigated and built on top of blind
signature schemes for instance the original RSA blind signatures of [Cha83] or the
scheme of [Bol0Z]. Our aim with such constructions is to overcome the polylogarith-
mic bound on the number of concurrent sessions, inherent in the scheme of [Oka92]
from which our proposals inherit. Such instantiations would implement the main
ideas of CBS and PACBS but provide unforgeability against plain one-more forgery
instead of strong one-more forgery, thus improving efficiency and scalability. Ad-

ditionally, the emphasis could shift between blindness, designated verification, and
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auditability to express more fine-grained trust models (e.g. a corrupted signer but
an honest verifier and vice versa, or computational instead of perfect blindness). Our
security model should also be extended to reason about the security of such construc-
tions. Secondly, another idea would be to extend the secret information to more than
a single bit, maybe to a complete program, the input of which is the encrypted public
data. This program could be inside a signature and evaluated when the signature is
verified. The design of more concrete protocols for applying PACBS in different usage
scenarios is another direction for further research, following the general guidelines

we described.

Regarding the e-voting part of this thesis, an implementation and application in small-
scale elections can be attempted to study its usability and its acceptance from end-
users. Particular attention should be given on the coercion resistance mechanisms

and the use of panic passwords.

We also plan to explore how this distribution of control for anonymous channels we

saw in subsection 4.6.3 can be applied to the various types of anonymous channels

proposed in the literature and incorporated in known voting protocols in a usable
manner. Our models can prove a useful means of establishing the success of such
efforts. Guided by U-BPRIV, we also plan to further investigate the consequences
of building electronic voting protocols that do not require trust in the tallier for se-
crecy. In our view, this is of independent interest, as in the majority of works in
electronic voting the talliers are trusted for secrecy and not trusted for verifiability.
While this is a common assumption in the e-voting literature, little research has been
conducted on whether it is accepted by the voters. Our intuition, from recent reac-
tions to e-voting attempts are that there is a discrepancy between formal models and

voter perceiptions. However this requires further research.

6.2.1 Coercion resistance in decentralized and blockchain vot-
ing
A major other research direction is the application of PACBS to provide coercion re-

sistance in the decentralized setting with the aim of later transferring such a protocol
on a blockchain. A first such attempt was presented in [PBS20].

One of the most interesting methods made possible by remote electronic voting,
self-tallying elections, were proposed in [KY02], where voters can conduct the elec-
tions themselves, without using or trusting tallying authorities. That initial idea re-
ceived many revisions and improvements ([Gro04]), with the most efficient one be-
ing the Open Vote Network (OV-net)[HRZ10], which was implemented on top of
the Ethereum [But14] blockchain in [MSH17]. However, smart contracts’ limitations
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restricted the number of voters to around fifty in that attempt. Recently [SGY20],
scalability in the OVT was improved, at the expense of decentralization though. In-
stead of using smart contracts for self-tallying, [SGY20] delegates the vote-counting
functionality to an untrusted authority that performs it off-chain, but provides the
computation trace, so that the result can be verified by everybody. This untrusted
authority does not rely on private keys and as a result, any entity with enough local

processing power can play this role.

As far as security is concerned, decentralized voting schemes should have the follow-
ing basic properties [Kha+12]: Perfect ballot secrecy: In order to learn a voter’s choice
all other participants must conspire. Self-tallying: All voters and interested third par-
ties can tally the election result from published data. This property provides universal
verifiability. Dispute-freeness: The protocol avoids situations were one party (rightly)
blames another for breaking the protocol, without providing evidence to support it.
This property is related to accountability [KTV1([]. Fairness: No party can deduce
partial results before the voting period has ended. Robustness: The voting protocol

and result computation cannot be blocked by a corrupted party.

Of course, the properties of must also hold. However, their semantics
might be different. For instance, coercion resistance in decentralized voting is not
well researched. The reason is that in such protocols, especially self-tallying ones, a
coercer can be present during vote counting to ‘help’ its victim ‘correctly’ count the
votes and at the same time make sure that his attack succeeded - i.e. the coerced
voter followed his instructions. In fact, [Che+10] proves that universal verifiability
cannot coexist with receipt freeness - a weaker form of coercion resistance - unless
private channels are available. This however leaves open what can be achieved with
private or anonymous channels. A decentralised PACBS could be used to provide
such a private channel and an application of ring signatures, like the one in [PS17]

could provide anonymity.

The main idea of the scheme of [PBS20] can be shortly described as follows: Voters
are arranged in rings and the votes of each ring are counted by a tallier who acts as
the designated verifier for the ring. A sortition mechanism, like in [Gil+17] can be
used to assign voters to rings and select the tallier at random. Alternatively, in the
case where the protocol is executed over a Bitcoin-like blockchain [Nako§] the proof
of work mechanism can be used. More specifically the participants can locally run
an algorithm, until its output matches some predefined characteristics (e.g. number
of zeros) of the proof of work target. Such mechanisms have the goal to deter partic-
ipants from conspiring to create rings and select a designated verifier. During vote
casting, the voter decides on her choice vt and signs it using a ring-based variation of

PACBS. In particular, the vote is seen as coming from the ring as a whole. To prevent
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double-voting the pseudoidentity mechanism of [PS17] can be used. If the voter is
under coercion she does not use her regular private key, but a randomly selected one.
In her moment of privacy, she uses her regular private key. As a result, the former
signature will not count and the vote that is accompanied by it will be considered
coerced and therefore not counted. Signature verification is not public, but strongly
tied to a specific verifier identified by a key, who provides proofs of correct operation
as in PACBS.

An implementation of such a scheme could also use an underlying blockchain as
[MSH17]. In general, the fact that a blockchain like [Nak08] or [But14] shares many

similarities with an e-voting BB has generated many proposals for blockchain vot-

ing. However, as analyzed in [GP19] using a blockchain as an e-voting BB solves few
problems and creates a whole lot more. In more detail, the basic blockchain as a BB
scenario [YN16] is very similar to the snapshot of a show of hands analogy that we re-
peatedly used in explaining the properties of voting systems. More specifically, each
candidate is represented by a Bitcoin address. When a voter wants to cast a vote for
a specific candidate, she sends a fixed small payment to the address of the candidate.
This transaction is recorded on the blockchain. Consequently, the voters themselves
need to be represented using addresses that function as pseudonyms. Both a permis-
sioned and a permissionless blockchain could be used. When the voting period ends,
everybody can check the blockchain and sum the amount of coins received by each
candidate address and declare the winner. Since all the votes are represented as trans-
actions in the publicly readable blockchain, everybody can audit them and verify the
tally. If a public permissionless blockchain is used, the voting system is integrated
into the everyday operation of the cryptocurrency, and as a result, the guarantees are
even higher. However, there are things that need to be considered and as commonly

cited, the devil is in the details.

Firstly, in order to enable eligibility verifiability, there must be a protocol that deter-
mines the mapping between voter addresses and their real identities. If it is executed
by a registration authority, then a trusted third party is introduced to the voting sys-
tem and the use of the blockchain resembles the permissioned case. If the elections are
conducted in a small scale, then it is reasonable to assume that the voters can jointly
agree to their eligibility, using commonly agreed upon information. On the other
hand, in large scale elections, voters need to simply ‘vote and go’ and cannot be ex-
pected to run consensus protocols on their own. In fact, some aspects of real-world
voting especially at the national scale are claimed to be inherently uncentralizable
as argued in [Hei+18]. But eligibility verifiability requires an identity provider that

must bind real-world identities to voting credentials granted only to the ones with the
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right to vote. This means that a registration authority is required, but it must be pre-
vented from associating voters with addresses. This can be done using cryptographic
anonymity principles such as blind signatures and mixnets. While this binding can
be made verifiable with tools such as PACBS the identities are still maintained in a

centralized database operated by a nation-state - a trusted third party

A second drawback is that the basic blockchain voting scheme does not satisfy ballot
secrecy. The use of pseudonyms provides minimum protection, but the real identities
might leak or they might be deanonymized by using advanced analysis techniques
[Mei+16]. A solution employs techniques used in homomorphic voting systems. The
voters encrypt their choice of candidate and instead of sending transactions to each
candidate, they send transactions to a single address owned by a tallier. There are
many ways to embed the encrypted ballot inside the transaction, depending on the
type of blockchain used: In the case of Bitcoin, encryption will be done outside the
system and the hidden ballot along with the zero-knowledge proofs of validity will
have to be stored on a separate data source and linked with the transaction with a
construct like the OP_RETURN statement. This approach has the downside that the
external data source becomes a trusted third party that has control over the actual
data. Alternatively, the voters can self-tally the elections using the recorded data.

For this a blockchain that supports smart contracts must be used. This is the idea
implemented in the Open Vote Network [MSH17].

Except for secrecy, the basic blockchain voting scheme does not support fairness, as
anybody can calculate intermediate results by monitoring the transactions broadcast
on the blockchain. This can affect the choice of late-come voters [YN16]. This is
easy to understand by recalling the show of hands analogy, where an initially gener-
ated momentum on a voting option is self-reinforced due to the transparency of the

process.

The proposed blockchain solutions can be examined in many more aspects; for in-
stance, if they are truly non-centralizable or whether they support large scale elec-
tions. An analysis of [DP18] finds that only the OpenVote network, is a functionally
decentralized platform. However, as we said, it has scaling problems, as it is meant
to be used only for small scale or boardroom elections (for a maximum number of
50 voters as the authors themselves claim). In general, all public blockchains suffer
from efficiency issues, both in the number of transactions that are cleared per sec-
ond as well as in the wait time for a transaction to be confirmed. These make them
difficult to use in large-scale elections. It must also be stressed that, the decentral-
ization arguments only hold for the application layer, i.e. the voting protocol itself.
While the network layer — the blockchain - is considered decentralized, a closer look

reveals that there exists concentration on mining power [Hei+18]. For example, a
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recent work by [Gen+18] finds that 90% of mining power is in the hands of 16 miners
in Bitcoin and 11 miners in Ethereum. This is a troubling result, because it implies

that the voting protocols are designed on top of a leaky abstraction.

Finally, blockchain voting worsens a major problem faced by all electronic voting
schemes especially cryptographic ones. Enfranchisement requires that the voter un-
derstands the process she participates in. This is difficult to do when the system is
built on top of complex mathematical concepts that cannot be easily explained. Some
claim that approaches like code-voting [Cha01] aim to hide abstract such difficulties
away from the voter, however they have not proved their effectiveness. This situa-
tion is made worse by the probabilistic and the incentive-based nature of the security
of many of the schemes we dealt with. This applies especially to blockchain voting.
While their scientific analysis is sound, the average voter might not be confident with
less than perfect solutions. Opponents of such systems might even take advantage of

such misconceptions in order to cast doubt on these voting solutions.

To conclude, voting on the blockchain solves only a single part of the voting problem
— how to reach consensus on the transcript of the protocol. However, this is only
the tip of the iceberg. In order to be able to convince the loser candidates, as well
as the electoral body and observers, a voting protocol must satisfy strict security

requirements, for which the blockchain does little to help so far.

6.3 Epilogue

Electronic voting is not purely a cryptographic or technical problem. Even if the
perfect protocol existed, the voters must willingly accept it in order to express their
opinions through it. User acceptance requires understanding, first of all, posing a
problem for all cryptographic voting systems. We cannot expect all users to know
about homomorphic encryption or zero-knowledge proofs in order to be able to vote.
For such users, who comprise the majority of the electorate, the use of such systems
would be a black box. If they were forced to use an e-voting system they would feel
that they were deprived of their freedom of expression. As a result, the introduction

of e-voting protocols should be consensual and gradual, otherwise, it is doomed to

fail.

To foster consensus, the authorities that set up the electronic elections must first
educate the voters, train them using pilot projects and be frank about the relative
advantages of electronic voting when compared against physical. In fact, a detailed
comparison can prove that if one applies the ‘paranoid mindset’, usually reserved only
for electronic voting to physical elections, many flaws and implicit trust assumptions

can be revealed. This can aid in user acceptance, as long as it is honest. For the latter,
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e-voting cannot be straightly applied to national elections. Smaller-scale elections
should be conducted first in professional organizations, societies, worker unions, and
even in schools. Such elections will allow users to be acquainted with electronic

elections and related processes.

Additionally, an e-voting scheme should not be a monoculture, meaning that it must
not only entail a particular system. Voters can vote with one application, verify their
vote with a different one and check the result with a third. These applications must
be built from different providers. As a result, they must not only be open - source
but also support open application programming interfaces to facilitate the exchange
of data.

Finally, e-voting, as cryptography itself, can be a force for good or bad. It can be
used to improve our democratic processes or by (authoritarian) regimes to legitimize
their views. This leaves a moral obligation to designers and operators of such (cryp-
tographic) voting schemes to add an extra layer of security, by refusing to build or

operate systems that go against the interests of the public.
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